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Machine learning strategies for path-planning microswimmers in turbulent flows
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We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous
and isotropic turbulent fluid flows, in both two and three dimensions. We show that this scheme allows
microswimmers to find nontrivial paths, which enable them to reach a target on average in less time than a naïve
microswimmer, which tries, at any instant of time and at a given position in space, to swim in the direction of the
target. We use pseudospectral direct numerical simulations of the two- and three-dimensional (incompressible)
Navier-Stokes equations to obtain the turbulent flows. We then introduce passive microswimmers that try to
swim along a given direction in these flows; the microswimmers do not affect the flow, but they are advected
by it. Two nondimensional control parameters play important roles in our learning scheme: (a) the ratio Ṽs of
the microswimmer’s bare velocity Vs and the root-mean-square (rms) velocity urms of the turbulent fluid and (b)
the product B̃ of the microswimmer-response time B and the rms vorticity ωrms of the fluid. We show that the
average time required for the microswimmers to reach the target, by using our adversarial-reinforcement learning
scheme, eventually reduces below the average time taken by microswimmers that follow the naïve strategy.
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I. INTRODUCTION

Machine learning techniques and advances in computa-
tional facilities have led to significant improvements in ob-
taining solutions to optimization problems, e.g., to problems
in path planning and optimal transport, referred to in con-
trol systems as Zermelo’s navigation problem [1]. With vast
amounts of data available from experiments and simulations
in fluid dynamics, machine learning techniques are being used
to extract information that is useful to control and optimize
flows [2]. Recent studies include the use of reinforcement
learning, in fluid-flow settings, e.g., (a) to optimize the soaring
of a glider in thermal currents [3] and (b) in the development
of an optimal scheme in two-dimensional (2D) and three-
dimensional (3D) fluid flows that are time independent [4,5].
Optimal locomotion, in response to stimuli, is also important
in biological systems ranging from cells and microorganisms
[6–8] to birds, animals, and fish [9]; such locomotion is often
termed taxis [10].

It behooves us, therefore, to explore machine learning
strategies for optimal path planning by microswimmers in tur-
bulent fluid flows. We initiate such a study for microswimmers
in 2D and 3D turbulent flows. In particular, we consider a
dynamic-path-planning problem that seeks to minimize the
average time taken by microswimmers to reach a given target,
while moving in a turbulent fluid flow that is statistically
homogeneous and isotropic. We develop a multiswimmer,
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adversarial Q-learning algorithm to optimize the motion of
such microswimmers that try to swim towards a specified
target (or targets). Our adversarial Q-learning approach en-
sures that the microswimmers perform at least as well as
those that adopt the following naïve strategy: at any instant of
time and at a given position in space, a naïve microswimmer
tries to point in the direction of the target. We examine the
efficacy of this approach as a function of the following two
dimensionless control parameters: (a) Ṽs = Vs/urms, where the
microswimmer’s bare velocity is Vs and the turbulent fluid
has the root-mean-square velocity urms, and (b) B̃ = Bωrms,
where B is the microswimmer-response time and ωrms the rms
vorticity of the fluid. We show, by extensive direct numerical
simulations (DNSs), that the average time 〈T 〉 required by a
microswimmer to reach a target at a fixed distance is lower if
it uses our adversarial Q-learning scheme than if it uses the
naïve strategy.

II. BACKGROUND FLOW AND MICROSWIMMER
DYNAMICS

For the low-Mach-number flows we consider, the fluid-
flow velocity u satisfies the incompressible Navier-Stokes
(NS) equation. In two dimensions, we write the NS equations
in the conventional vorticity-stream-function form, which ac-
counts for incompressibility in two dimensions [11]:

(∂t + u · ∇ )ω = ν∇2ω − α ω + Fω. (1)

Here, u ≡ (ux, uy) is the fluid velocity, ν is the kinematic
viscosity, α is the coefficient of friction (present in two
dimensions, e.g., because of air drag or bottom friction),
and the vorticity ω = (∇ × u), which is normal to u in two
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dimensions. The 3D incompressible NS equations are

(∂t + u · ∇ )u = −∇p/ρ + f + ν∇2u, ∇ · u = 0, (2)

where p is the pressure, and the density ρ of the incompress-
ible fluid is taken to be 1; the large-scale forcing Fω (large-
scale random forcing in two dimensions) or f (constant en-
ergy injection in three dimensions) maintains the statistically
steady, homogeneous, and isotropic turbulence, for which it is
natural to use periodic boundary conditions.

