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Collinear velocity relaxation of two spheres in a viscous incompressible fluid
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Collinear velocity relaxation of two spheres immersed in a viscous incompressible fluid is studied on the basis
of an approximate expression for the retarded hydrodynamic interaction. After a sudden impulse applied to one
sphere, the other one instantaneously starts to move as well, with amplitude determined by the added mass effect.
The velocities of both spheres eventually decay with a t−3/2 long-time tail, but the relative velocity decays with
a t−5/2 long-time tail. The three relaxation functions are approximated by simple expressions involving only a
small number of poles in the complex square root of frequency plane.
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I. INTRODUCTION

In recent work [1] we investigated the retarded hydro-
dynamic interaction between two spheres immersed in a
viscous incompressible fluid. The corresponding frequency-
dependent mobility matrix relates the translational and rota-
tional velocities of the spheres to the hydrodynamic forces and
torques exerted by the fluid. In combination with Newton’s
equations, the mobility matrix yields the sphere velocities for
oscillatory forces and torques applied to the spheres.

By Fourier analysis the mobility matrix also provides
information on the behavior in time of the velocity relaxation
functions after a sudden impulse or twist applied to one of the
spheres. Due to the assumption of incompressibility there is
an instantaneous transfer of momentum, and the other sphere
starts to move as well. The nature of the motion provides
information on the nature of the fluid. The two-sphere system
can be used as an investigative tool to analyze the viscoelas-
ticity of the fluid [2–5].

In the following we consider in particular the translational
velocities for collinear motions of the two spheres. For mo-
tions transverse to the line of centers there is translation-
rotation coupling, leading to a complicated overall motion.
The restriction to collinear motion allows a relatively simple
one-dimensional picture, but even for this case the motion is
intricate.

The initial values of the sphere velocities after a sud-
den impulse from a state of rest are determined by added
mass effects. We compare the initial values found from the
high-frequency behavior of the mobility matrix with those
predicted by potential flow theory [6]. The velocity autocorre-
lation functions, which describe the time-dependent velocities
after the initial impulse, decay with a wide distribution of
relaxation times. The low-frequency dependence of the mo-
bility matrix incorporates the long-time decay. It is known that
the amplitude of the long-time t−3/2 decay of the two sphere
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velocities is identical to that of a single sphere [7]. We show
that the relative velocity decays with a t−5/2 long-time tail.

Our analysis is based on the recently derived approximate
expression for the frequency-dependent mobility matrix [1].
In the approximation the hydrodynamic interaction between
the two spheres is limited to a single Green function, but
finite-size effects are fully taken into account via the exact
expression for the primary frequency-dependent Stokes flow,
and a Faxén theorem in the calculation of the secondary
velocity. The approximation should be accurate, unless the
spheres initially are very close.

The mobility function for collinear motion is a complicated
function of frequency. We show for a numerical example that
it can be well approximated by a much simpler function,
involving only a small number of poles in the complex square
root of frequency plane. In this manner the relaxation behavior
fits a general framework of slow dynamics of linear relaxation
systems [8].

The dynamics of two colloidal spheres immersed in a
compressible fluid was studied in a computer simulation by
Tatsumi and Yamamoto [9]. In their theoretical analysis these
authors used a simple Green function approximation to the
mobility function [10]. In most practical applications it will
be sufficient to consider the incompressible limit. Nonetheless
it would be of interest to extend the present theory to a
compressible fluid.

II. PAIR OF INTERACTING SPHERES

We consider two uniform spheres, labeled A and B, with
radii a and b and mass densities ρA and ρB, immersed in a
viscous incompressible fluid, and oscillating with frequency
ω about positions RA and RB, as shown in Fig. 1. We choose
a Cartesian system of coordinates such that the z axis is along
the vector R = RB − RA. We may choose the origin at RA.
The fluid has mass density ρ and shear viscosity η. The fluid
flow velocity v(r, t ) and pressure p(r, t ) satisfy the linearized
Navier-Stokes equations:

ρ
∂v

∂t
= η∇2v − ∇p, ∇ · v = 0. (2.1)
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FIG. 1. Snapshot of two spheres oscillating along the line of
centers.

