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Acoustic spin transfer to a subwavelength spheroidal particle
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We demonstrate that the acoustic spin of a first-order Bessel beam can be transferred to a subwavelength
(prolate) spheroidal particle at the beam axis in a viscous fluid. The induced radiation torque is proportional to
the acoustic spin, which scales with the beam energy density. The analysis of the particle rotational dynamics
in a Stokes flow regime reveals that its angular velocity varies linearly with the acoustic spin. Asymptotic
expressions of the radiation torque and angular velocity are obtained for a quasispherical and infinitely thin
particle. Excellent agreement is found between the theoretical results of radiation torque and finite-element
simulations. The induced particle spin is predicted and analyzed using the typical parameter values of the
acoustical vortex tweezer and levitation devices. We discuss how the beam energy density and fluid viscosity
can be assessed by measuring the induced spin of the particle.
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I. INTRODUCTION

The spin angular momentum is a universal feature present
in different contexts of nature. In classical electromagnetic
waves and photons, the spin is caused by the circular polariza-
tion of electric and magnetic fields [1]. The electron spin can
be regarded as due to a circulating flow of energy in the Dirac
wave field [2]. More recently, the spin of acoustic beams was
proposed and measured as a circulation of the fluid velocity
field [3]. Subsequently, the spin and orbital angular momenta
were theoretically analyzed in monochromatic acoustic wave
fields in a homogeneous medium [4]. Before these studies, it
was noticed that the longitudinal spin, in which the axis of
rotation is parallel to the propagation direction of an acoustic
Bessel beam, could induce the acoustic radiation torque on a
subwavelength absorbing spherical particle [5].

The acoustic radiation torque is the time-averaged rate of
change of the angular momentum caused by an acoustic wave
on an object [6]. This subject was extensively studied for
spherical particles in Refs. [7–13]. In a nonviscous fluid, the
radiation torque on a spherical particle only occurs if the parti-
cle absorbs acoustic energy [8] Albeit, nonabsorbing particles
without spherical symmetry may develop the radiation torque.
Notable examples are microfibers [14] and nanorods [15].
Some numerical methods have been employed to study the
radiation torque on spheroids [16,17].

Despite the importance of the aforementioned numerical
studies, they do not reveal the full physical picture of the
acoustic radiation torque. Also, no investigation on the acous-
tic spin transfer to a spheroidal particle in a viscous fluid
was performed to date. We are not the first to theoretically
investigate the acoustic radiation torque effects on spheroids.
However, the previous work by Fan et al. [18] is mainly
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devoted to developing a general theoretical scheme for arbi-
trarily shaped particles.

The goal of this paper is to put the acoustic radiation torque
on a spheroidal particle in a new perspective by establishing
its connection with the acoustic spin. To this end, we con-
sider a first-order Bessel vortex beam (FOBB) in broadside
incidence to a subwavelength spheroidal particle in the beam
axis. Our choice relies on the fact that the acoustic FOBB
possesses spin, which corresponds to the local expectation
value of a spin-1 operator [4]. This beam not only may
produce a radiation torque on the particle but also a time-
averaged force, known as the acoustic force [19–21]. Besides,
some symmetry considerations have motivated the choice for
a prolate spheroidal particle. This object has axial symmetry
(i.e., it is invariant to a rotation around the major axis). In
particle physics terms, we may classify the prolate spheroid as
a spin-0 particle concerning axial rotations. On the other hand,
rotations around the minor axis (transverse rotations) can be
described by the interfocal vector, which has a 2π rotational
symmetry. Under this circumstance, the prolate spheroid can
be regarded as a spin-1 particle. At this point, we contemplate
that the FOBB spin can only induce a transverse spin on the
spheroid, which is a spin-1 particle.

Our paper is outlined as follows. First, we calculate the
spin of a Bessel beam. Afterward, we obtain the radiation
torque considering a nonviscous fluid by solving the related
scattering problem in spheroidal coordinates and integrating
the result in a far-field spherical surface. We then establish the
spin-torque relation and obtain simple asymptotic expressions
of the torque as the particle geometry approaches a sphere
and an infinitely thin spheroid. Assuming a Stokes flow as the
particle spins around its minor axis [22], we derive the relation
between the acoustic spin and angular velocity. We predict the
angular velocity of microparticles using the typical parameter
values of the acoustic levitation [23] and acoustical vortex
tweezer [24] devices. Additionally, the theoretical predictions
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FIG. 1. A Bessel vortex beam of �th order with half-cone an-
gle β interacting with a spheroidal particle. The beam propagates
along the x axis toward −∞ and along the z′ axis toward +∞.
The center of both coordinate systems O(x, y, z) (blue axes) and
O′(x′, y′, z′) (red axes) are located in the particle geometric center.
A 90◦-counterclockwise rotation around y and y′ axis maps O′ onto
O system.

are in excellent agreement with finite-element results of the
radiation torque.