We consider a collection of Np passive, noninteracting
microswimmers in the turbulent flow; Xi and p̂i are the
position and swimming direction of the microswimmer. Each
microswimmer is assigned a target located at XT

i . We are
interested in minimizing the time T required by a microswim-
mer, which is released at a distance r0 = |Xi(0) − XT

i | from
its target, to approach within a small distance r = |Xi(T ) −
XT

i | � r0 of this target. The microswimmer’s position and
swimming direction evolve as follows [12]:

dXi

dt
= u(Xi, t ) + Vs p̂i, (3)

dp̂i

dt
= 1

2B
[ôi − (ôi.p̂i ) p̂i] + 1

2
ω × p̂i. (4)

Here, we use bilinear (trilinear) interpolation in two (three)
dimensions to determine the fluid velocity u at the mi-
croswimmer’s position Xi from Eq. (2); Vsp̂i is the swim-
ming velocity, B is the time scale associated with the mi-
croswimmer to align with the flow, and ôi is the control
direction. Equation (4) implies that p̂i tries to align along ôi.
We define the following nondimensional control parameters:
Ṽs = Vs/urms, where urms = 〈|u|2〉1/2 is the root-mean-square
(rms) fluid flow velocity, and B̃ = B/τ�, where τ� = ω−1

rms;
ωrms = 〈|ω|2〉1/2 denotes the root-mean-square vorticity.

III. ADVERSARIAL Q-LEARNING FOR
SMART MICROSWIMMERS

Designing a strategy consists in choosing appropriately
the control direction ôi, as a function of the instantaneous
state of the microswimmer, in order to minimize the mean
arrival time 〈T 〉. To develop a tractable framework for Q
learning, we use a finite number of states by discretizing the
fluid vorticity ω at the microswimmer’s location into three
ranges of values labeled by Sω and the angle θi, between
p̂i and T̂i, into four ranges Sθ , as shown in Fig. 1. The
choice of ôi is then reduced to a map from (Sω,Sθ ) to
an action set, A, which we also discretize into the follow-
ing four possible actions: A := {T̂i,−T̂i, T̂i⊥,−T̂i⊥}, where
T̂i = (XT

i − Xi )/|XT
i − Xi| is the unit vector pointing from

the swimmer to its target and (T̂i⊥ · T̂i ) = 0. Therefore, for
the naïve strategy ôi(si ) ≡ T̂i, ∀ si ∈ (Sω,Sθ ). This strategy
is optimal if Ṽs 
 1: Microswimmers have an almost ballistic
dynamics and move swiftly to the target. For Ṽs � 1, vortices
affect the microswimmers substantially, so we have to develop
a nontrivial Q-learning strategy, in which ôi is a function of
ω(Xi, t ) and θi.

In our Q-learning scheme, we assign a quality value
to each state-action binary relation of microswimmer i as
follows: Qi : (si, ai ) → R, where si ∈ (Sω,Sθ ) and ai ∈ A;
and we use the ε-greedy method [13] (with parameter εg),

FIG. 1. Left: A pseudocolor plot of the vorticity field, with a
microswimmer represented by a small white circle; the black arrow
on the microswimmer indicates its swimming direction, p̂, the red
arrow represents the direction towards the target, T̂, and θ is the
angle between p̂ and T̂. Top center: The discretized vorticity states
(red |||, ω > ω0; green \\\, −ω0 � ω � ω0; blue ///, ω < −ω0). In
our approach we use ω0 = ωrms. Bottom center: The color code for
the discretized θ (red |||, −π/4 � θ < π/4; orange \\\, π/4 � θ <

3π/4; blue ///, −3π/4 � θ < −π/4; gray ≡, 3π/4 � θ < 5π/4).
Right: All possible discrete states of the microswimmers denoted by
colored squares where the lower half stands for the vorticity state,
Sω, and the upper half represents the direction state, Sθ .