We can linearize, since the oscillations are assumed to be
small, so that the inertial Reynolds term can be omitted on
the left-hand side of the first equation. At the surface of the
spheres the fluid velocity and pressure are assumed to satisfy
mixed-slip boundary conditions with slip coefficients ξA and
ξB, respectively [11]. The value ξ = 0 corresponds to no-slip,
and ξ = 1/3 corresponds to perfect slip [12]. The fluid fills all
space outside the spheres and is at rest at infinity.

The whole system is caused to move by the oscillatory ap-
plied forces EA and EB and the torques NA and NB, acting on
the spheres, which force the system to oscillate at frequency
ω. With the above assumptions the problem is linear. As a
consequence the translational velocity amplitudes UA and UB

and the rotational velocity amplitudes �A and �B are linear in
the amplitudes of the applied forces and torques. They are also
linear in the hydrodynamic forces KA and KB and the torques
T A and T B exerted by the fluid on the spheres. The equations
of motion for the spheres in complex shorthand notation are
as follows:

−iωmp · U = E + K,

−iωIp · Ω = N + T, (2.2)

with six-vectors V = (V A,V B). The mass matrix mp is a
diagonal 6 × 6 matrix incorporating the two masses mA and
mB, and similarly Ip is a diagonal 6 × 6 matrix incorporating
the two moments of inertia IA and IB. The 12 × 12 mobility
matrix μ is defined by the following linear relation:

U = −μtt · K − μtr · T,

Ω = −μrt · K − μrr · T. (2.3)

The 12 × 12 friction matrix is the inverse ζ = μ−1. The tt part
of this matrix has the property that it varies in proportion to
ω at high frequency. The property is called the acceleration
reaction by Batchelor [13], who discusses it for a single rigid
body. The 6 × 6 added mass matrix ma is defined by

ζtt = −iωma + ζtt ′, (2.4)

where ζtt ′ is the remaining part, which does not increase in
proportion to ω at high frequency. It follows from the recip-
rocal theorem that the various matrices are symmetric [13].
The elements of the mobility matrix define scalar mobility
functions. In particular the tt part of the matrix takes the form

μtt =
(

μtt
AA μtt

AB
μtt

BA μtt
BB

)
, (2.5)

with the self-mobility tensors μtt
AA and μtt

BB and the mutual
mobility tensors μtt

AB and μtt
BA given by

μtt
i j = αtt

i j (R, ω)R̂R̂ + βtt
i j (R, ω)

(
I − R̂R̂

)
, (2.6)

with R̂ = R/R, and the scalar mobility functions αtt
i j (R, ω) and

βtt
i j (R, ω). The form follows from translational and rotational

invariance. Translation-rotation coupling is expressed by the
scalar mobility functions βtr

i j (R, ω) and βrt
i j (R, ω), which are

related by the reciprocity relation βtr
i j (R, ω) = −βrt

ji (R, ω).
The tensor μtr

i j takes the form

μtr
i j = βtr

i j (R, ω)ε · R̂, (2.7)

where ε is the Levi-Civita tensor. The tensor μrr
i j takes a form

similar to Eq. (2.6).
We consider first the longitudinal case, where both spheres

translate along the z axis, parallel to R̂. Then by symmetry
there is no translation-rotation coupling, and it suffices to con-
sider the scalar mobility functions αtt

i j (R, ω). Two of these are
related by the reciprocity relation αtt

AB(R, ω) = αtt
BA(R, ω), and

αtt
BB(R, ω) can be obtained from αtt

AA(R, ω) by AB interchange.
Elsewhere we derived an approximate expression for

the mutual mobility function αtt
AB(R, ω) based on a one-

propagator approximation, which takes account of only a sin-
gle Green function between the two spheres [1]. The primary
flow is a Stokes flow at frequency ω generated by sphere A
as if it were moving by itself in infinite fluid. The velocity of
sphere B as it moves in this flow with zero force is calculated
from a Faxén theorem [14]. The resulting mutual mobility
function reads [1] as

αtt
BA(R, ω) = B0(αa, ξA)B0(αb, ξB) − (1 + αR)eα(a+b−R)

2πηα2R3A0(αa, ξA)A0(αb, ξB)
,

(2.8)
with the abbreviations

A0(λ, ξ ) = (1 − ξ )
1 + λ

1 + ξλ
+ 1

9
λ2,

B0(λ, ξ ) = (1 − ξ )
1 + λ

1 + ξλ
+ 1

3
λ2, (2.9)

and α = √−iωρ/η, Reα > 0. The approximate self-mobility
function αtt

AA(R, ω) is more complicated [1]. It is calculated
from a single reflection from sphere B, which is freely mov-
ing. The effect of the correction to the single-particle mobility
μt