II. ACOUSTIC SPIN

Assume that a Bessel vortex beam of order � (also known
as vortex charge) and angular frequency ω propagates in fluid
of density ρ0, adiabatic speed of sound c0, and compressibil-
ity β0 = 1/ρ0c2

0. The beam interacts with a subwavelength
prolate spheroidal particle, e.g., the particle dimensions are
much smaller than the acoustic wavelength. A fixed laboratory
coordinate system O′ coincide to the particle center which lies
in the beam axis as depicted in Fig. 1.

In the laboratory system, the incident Bessel beam is
described in cylindrical coordinates (�′, ϕ′, z′) by the velocity
potential

φin = φ0J�(k�′ sin β )eikz′ cos βei�ϕ′
, (1)

where i is the imaginary unit, φ0 = p0/kρ0c0 (with p0 being
the beam peak pressure) is the potential magnitude, J� is the
cylindrical Bessel function of �th order, k = ω/c0, and β

is the beam half-cone angle. The beam wave vector is k =
k(sin β e�′ + cos β ez′ ), with e�′ and ez′ being the radial and
axial unit vectors. The time-dependent term e−iωt is omitted
for simplicity. The incident pressure and velocity fields are
given, respectively, by vin = ∇φin and pin = ikρ0c0φin.

The acoustic spin density of the incident beam is defined
by [4]

S = ρ0

2ω
Im[v∗

in × vin], (2)

where Im denotes the imaginary part of a quantity. The acous-
tic spin is an intrinsic local property of the beam. Inasmuch as
the velocity field is irrotational ∇ × vin = 0, the spin satisfies
the conservation law ∇ · S = 0.

By substituting Eq. (1) into Eq. (2), we find the axial spin
as

Sz′ (�′) = 2E0 sin β

ωkr
J�(k�′ sin β )J̇�(k�′ sin β ), (3)

where E0 = β0 p2
0/2 is the characteristic energy density of

the beam and the dot means derivative with respect to the
function’s argument.

The only case where the on-axis spin is not zero cor-
responds to a FOBB (|�| = 1). For simplicity we consider
� = 1. Referring to Eq. (3), the axial spin is given by

Sz′ (0) = E0 sin2 β

2ω
ez′ . (4)

We note that the beam energy E0 can be assessed by measur-
ing the acoustic spin of the FOBB.

III. SCATTERING IN THE LONG-WAVELENGTH LIMIT

The spheroidal particle has a major and minor axis denoted
by 2a and 2b, respectively, with interfocal distance being
d = 2

√
a2 − b2. The acoustic scattering is now described

in a coordinate system O fixed in the geometric center of
the particle at rest. The major axis lies in the z direction;
see Fig. 1. For symmetry reasons, we describe the particle
in prolate spheroidal coordinates to which ξ � 1 is radial
distance, −1 � η � 1, and 0 � ϕ � 2π is azimuth angle. In
this case, the particle corresponds to the surface defined by
ξ = ξ0 = 2a/d = const. The particle aspect ratio is defined
as the major-to-minor axis ratio, which relates to the particle
geometric parameter ξ0 as

a

b
= 1√

1 − ξ−2
0

. (5)

The particle volume is V = 4πab2/3 = πd3ξ0(ξ 2
0 − 1)/6. A

spherical particle of radius r0 is recovered as ξ0 → ∞, with
ξ0d → 2r0. Whereas a slender particle corresponds to the
minor semiaxis being much smaller than the major semiaxis,
a/b � 1 and then ξ0 ≈ 1.