in which the control direction is chosen from the probabil-
ity distribution P[ôi(si)] = εg/4 + (1 − εg) δ(ôi(si) − ômax),
where ômax := argmaxa∈A Qi(si, a) and δ(·) is the Dirac delta
function. At each iteration, ôi is calculated as above and the
microswimmer evolution is performed by using Eqs. (3) and
(4). In the canonical Q-learning approach, during the learning
process, each of the Qi’s are evolved by using the Bellman
equation [14] below, whenever there is a state change, i.e.,
si(t ) 
= si(t + δt ):

Qi(si(t ), ôi(si(t ))) �→ (1 − λ) Qi(si(t ), ôi(si(t )))

+ λ [Ri(t ) + γ max
a∈A

Qi(si(t + δt ), a)], (5)

where λ and γ are learning parameters that are set to optimal
values after some numerical exploration (see Table I), and Ri

is the reward function. For the path-planning problem we de-
fine Ri(t ) = |Xi(t − n δt ) − XT

i | − |Xi(t ) − XT
i |, where n =

minl∈N {si(t − l δt ) 
= si(t )}. According to Eq. (5), any ôi for
which Ri is positive can be a solution, and there exist many
such solutions that are suboptimal compared to the naïve
strategy.

To reduce the solution space, we propose an adversarial
scheme: Each microswimmer, the master, is accompanied
by a slave microswimmer, with position XSl

i (t ), that shares
the same target at XT

i and follows the naïve strategy, i.e.,

TABLE I. List of learning parameter values: γ is the earning
discount, λ is the learning rate, εg is the ε-greedy algorithm parameter
that represents the probability with which the nonoptimal action is
chosen, ω0 is the cutoff used for defining Sω, and ωrms is the rms
value of ω.

γ = 0.99 λ = 0.01
εg = 0.001 ω0/ωrms = 1.0
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FIG. 2. Topleft: A schematic diagram illustrating the trajectories
of master (black line) and slave (dashed black line) microswimmers
superimposed on a pseudocolor plot of the two-dimensional (2D)
discrete vorticity field Sω; the master undergoes a state change at
the points shown by solid white circles; white arrows indicate the
resetting of the slave’s trajectory. Top right: Color code for the
control direction ôi; for the states si ∈ (Sω,Sθ ) see Fig. 1. Bottom:
Control maps for the master and slave; for the purpose of illustration,
we use ôi = T̂i⊥ for the master; for Ṽs 
 1 and B̃ = 0, this leads to
the circular path shown in our schematic diagram.

ôSl
i (t ) ≡ T̂Sl

i = (XSl
i − XT

i )/|XSl
i − XT

i |. Now, whenever the
master undergoes a state change, the corresponding slave’s
position and direction are reinitialized to that of the mas-
ter; i.e., if si(t ) 
= si(t + δt ), then XSl

i (t + δt ) = Xi(t + δt )
and p̂Sl

i (t + δt ) = p̂i(t + δt ) (see Fig. 2). Then the reward
function for the master microswimmer is given by RAD

i (t ) =
|XSl

i (t ) − XT
i | − |Xi(t ) − XT

i |; i.e., only those changes that
improve on the naïve strategy are favored.

In the conventional Q-learning approach [13,15], the ma-
trices Qi of each microswimmer evolve independently; this
matrix is updated only after a state change, so a large number
of iterations are required for the convergence of Qi. To speed
up this learning process, we use the following multiswim-
mer, parallel-learning scheme: all the microswimmers share
a common Q matrix, i.e., Qi = Q, ∀i. At each iteration,
we choose one microswimmer at random, from the set of
microswimmers that have undergone a state change, to update
the corresponding element of the Q matrix (flow chart in
Appendix A); this ensures that the Q matrix is updated at
almost every iteration and so it converges rapidly.