A = 1/ζ t
A on the velocity relaxation function is numerically

small for not too close distances. In our analysis we use
the approximation αtt

AA(R, ω) ≈ 1/ζ t
A(ω, ξA) with the single

sphere friction coefficient

ζ t
A(ω, ξA) = 6πηaA0(αa, ξA). (2.10)

We can estimate the validity of the approximation by consid-
ering the added mass matrix which follows from these ex-
pressions. We find that the part corresponding to longitudinal
motions is given by

m‖
a = 2πρ

3

[
1 + O

(
a3b3

R6

)](
a3 −3 a3b3

R3

−3 a3b3

R3 b3

)
. (2.11)

The terms omitted in αtt
AA(R, ω) contribute to the O(a3b3/R6)

term. The diagonal terms follow from the added mass of each
individual sphere [13,14].

In the same one-propagator approximation we found the
following for the mutual mobility function for motions normal
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to the line of centers:

βtt
BA(R, ω) = −(1 + ξAαa)(1 + ξBαb)B0(αa, ξA)B0(αb, ξB) + (1 − ξA)(1 − ξB)A1(αR)eα(a+b−R)

4πηα2R3(1 + ξAαa)(1 + ξBαb)A0(αa, ξA)A0(αb, ξB)
, (2.12)

with the function

A1(λ) = 1 + λ + λ2. (2.13)

At long range it is not necessary to consider the translation-
rotation coupling, since at finite frequency the corresponding
mobility functions decay exponentially. In the same way as
above, for the part of the added mass matrix corresponding to
transverse motions, we find

m⊥
a = 2πρ

3

[
1 + O

(
a3b3

R6

)](
a3 3a3b3

2R3

3a3b3

2R3 b3

)
. (2.14)

Note that the added mass matrices in Eqs. (2.11) and (2.14)
are independent of the two slip coefficients.

The expressions for the added mass matrices are identical
to the ones derived by Lamb [15] in potential flow theory from
the kinetic energy of the flow pattern. The results also follow
from a linear response theory [6] based on the expression for
the force on a sphere subjected to an incident potential flow, as
derived by Landau and Lifshitz [16] and by Batchelor [13]. In
dipole approximation this leads to an expression for the added
mass matrix given by [17]

ma = −m f + 4πρA, (2.15)

where the matrix m f is diagonal with the elements m f A =
4πρa3/3 and m f B = 4πρb3/3 corresponding to the displaced
mass of each sphere, and A is the inverse of a matrix involving
the interactions between induced dipoles. The evaluation of
Eq. (2.15) for two spheres [18] yields results consistent with
Eqs. (2.11) and (2.14).

III. VELOCITY RELAXATION

Added mass effects influence the response of the system to
a sudden impulse applied to one of the spheres. Let the fluid
and the spheres be at rest for t < 0, and consider small applied
forces of the form E(t ) = Sδ(t ) with the impulse vector S =
(SA, SB). For SB = 0, both sphere A and sphere B start to move
at t = 0+. More generally we have

U(0+) = m−1 · S, (3.1)

with the six-dimensional mass matrix m = mp + ma. The
equation generalizes the known acceleration reaction for a
single sphere [13] to two spheres. The sudden push on both
spheres creates an irrotational flow pattern with boundary
values corresponding to the two sphere velocities [14]. The
linear relation between sphere velocities and the imposed
impulses follows from the pressure exerted on each sphere and
defines the mass matrix [6].

At later times

U(t ) = R(t ) · S, t > 0, (3.2)

with a relaxation matrix, R(t ), which has the one-sided
Fourier transform

R̂(ω) =
∫ ∞

0
eiωt R(t ) dt . (3.3)

We can identify

R̂(ω) = Ytt (ω), Y(ω) = [−iωMp + ζ(ω)]−1, (3.4)

with the 12 × 12 generalized mass matrix Mp which follows
from Eq. (2.2). The matrix Y(ω) is called the admittance
matrix [19].