In the long-wavelength scattering analysis, we define the
expansion parameter as proportional to the interfocal-to-
wavelength ratio as

ε = kd

2
= ka

ξ0

 1. (6)

We emphasize that the other size parameter related to the
minor semiaxis b, say, kb/ξ0, is also much smaller than one,
as b < a. In this case, only the monopole and dipole modes
of the incident and scattered waves are needed to describe the
particle-wave interaction. Accordingly, the partial wave ex-
pansions of the incident and scattering potential velocities in
the particle frame are given in prolate spheroidal coordinates
by [25]

φin = φ0

1∑
n=0

n∑
m=−n

anmSnm(ε, η)R(1)
nm(ε, ξ )eimϕ, (7a)

φsc = φ0

1∑
n=0

n∑
m=−n

anmsnmSnm(ε, η)R(3)
nm(ε, ξ )eimϕ, (7b)
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where Snm is the angular function of the first kind and R(1)
nm

and R(3)
nm are the radial functions of the first and third kind,

respectively. The quantities am
n and snm are the beam-shape

and scaled scattering coefficients.
We assume that the particle behaves as a rigid and immov-

able spheroid. Hence, the velocity normal component is zero
on the particle surface, ∂ξ (φin + φsc)ξ=ξ0 = 0. Using (7) in this
condition, one obtains the scattering coefficient as

snm = −∂ξ R(1)
nm

∂ξ R(3)
nm

∣∣∣∣
ξ=ξ0

. (8)

We shall see in Sec. IV that in the long-wavelength limit,
only the dipole scattering coefficients contribute to the acous-
tic radiation torque. Hence, after Taylor expanding the radial
functions given in (A1) around ε = 0, we obtain the dipole
scattering coefficients as [26]

s10 = iε3

6
f10 − ε6

36
f 2
10, (9a)

s1,−1 = s11 = iε3

12
f11 − ε6

144
f 2
11, (9b)

where

f10 = 2

3

⎡
⎣ ξ0

ξ 2
0 − 1

− ln

⎛
⎝ ξ0 + 1√

ξ 2
0 − 1

⎞
⎠

⎤
⎦

−1

, (10a)

f11 = 8

3

⎡
⎣ 2 − ξ 2

0

ξ0
(
ξ 2

0 − 1
) + ln

⎛
⎝ ξ0 + 1√

ξ 2
0 − 1

⎞
⎠

⎤
⎦

−1

, (10b)

are the scattering factors.
In the far-field kξ � 1, the spheroidal expansion in (7)

asymptotically approaches the expansion in spherical coordi-
nates (r, θ, ϕ) as follows [26]:

φin = φ0

kr

1∑
n=0

n∑
m=−n

anm sin
(

kr − nπ

2

)
Y m

n (θ, ϕ), (11a)

φsc = φ0
eikr

kr

1∑
n=0

n∑
m=−n

i−n−1anmsnmY m
n (θ, ϕ), (11b)

where Y m
n (θ, ϕ) is the spherical harmonic of nth order and

mth degree. Here the beam-shape coefficient anm describes
an incident wave in spherical coordinates. Hereafter, we shall
consider the beam-shape coefficients in spherical coordinates.

IV. ACOUSTIC RADIATION TORQUE

The density of linear momentum flux carried by an acoustic
wave is well known from the fluid mechanics theory [27]
P = −LI + ρ0vv, with the over bar denoting time average
over a wave period and I being the unit tensor. The acoustic
fields L and ρ0vv are the Lagrangian density and Reynolds
stress tensor. The density of angular momentum flux is then
L = r × P. The radiation force exerted by the incident wave
on an surface element dS of the particle is dF rad = P · n dS,
with n being the outwardly unit vector at dS, whereas the mo-
ment of the infinitesimal radiation force is given by dτrad =

r × dF rad = L · n dS. Therefore, the acoustic radiation torque
on the particle is expressed by

τrad =
∫

S0

L · n dS. (12)

As the angular momentum flux satisfies the conservation
law [6] ∇ · L = 0, the integral can be evaluated over a virtual
surface S in the far-field kr � 1 that encloses the parti-
cle. Accordingly, the radiation force is expressed by τrad =
− ∫

S (r × ρ0vv) · n dS. The fluid velocity is the sum of the
incident and scattered velocities, v = vin + vsc. Substituting
the total fluid velocity into the far-field expression of the
radiation torque and noting that vv = (1/2)Re[vv∗], we find

τrad = −ρ0r2

2
Re

∫
�s

r × (vinv
∗
sc + vscv

∗
in + vscv

∗
sc) · er d�s,

(13)
where Re means the “real” part of, the asterisk denotes com-
plex conjugation, and �s represents the unit sphere. No torque
is formed in the absence of the particle; hence, Re

∫
�s

r ×
vinv

∗
in · er d�s = 0. Using the partial wave expansion in the

far field as given in (11) into Eq. (13), one can show that
the Cartesian coordinates of the radiation torque is expressed
by [8]

τrad,x = − E0

k3
√

2
Re[(a1,−1 + a11)(1 + s11)a∗

10s∗
10

+ a10(1 + s10)(a∗
1,−1 + a∗

11)s∗
11], (14a)

τrad,y = − E0

k3
√

2
Re[i (a1,−1 − a11)(1 + s11)a∗

10s∗
10

− i a10(1 + s10)(a∗
1,−1 − a∗

11)s∗
11], (14b)

τrad,z = E0

k3
Re[(|a1,−1|2 − |a11|2)(1 + s11)s∗

11]. (14c)

Clearly, the radiation torque is caused by the nonlinear inter-
action between the incident and scattered dipole modes.