IV. NUMERICAL SIMULATION

We use a pseudospectral DNS [16,17], with the 2/3
dealiasing rule to solve Eqs. (1) and (2). For time marching
we use a third-order Runge-Kutta scheme in two dimen-
sions and the exponential Adams-Bashforth time-integration
scheme in three dimensions; the time step δt is chosen such

TABLE II. Parameters: N , the number of collocation points; ν,
the kinematic viscosity; α, the coefficient of friction; δt , the time
step; and Rλ, the Taylor-microscale Reynolds number.

Two dimensions Three dimensions

N 256 × 256 128 × 128 × 128
ν 0.002 0.002
α 0.05 0.00
δt 5 × 10−4 8 × 10−3

Rλ 130 30

that the Courant-Friedrichs-Lewy (CFL) condition is satisfied.
Table II gives the parameters for our DNSs in two and
three dimensions, such as the number N of collocation points
and the Taylor-microscale Reynolds numbers Rλ = urmsλ/ν,
where the Taylor microscale λ = [

∑
k k2E (k)/

∑
k E (k)]−1/2.

A. Naïve microswimmers

The average time taken by the microswimmers to reach
their targets is 〈T 〉 (see Fig. 3). If T̂i = (Xi − XT

i )/|Xi − XT
i |

is the unit vector pointing from the microswimmer to the
target, then for Ṽs 
 1 we expect the naïve strategy, i.e.„
ôi = T̂i, to be the optimal one. For Ṽs � 1, we observe that
the naïve strategy leads to the trapping of microswimmers
[Fig. 3(b)] and gives rise to exponential tails in the arrival-
time (T ) probability distribution function (PDF); in Fig. 4
we plot the associated complementary cumulative distribution
function (CCDF) P>(T ) = ∫ ∞

T ℘(τ ) dτ , where ℘(τ ) dτ is the
probability of particle arrival in the time interval [τ, τ + dτ ]
and τ is the time since initialization of the microswimmer.
As a consequence of trapping, 〈T 〉 is dominated by the
exponential tail of the distribution, as can be seen from Fig. 4.

FIG. 3. (a) Illustrative (blue) paths for two microswimmers, with
their corresponding (yellow) circular target regions (mapping in red
dashed lines) where the microswimmer is eventually absorbed and
reinitialized. We consider random positions of targets and initialize a
microswimmer at a fixed distance from its corresponding target with
randomized p̂; (b) a snapshot of the microswimmer distribution, in
a vorticity field (ω), for the naïve strategy, at time t = 30τ�, with
Ṽs = 1. Here, the initial distance of the microswimmers from their
respective targets is L/3 and the target radius is L/50; we use a
system size L with periodic boundary conditions in all directions.
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FIG. 4. Plots showing exponential tails in P>(T ) for the naïve
strategy, with different values of Ṽs and B̃. The inset shows how
these data collapse when T is normalized, for each curve, by the
corresponding 〈T 〉, which implies P>(T ) ∼ exp (−T /〈T 〉).

B. Smart microswimmers

In our approach, the random initial positions of the mi-
croswimmers ensure that they explore different states without
reinitialization for each epoch. Hence, we present results with
10 000 microswimmers, for a single epoch. In our single-
epoch approach, the control map ôi reaches a steady state once
the learning process is complete [Fig. 5(b)]. We would like to
clarify here that, in our study, the training is performed in the
fully turbulent time-dependent flow; even though this is more
difficult than training in a temporally frozen flow, the gains,
relative to the naïve strategy, justify this additional level of
difficulty.

We use the adversarial Q-learning approach outlined above
(parameter values in Table I) to arrive at the optimal scheme
for path planning in a 2D turbulent flow. To quantify the
performance of the smart microswimmers, we introduce equal
numbers of smart (master-slave pairs) and naïve microswim-
mers into the flow. The scheme presented here pits Q-learning
against the naïve strategy and enables the adversarial algo-
rithm to find a strategy that can outperform the naïve one.
(Without the adversarial approach, the final strategy that is
obtained may end up being suboptimal.)