The situation is simplest for longitudinal motions. If sphere
A gets a sudden push in the direction of the line of centers,
then also sphere B starts to move in the same direction. The
reaction is instantaneous due to the assumption of incom-
pressibility. In a compressible fluid the reaction would take
some time due to the finite velocity of sound, as seen in the
computer simulation of Tatsumi and Yamamoto [9]. From
Eq. (3.4) we can evaluate how the velocity of each sphere
relaxes after the initial push. It follows from a general theorem
derived by Cichocki and Felderhof [7] that at long times the
velocity of each sphere decays with a t−3/2 long-time tail, with
an amplitude which is the same as if each sphere were by
itself. The initial values of the two velocities are determined
by the effective mass matrix, including the added mass terms
which come from the high-frequency behavior of the friction
matrix ζtt (ω). Neither the initial values nor the amplitude of
the long-time tails depend on the slip coefficients (ξA, ξB).
Since the friction coefficient of a single sphere decreases from
the Stokes value 6πηa for no-slip to 6πη(1 − ξA) with in-
creasing slip coefficient ξA, we expect that the mean relaxation
time will increase when the slip coefficients (ξA, ξB) increase.

For two Brownian spheres in thermal equilibrium the ve-
locities are not correlated, and the thermal average 〈UAUB〉
vanishes. From Eq. (2.11) we see that after a very short time
the longitudinal velocity components are correlated positively,
whereas Eq. (2.14) shows that then the transverse components
are correlated negatively. At later times the velocity relax-
ation function CAB(t ) = 〈UA(t )UB(0)〉 is related to the relax-
ation matrix by the fluctuation-dissipation theorem CAB(t ) =
kBT RAB(t ).

It is convenient to take the z axis along the line of centers.
Then by symmetry the six-dimensional matrix R(t ) decom-
poses into a two-dimensional matrix R‖(t ) corresponding
to longitudinal motions in the z direction and two identical
two-dimensional matrices R⊥(t ) corresponding to transverse
motions in the x and y directions.

We consider scalar autocorrelation functions of the form

C(t ) = (ψ |R(t )|ψ ), (3.5)

where |ψ ) is a chosen six-dimensional vector selecting a
linear combination of translational velocity components. We
define the one-sided Fourier transform as

Ĉ(ω) =
∫ ∞

0
eiωtC(t ) dt . (3.6)

This is given by

Ĉ(ω) = (ψ |Ytt (ω)|ψ ). (3.7)
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The initial value of the autocorrelation function is

C(0+) = (
ψ |m−1|ψ)

. (3.8)

We write the autocorrelation function in the form

C(t ) = C(0+)γ (t/τM ), (3.9)

with initial value γ (0+) = 1 and the mean relaxation time

τM = 1

C(0+)

∫ ∞

0
C(t ) dt . (3.10)

From Eqs. (3.7) and (3.8) we find

τM = (ψ |μtt (0)|ψ )

(ψ |m−1|ψ )
. (3.11)

We define the variable z = −iωτM and the function

�(z) = Ĉ(ω)

(ψ |μtt (0)|ψ )
. (3.12)

This has the properties

�(0) = 1, lim
z→∞ z�(z) = 1. (3.13)

Since the functions defined in Eqs. (2.8) and (2.12) depend on
frequency via the variable α, the dependence of �(z) on z is
via y = √

z. The spectral density p(u) is defined by [8]

p(u) = 1

π
Im

[
�(y → −i

√
u)

]
, (3.14)

for positive u. The relaxation function γ (τ ) in Eq. (3.5) is
given by the inverse Stieltjes transform [20]

γ (t/τM ) =
∫ ∞

0
p(u) exp[−ut/τM ] du. (3.15)

The function �(z) has the Stieltjes representation

�(z) =
∫ ∞

0

p(u)

u + z
du. (3.16)

Hence the spectral density has the properties∫ ∞

0
p(u) du = 1,

∫ ∞

0

p(u)

u
du = 1, (3.17)

corresponding to Eq. (3.13). The second property in
Eqs. (3.13) and (3.17) corresponds to the choice of τM as the
timescale.

Since we want to compare the spectral densities for dif-
ferent vectors ψ , it is more convenient to write the relaxation
function as

γ (t/τM ) =
∫ ∞

0
P(s)e−st ds, (3.18)

with the rate distribution

P(s) = τM p(τMs), (3.19)

where s is the relaxation rate s = u/τM .