To compute the radiation torque from (14), the beam-shape
coefficients of the incident wave should be known a priori.
Notable examples are plane waves and Bessel vortex and
Gaussian beams [28]. Numerical schemes and the addition
theorem of spherical functions have been employed to com-
pute the coefficients for different types of beam [19,29–32].

We now proceed to calculate the FOBB radiation torque
in broadside incidence to the particle. In this case, the Bessel
beam propagates along the x axis toward −∞ in the particle
system O. We see in Fig. 1 that the laboratory system O′
can be mapped onto the particle system O through a 90◦-
counterclockwise rotation around the y′ axis.

In the laboratory system O′, the beam-shape coefficient of
the FOBB is given by [30]

a′
n� = 4π in−mY m

n (β, 0)H (n − m)δm�, (15)

where H (n − m) is the unit-step function, which is equal to
0 for n − m < 0 and 1 for n − m � 0. According to (14),
we have to compute the dipole beam-shape coefficient a1,m

in the particle system O. The relation between the beam-
shape coefficient in the laboratory and particle system is given
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through the Wigner D function Dn
mμ(α,ψ, ζ ) as [33]

anm =
n∑

μ=−n

a′
nμDn

mμ(α,ψ, ζ ), (16)

where α, ψ, and ζ are the Euler angles. Mapping system O
onto O′ corresponds to the Euler angles α = 0, ψ = −π/2,
and ζ = 0. To obtain a1,m we need only the dipole beam-
shape coefficient in system O′, a′

1,μ. According to Eq. (16),

this coefficient is a′
1,μ = −δμ,1

√
6π sin β. By replacing it into

Eq. (16), we find the dipole beam-shape coefficients in the
particle system as

a1,−1 = a11 = −
√

3π

2
sin β, a10 =

√
3π sin β. (17)

Using this result into (14), we find the radiation torque along
the x axis as

τrad,x = 3π

k3
E0 sin2 β Re[s10 + s11 + 2s10s∗

11]. (18)

Using the scattering coefficients of (9) into this expression, we
find

τrad = −(ka)3χπa3E0 sin2 β ex, ka 
 1, (19a)

χ = ( f11 − 2 f10)2

48ξ 6
0

, (19b)

where χ is related to the difference of the dipole factors.
The asymptotic gyroacoustic expressions as the particle ge-

ometric parameter describes a spherical (ξ0 � 1) and slender
particle (ξ0 ≈ 1) are given, respectively, by

χ = 3

400

(
1

ξ 4
0

− 47

35ξ 6
0

)
, (20a)

χ = 4

27
(ξ0 − 1)2 + 4

9
(ξ0 − 1)3

{
3 + ln

[
(ξ0 − 1)2

4

]}
.

(20b)

The radiation torque vanishes as the particle geometry ap-
proaches a sphere, limξ0→∞ τrad = 0. This is supported by the
fact that no torque is produced on a nonabsorbing sphere [8].

Importantly, both asymptotic expansions of the gyroacous-
tic factor in (20) approach to zero. This suggests that the
geometric torque factor χ should have an extreme value
in the interval 1 � ξ0 < ∞. Using the Nelder-Mead numer-
ical method through NMaximize function of Mathematica
Software [34], we find the maximum value χmax = 0.14 at
ξ0 = 1.31.

We now establish the connection between the acoustic
radiation torque and acoustic spin. To do so, we express
the radiation torque in the laboratory frame (system O′) as
τrad = γπa3(ka)3Ein(0) ez′ . The torque is positive given that
ez′ = −ex, i.e., the z′ and x axis have opposite orientation.
Using Eq. (4), we find at the spin-induced radiation torque
on the particle as

τrad = χπa3ω

2
Sz′ (0). (21)

V. PARTICLE ANGULAR VELOCITY

In broadside incidence, a FOBB may set the spheroidal
particle to spin around its minor axis. Here we consider that
the particle is immersed in a viscous incompressible fluid with
dynamic viscosity μ0. To simplify our analysis, we assume
that the yielded flow due to the particle spin has a small
Reynolds number Re 
 1, i.e., the so-called Stokes flow. It is
worth noticing that by solving the acoustic scattering problem
we have considered a compressible fluid.