V. RESULTS

The elements of Q evolve during the initial-training
stage, so P>(T ) also evolves in time until the system
reaches a statistically steady state (in which the elements
of Q do not change). Hence, 〈T 〉 also changes during the
initial-training stage; to capture this time dependence, we
define 〈T (t )〉 := 1/N (t )

∑N (t )
i=1 Ti, where Ti is the time taken

by the ith microswimmer, since its initialization, to arrive

FIG. 5. Learning statistics: (a) Plot of 〈T |t, �〉, with � = 10 τ�,
in two dimensions. Adversarial Q-learning initially shows a transient
behavior before settling to a lower value of 〈T 〉 than that in the
naïve strategy. (b) The evolution of the control map, ôi, where the
color codes represent the actions that are performed for each of
the 12 states. Initially, Q-learning explores different strategies and
settles down to an ôi that shows, consistently, improved performance
relative to the naïve strategy.

FIG. 6. The dependence of 〈T 〉 on Ṽs, for different values of
B̃, shown for the naïve strategy (dotted line) and for adversarial
Q-learning (solid line), for our 2D turbulent flow. The plot shows
that, in the parameter space that we have explored, our adversarial
Q-learning method yields a lower value 〈T 〉 than in the naïve
strategy. The plot in the inset shows that the CCDF of T has an
exponential tail.
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FIG. 7. Learning statistics in three dimensions: (a) The per-
formance trend, 〈T |t,�〉/τ�, with � = 10τ� for adversarial Q-
learning (blue line) and naïve strategy (red broken line) for mi-
croswimmers in a 3D homogeneous isotropic turbulent flow, for
Ṽs = 1.5 and B̃ = 0.5. The trend shows a slow rise in performance,
similar to that observed in two dimensions. In three dimensions the
Q-learning is performed by using 13 states and 6 actions defined in
Appendix B. (b) The evolution of ôi in three dimensions shows that
learning has not reached a steady state due to lower probability of
swimmers reaching the target, compared to the 2D case.

at its target at the time instant t and N (t ) is the number of
microswimmers that reach their targets at time instant t . We
find that 〈T (t )〉 shows large fluctuations, so we average it over
a time window � and define 〈T |t,�〉 :=
1/�

∫ t+�

t 〈T (τ )〉 dτ . The initial growth in 〈T |t,�〉 arises
because 〈T |t,�〉 � t . The plots in Figs. 5(a) and 7 show
the time evolution of 〈T |t,�〉 for the smart and naïve
microswimmers. Note that ôi becomes a constant, for large t ,
in Fig. 5(b); this implies that the elements of Q have settled
down to their steady-state values.

Figures 5(a) and 5(b) show the evolution of 〈T |t,�〉 and
ô, respectively, for the naïve strategy and our adversarial
Q-learning scheme. After the initial learning phase, the Q-
learning algorithm explores different ô, before it settles down
to a steady state. It is not obvious, a priori, if there exists a
stable, nontrivial, optimal strategy for microswimmers in tur-
bulent flows that could outperform the naïve strategy. The plot
in Fig. 6 shows the improved performance of our adversarial
Q-learning scheme over the naïve strategy, for different values
of Ṽs and B̃; in these plots we use 〈T 〉 = 〈T |t → ∞,�〉,
so that the initial transient behavior in learning is excluded.
The inset in Fig. 6 shows that P>(T ) has an exponential
tail, just like the naïve scheme in Fig. 4, which implies the
smart microswimmers also get trapped; but a lower value
of 〈T 〉 implies they are able to escape from the traps faster

FIG. 8. This flowchart shows the sequence of processes involved
in our adversarial Q-learning algorithm.

than microswimmers that employ the naïve strategy. Note
that the presence of a possible noise in the measurement
of the discrete vorticity Sω should not change our findings
because of the coarse discretization we use in defining the
states.

In a 3D turbulent flow, we also obtain such an improve-
ment with our adversarial Q-learning approach over the naïve
strategy. The details about the 3D flows, parameters, and the
definitions of states and actions are given in Appendix B.
In Fig. 7 we show a representative plot, for the performance
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FIG. 9. We define a Cartesian coordinate system by using the
orthonormal triad {T̂, (T̂ × ω̂), T̂⊥}; thus, all the vectorial quantities
are represented in terms of this observer-independent coordinate
system.

measure, which demonstrates this improvement in the 3D case
(cf. Fig. 5 for a 2D turbulent flow).