IV. COLLINEAR MOTION

We consider velocity relaxation along the line of centers
in some more detail. The scalar mobility function in Eq. (2.8)
is a complicated function of frequency and correspondingly

the various autocorrelation functions are intricate functions
of time. We show that, provided the two spheres are of
comparable size, a relatively simple approximate description
can be found.

It is known that for a single sphere the velocity relaxation
function shows an important long-time tail. In that case the
spectral density is of the form [19]

p2(u) = 1

π

σ
√

u

1 + (σ 2 − 2)u + u2
, (4.1)

where the parameter σ can be found from the mass and the
added mass of the sphere. The long-time tail corresponds to
the square root singularity at u = 0. The velocity relaxation
function is a sum of two w functions,

γ (τ ) = 1√
σ 2 − 4

[y+w(−iy+
√

τ ) − y−w(−iy−
√

τ )], (4.2)

with

w(z) = e−z2
erfc(−i

√
z) (4.3)

and values y± which correspond as y± = √
z± to the zeros

of the denominator of the Laplace transform of the relaxation
function,

�2(z) = 1

1 + σ
√

z + z
, (4.4)

where z = −iωτM , with the mean relaxation time τM =
m∗/(6πηa) for a sphere of radius a and mass m0 with effective
mass m∗ = m0 + m f /2 and m f = 4πρa3/3. The relaxation
function has the long-time behavior

γ (τ ) ≈ σ

2
√

π
τ−3/2 as τ → ∞, (4.5)

where τ = t/τM and σ = √
9m f /2m∗. The corresponding

long-time behavior of the velocity autocorrelation function is

C(t ) ≈ 1

12
√

ρ(πηt )−3/2 as t → ∞. (4.6)

For the pair of spheres in collinear motion it suffices to
consider the two-dimensional matrix R‖(t ) and corresponding
two-vectors |ψ ). We consider the three vectors

|ψ )A = (1, 0), |ψ )B = (0, 1), |ψ )d = (1,−1). (4.7)

The first corresponds to the motion of sphere A, the second to
the motion of sphere B, and the third to the relative motion.
We then have

C‖
AA(t ) = R‖

AA(t ), C‖
BB(t ) = R‖

BB(t ),

C‖
dd (t ) = R‖

AA(t ) − 2R‖
AB(t ) + R‖

BB(t ). (4.8)

This shows that conversely the three elements R‖
i j (t ) can be

found from the three autocorrelation functions:

R‖
AA(t ) = C‖

AA(t ), R‖
BB(t ) = C‖

BB(t ),

R‖
AB(t ) = 1

2

[
C‖

AA(t ) − C‖
dd (t ) + C‖

BB(t )
]
. (4.9)

It follows from a general theorem [7] that the relaxation
functions R‖

AA(t ) and R‖
BB(t ) have exactly the same long-time

behavior as in Eq. (4.6). At long times the two spheres move
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collectively. We show below that the relative velocity decays
with a t−5/2 long-time tail.

We express the autocorrelation functions as in Eq. (3.17).
This yields the rate distributions P‖

AA(s), P‖
dd (s), and P‖

BB(s) as
functions of the rate s. Hence we find the time-dependent auto-

correlation functions C‖
AA(t ), C‖

dd (t ), and C‖
BB(t ) by numerical

integration.
The initial values of the autocorrelation functions, as given

by Eq. (3.8), are

C‖
AA(0+) = 3

2πa3

R6(ρ + 2ρB) − 18a3b3ρB

R6(ρ + 2ρA)(ρ + 2ρB) − 36a3b3ρAρB
,

C‖
dd (0+) = 3

2πa3b3

a3R6(ρ + 2ρA) + b3R6(ρ + 2ρB) − 6a3b3R3ρ − 18a6b3ρA − 18a3b6ρB

R6(ρ + 2ρA)(ρ + 2ρB) − 36a3b3ρAρB
, (4.10)

with C‖
BB(0+) found by AB- interchange.

The three mean relaxation times τMAA, τMdd , and τMBB are
given by Eq. (3.11) as

τ
‖
MAA = a2

9η

R6(ρ + 2ρA) − 18a3b3ρA

R6 − 9a3b3
,

τ
‖
Mdd = a3b + ab3 − 3abR2 + aR3 + bR3

6πηabR3Cdd (0+)
, (4.11)

with τ
‖
MBB being found by AB interchange.