In the laboratory frame (system O′), the rotation dynamics
is described by Newton’s second law,

Ip�̇ = τrad − τdrag(�), (22)

where Ip is the particle moment of inertia relative to the minor
axis, � is the particle angular velocity, and τdrag is the drag
torque that counteracts the radiation torque.

Assuming the no-slip boundary condition at the particle
surface ξ = ξ0, one can find the drag torque as [22]

τdrag = πμ0d3τ̃drag �, (23a)

τ̃drag = 4

3

1 − 2ξ 2
0

2ξ0 − (
1 + ξ 2

0

)
ln

(
ξ0+1
ξ0−1

) . (23b)

The dimensionless drag torque τ̃drag depends only of the
geometry of the particle. As the particle asymptotically ap-
proaches (ξ0 � 1) a sphere of radius r0, we recover the
classical result of the drag torque for a spherical geometry,
τ

sphere
drag = 8πμ0r3

0�, with r0 ≈ ξ0d/2.
As the angular velocity increases, the radiation and drag

torques balance each other. Thus, the particle reaches a sta-
tionary angular velocity that can be obtained by combining
Eqs. (19a), (22), and (23),

�st = τrad

πμ0d3τ̃drag
= (ka)3�̃st

E0

μ0
sin2 β ez′ , (24a)

�̃st = χξ 3
0

8τ̃drag
, (24b)

with �̃st being the dimensionless angular velocity. By mea-
suring the angular velocity �st and knowing the particle and
beam parameters, one can determine the fluid viscosity μ0

through Eq. (24a).
For a quasispherical and slender particle, the dimensionless

angular velocity is, respectively,

�̃st = 3

3200

(
1

ξ 4
0

− 31

70ξ 6
0

)
, ξ0 � 1, (25a)

�̃st = − 1

36
(ξ0 − 1)2

[
1 + ln

(
ξ0 − 1

2

)]
, ξ0 ≈ 1. (25b)

The relation between the axial acoustic spin and particle
angular velocity follows by replacing Eq. (21) into (24a),

Sz′ (0) = γ�st, (26a)

γ = 16μ0τ̃drag

(ka)3χξ 3
0 ω

, (26b)

where γ is the gyroacoustic ratio of the spin and angular
velocity in the SI units of J s2 m−3. This result describes how
the spin is transferred to a subwavelength spheroidal particle.
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TABLE I. The acoustic parameters of acoustofluidics and levita-
tion systems at room temperature [35].

Density Speed of sound Dynamic viscosity
Medium ρ0 (kg/m3) c0 (m/s) μ0 (Pa s)

Air 1.22 343 1.86 × 10−5

Water 998 1483 10−3

It also enables the experimental assessment of the acoustic
spin by measuring the angular velocity of a subwavelength
spheroidal particle.

VI. MODEL PREDICTIONS

We provide some predictions for typical experimental se-
tups of acoustical vortex tweezers [24] and acoustic levita-
tion [23] to which the particle is immersed in a water-like
medium and air, respectively. The acoustic parameters of these
fluids are summarized in Table I. The particle has a fixed
major semiaxis of a = 680 μm in air and a = 120 μm in
water.

The theoretical predictions will be compared with three-
dimensional finite-element simulation results performed in
Comsol Multiphysics. The radiation torque was computed
by numerical integration of the angular momentum flux L
over the particle surface as described in Eq. (12). The mean
discretization length on the surface is b/50; while in the
surrounding fluid, we consider at least λ/12. The domain has
a cylindrical geometry with 36b diameter and height. We have
also adopted the first-order scattering boundary condition at
the domain edges.

In Fig. 2, we show the radiation torque exerted on a
spheroidal particle as a function of the geometric parameter
ξ0 in water and air. The torque is evaluated with Eq. (19a).
The pressure peaks are p0 = 3.5 kPa (air) and p0 = 0.5 MPa
(water). The driving frequencies are f = 40 kHz (air) and
f = 1 MHz (water). The half-cone angle of the beam is

FIG. 3. The stationary angular velocity as a function of the
particle geometric parameter ξ0 for different peak pressures in water
and air. The velocity is calculated with Eq. (24a) and β = π/4. The
parameters for water are a = 120 μm and f = 1 MHz; and for air,
a = 680 μm and f = 40 kHz. The maximum value of the angular
velocity is at ξ0 = 1.21 (a/b = 1.77).