VI. CONCLUSIONS

We have shown that the generic Q-learning approach can
be adopted to solve control problems arising in complex dy-
namical systems. In Ref. [18], global information of the flows
has been used for path-planning problems in autonomous-
underwater-vehicle navigation to improve their efficiency,
based on the Hamilton-Jacobi-Bellman approach. In contrast,
we present a scheme that uses only the local flow parameters
for the path planning.

The flow parameters (Table II) and the learning parame-
ters (Table I) have a significant impact on the performance
of our adversarial Q-learning method. Even the choice of

observables that we use to define the states (Sω,Sθ ) can
be changed and experimented with. Furthermore, the dis-
cretization process can be eliminated by using deep-learning
approaches, which can handle continuous inputs and outputs
[19]. Our formulation of the optimal-path-planning problem
for microswimmers in a turbulent flow is a natural starting
point for detailed studies of control problems in turbulent
flows.

Note added. We were recently made aware of Ref. [20],
where they tackle the problem using an actor-critic reinforce-
ment learning scheme.

We contrast, below, our reinforcement-learning approach
with that of Ref. [20]:

(a) Reference [20] uses 900 discrete states, which are
defined based on the approximate location of the microswim-
mer. By contrast, our scheme uses only the local vorticity
(Sω), at the position of the microswimmer, and the orien-
tation (Sθ ); after discretization, we retain only 12 states. In
analogy with navigation parlance, Ref. [20] uses a GPS and
our approach uses a lighthouse along with a local-vorticity
measurement.

(b) In Ref. [20], the states are sensed periodically and the
elements of Q are updated at every sensing instant. In contrast,
we monitor the states continuously and update the elements
of Q only when there is a state change. If the periodicity of
sensing is smaller than the rate of change in states of the mi-
croswimmer, both schemes should show similar convergence
behaviors.

(c) Reference [20] uses a conventional, episode-based
training approach, which is sequential, whereas we use multi-
ple microswimmers to perform parallel training.

(d) Reference [20] uses an actor-critic approach, whereas
we use an adversarial learning method.

FIG. 10. Discretization of states in three dimensions: We define a spherical-polar coordinate system for each particle with the z axis
pointing along the T̂ direction and the x axis along T̂⊥. We define the canonical angles θ and φ, and discretize the states into 13, based on the
magnitude of �ω, where ω0 and ω1 are state-definition parameters (we use ω0 = ωrms/3 and ω1 = ωrms), and the direction of p̂, with respect to
the triad, is defined in Fig. 9.
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APPENDIX A: FLOWCHART

Figure 8 shows the sequence of processes involved in our
adversarial Q-learning scheme. Here it stands for the iteration
number and s is the number of sessions. We use a greedy
action in which the action corresponding to the maximum
value in the Q matrix, for the state of the microswimmer,
is performed; the ε-greedy step ensures with probability εg

that the nonoptimal action is chosen. Furthermore, we find
that episodic updating of the values on the Q matrix lead to
a deterioration of performance; therefore, we use continuous
updating of Q.

APPENDIX B: STATE AND ACTION DEFINITIONS
FOR 3D TURBULENT FLOW

From our DNS of the 3D Navier-Stokes equation we obtain
a statistically steady, homogeneous-isotropic turbulent flow
in a 128 × 128 × 128 periodic domain. We introduce passive
microswimmers into this flow. To define the states, we fix
a coordinate triad, defined by {T̂, (T̂ × ω̂), T̂⊥} as shown in
Fig. 9; here, T̂ is the unit vector pointing from the microswim-
mer to the target, ω̂ is the vorticity pseudovector, and T̂⊥ is
defined by the conditions T̂⊥ · T̂ = 0 and T̂⊥ · (T̂ × ω̂) = 0.
This coordinate system is ill defined if �T is parallel to �ω. To
implement our Q-learning in three dimensions, we define 13
states, S = (S|ω|,Sθ ,Sφ ) (see Fig. 10), and 6 actions, A =
{T̂,−T̂, (T̂ × ω̂),−(T̂ × ω̂), T̂⊥,−T̂⊥}. Consequently, the Q
matrix is an array of size 13 × 6.
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