We note that the two-dimensional admittance matrix has
the following low-frequency expansion [7]:

Ytt‖(ω) = μtt‖(0) − α

6πη

(
1 1
1 1

)
+ O(α2a2). (4.12)

This corresponds to the universal nature of the collective long-
time motion, mentioned above.

We show below for a numerical example with two spheres
of comparable size that the three relaxation functions are well
approximated by a sum of w functions similar to Eq. (4.2)
with either two or three terms. The simple approximate
description corresponds to a small number of poles of the
admittance in the complex

√
z plane.

V. NUMERICAL EXAMPLE

As an example we consider two neutrally buoyant spheres
of radii a, b = 2a, at the center-to-center distance R = 5a,
with mass densities ρA = ρ and ρB = ρ, with no-slip bound-
ary conditions, corresponding to slip coefficients ξA = ξB =
0. We consider the motion along the line of centers. The
explicit expression for the admittance matrix Ytt‖(ω) is quite
complicated, but it is straightforward to obtain numerical
results. We compare with the simplified description discussed
above.

First we evaluate the initial values of the relaxation func-
tions, as given by Eqs. (4.9) and (4.10). This yields

mARtt‖
AA(0+) = 0.6660, mARtt‖

BB(0+) = 0.0832,

mARtt‖
AB(0+) = 0.0053, (5.1)

where mA = 4πρa3/3. Note that the first value is close to
mA/m∗

A = 2/3, where m∗
A is the effective mass of a single

sphere of radius a. The difference from unity is due to the
added mass effect in an incompressible fluid. For a com-

pressible fluid the value would be unity, as explained by
Zwanzig and Bixon [21]. Similarly the second value is close
to mA/m∗

B = 1/12. The difference from zero of the third value
is also due to the instantaneous transfer of momentum in an
incompressible fluid.

Next we evaluate the mean relaxation times, as given by
Eq. (4.11). This yields

τMAA = 0.33385τvA, τMBB = 1.3354τvA

τMdd = 0.2828τvA, (5.2)

with the viscous relaxation time τvA = a2ρ/η. The first value
is close to the single sphere value m∗

A/(6πηa) = τvA/3,
and the second value is close to the single sphere value
m∗

B/(6πηb) = 4τvA/3.
The transforms �AA(z), �BB(z), and �dd (z) can be found

from Eqs. (3.6), (3.12), and (4.7) with in each case the
appropriate value z = −iωτM j j , with j = A, B, and d . The
corresponding spectral densities pAA(u), pBB(u), and pdd (u)
are found from Eq. (3.14).

In Fig. 2 we plot the spectral density pAA(u) calculated
from Eq. (3.14) with z = −iωτMAA. We compare with the
two-pole expression p2AA(u) calculated for sphere A from
Eq. (4.1) with the parameter

σAA =
√

9m f A

2
C‖

AA(0+), (5.3)

FIG. 2. Plot of the spectral density pAA(u) for the two spheres
A and B as specified at the beginning of Sec. V (solid curve). We
compare with the two-pole approximation p2AA(u) (dashed curve).
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FIG. 3. Plot of the spectral density pBB(u) for the two spheres
A and B as specified at the beginning of Sec. V (solid curve). We
compare with the two-pole approximation p2BB(u) (dashed curve).

with C‖
AA(0+) given by Eq. (4.10). In Fig. 3 we plot the

spectral density pBB(u) calculated from Eq. (3.14) with z =
−iωτMBB. We compare with p2BB(u), calculated in the same
manner with the parameter σBB. In both cases the agreement
is nearly perfect. The spectral density covers several decades
in the dimensionless variable u.

We cannot expect the spectral density pdd (u) to be well
approximated by a two-pole expression, since the expansion
of the function �dd (z) in powers of

√
z does not have a term

linear in
√

z, as seen from the second term in Eq. (4.12)
and the expression |ψd ) = (1,−1) from Eq. (4.7). Instead we
compare with an expression of the form

�3(z) = 1

1 + z + Cz
1+D

√
z

, (5.4)

familiar from the theory of viscoelasticity of suspensions
[22,23], with z = −iωτMdd . This is a three-pole expression,
characterized by three poles in the complex y = √

z plane.
The parameters C and D can be found by comparison with
the expansion of �dd (z) in powers of y = √

z.
The expansion of �dd (z) in powers of y,

�dd (z) = 1 + c2y2 + c3y3 + O(y4), (5.5)

yields the following for the coefficients C and D:

C = −1 − c2, D = −c3

1 + c2
. (5.6)

For the coefficient c2, we find

c2 = −ab

36ηR3

n2

a3b + ab3 − 3abR2 + (a + b)R3
, (5.7)

with the numerator

n2 = 2(a2 + b2)(a2 + b2 − 6R2)
(
ρAa3 + ρBb3

) + [
(8ρA − 5ρ)a4 + (8ρB − 5ρ)b4 + 2a2b2(4ρA + 4ρB − 11ρ)

]
R3

+18(ρAa3 + ρBb3)R4 + 6
[
(7ρ − 4ρA)a2 + (7ρ − 4ρB)b2

]
R5 + 8[(ρA − 4ρ)a + (ρB − 4ρ)b]R6 + 27ρR7, (5.8)

and for the coefficient c3, we find

c3 =
(

ρ

ητMdd

)3/2 ab

45

4a5 + 4b5 + 10a2b3 + 10a3b2 − 30
(
a3 + b3

)
R2 − 9R5

a3b + ab3 − 3abR2 + (a + b)R3
. (5.9)

In Fig. 4 we plot the spectral density pdd (u) calculated from
Eq. (3.14) with z = −iωτMdd and the relaxation time τMdd

given by Eq. (4.11). We compare with p3dd (u), calculated in

FIG. 4. Plot of the spectral density pdd (u) for the two spheres
A and B as specified at the beginning of Sec. V (solid curve). We
compare with the three-pole approximation p3dd (u) (dashed curve).

the same manner from �3(z) with the parameters C and D.
In both cases the agreement is nearly perfect. The spectral
density covers several decades in the dimensionless variable
u. The low-frequency behavior of the transform �dd (z) corre-
sponds to a t−5/2 long-time tail of the function Cdd (t ).

In Fig. 5 we plot the rate distributions P‖
AA(s), P‖

dd (s), and
P‖

BB(s), multiplied by C‖
j j (0+)ma/τvA for j = (A, d, B), as

functions of log10(sτvA), as given by Eq. (3.19) for the respec-
tive mean relaxation times. It can be seen from the behavior
of the spectra for small relaxation rates that the relaxation
functions R‖

AA(t ) and R‖
BB(t ) have the same long-time behav-

ior. In Fig. 6 we plot log10[mAR‖
AA(t )] and log10[mAR‖

dd (t )]
as functions of log10(t/τvA). The first function has a t−3/2

long-time tail, and the second one has a t−5/2 long-time tail.

VI. DISCUSSION

In the above we studied velocity relaxation of two spheres
immersed in a viscous incompressible fluid. In the simplest
configuration the motion of both spheres is along the line
of centers. The transfer of momentum after an initial im-
pulse applied to one of the spheres is instantaneous due to
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FIG. 5. Plot of the three rate distributions P‖
AA(s) (solid curve),

P‖
dd (s) (short-dashed curve), and P‖

BB(s) (long-dashed curve),
multiplied by C‖

j j (0+)ma/τvA for j = (A, d, B), as functions of
log10(sτvA).

incompressibility. The initial values of the two velocities in
this situation are expressed by an added mass matrix which
shows a long-range dependence on the distance between
centers. The relaxation at subsequent times is complicated
and occurs due to viscous diffusion and interference of flow
patterns. The velocities of both spheres decay eventually with
the same t−3/2 long-time tail.

The explicit calculations of the velocity relaxation func-
tions are performed on the basis of an approximate expression

2

FIG. 6. Plot of the functions log10[mAR‖
AA(t )] (solid curve) and

log10[mAR‖
dd (t )] (dashed curve) as functions of log10(t/τvA).

for the retarded scalar mobility function derived elsewhere [1].
We expect that for not too near distances the approximation
provides accurate results which may be compared with exper-
iments and computer simulations.

We showed that for collinear motion the relaxation func-
tions can be described by a relatively small number of ele-
mentary modes with parameters which can be evaluated from
the sphere properties. The relaxation functions are character-
ized conveniently by rate distributions. We expect that other
aspects of velocity relaxation of two spheres in hydrodynamic
interaction can be described in similar manner.
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