β = π/4. According to Eq. (6) the size parameter ε is always
smaller than 0.51. The radiation torques peak at ξ0 = 1.31,
which corresponds to the aspect ratio a/b = 1.54. Finite-
element results are also depicted for comparison. The root-
mean-square error is about 10−3 in both cases.

In Fig. 3, we plot the angular velocity versus the particle
geometric parameter ξ0 with different peak pressures p0 =
1, 2 kPa (air) and p0 = 100, 500 kPa (water). We note that
the peak velocity is reached at ξ0 = 1.21, which corresponds
to the aspect ratio a/b = 1.77. When compared to the ra-
diation torque, this maximum value appears for a different
geometric parameter. This happens because the viscous drag
torque acts on the particle, as shown in Eq. (24b), changing
the optimal aspect ratio for the angular velocity. In water, the
angular velocity can be as large as 100 rpm, whereas in air, it
can be 10 times this value.

FIG. 2. The radiation torque exerted on a particle in (a) water and (b) air as a function of the particle geometric parameter ξ0. The torque
is evaluated with Eq. (19a) with β = π/4. The parameters for water are a = 120 μm, f = 1 MHz, and p0 = 500 kPa; while for air, we have
a = 680 μm, f = 40 kHz, and p0 = 3.5 kPa. The red square and circular dots correspond to finite-element simulation results. The maximum
value of the radiation torque is at ξ0 = 1.31 (a/b = 1.54). Three particles with different aspect ratios (ξ0 = 1.1, 1.31, 4) are depicted in
panel (a).
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VII. SUMMARY AND CONCLUSION

We have demonstrated that the acoustic spin can be trans-
ferred to a subwavelength spheroidal particle. Using the par-
tial wave expansion of the incident and scattered velocity
potentials in spheroidal coordinates and integrating the total
angular momentum density in the far field, we derived a gen-
eral expression of the radiation torque in the long-wavelength
limit. Considering a broadside incidence of a FOBB onto the
particle centered at the beam axis, we obtained the corre-
sponding radiation torque. In turn, the torque produces an an-
gular velocity on the particle that rotates around its minor axis.

We offer a more fundamental explanation of the spin-
induced torque using a description from quantum physics. The
acoustic FOBB is regarded as a spin-1 field [4], whereas a pro-
late spheroid can be classified as a spin-0 and spin-1 particle
under axial and transverse rotations, respectively. Therefore,
we found that the spin can only be transferred from the FOBB
in broadside incidence to the particle inducing a transverse
rotation. Importantly, axial rotations can be generated by vis-
cous torques caused by tangential stresses within the particle
boundary layer. However, the viscous torque can be neglected
as the boundary layer thickness, δ = (2μ0/ρ0ω)1/2 is much
smaller than the particle size [36]. Here δ/a ∼ 10−3 (in water)
and δ/a ∼ 10−2 (in air). For this reason, this torque was
discarded in our analysis.

The stationary angular velocity is obtained by taking the
radiation and drag torque balance in Eq. (22). Considering
the physical parameters of acoustofluidic and experimental
levitation setups, our model predicts that the stationary an-
gular velocity can reach 100 rpm in water and 1000 rpm in
air. Therefore, it is feasible to measure the angular velocity
and use the result to obtain the acoustic spin. We can also de-
termine the fluid viscosity by measuring the angular velocity.
Additionally, by measuring the acoustic spin, we can obtain
the beam energy density as described in Eq. (2). This may
provide a means of assessing the energy of focused ultrasonic
vortices in acoustic levitation systems [23] and acoustical
vortex tweezers [24].

In conclusion, we have established a connection between
the acoustic spin and the angular velocity of a spheroidal
particle in a viscous fluid. The developed method can also be
applied to unveil the properties of other spin-carrying acoustic
beams.
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APPENDIX A: MONOPOLE AND DIPOLE RADIAL FUNCTIONS

In the long-wavelength limit, the radial spheroidal functions are given to the ε6 order by [37]

R(1)
00 = 1 + ε2

18

(
2 − 3C2

1

) + ε4

16200

[
112 − 180C2

1 + 135C4
1 + ε2

882

(
2192 − 8064C2

1 + 5670C4
1 − 2835C6

1

)]
, (A1a)

R(1)
10 = ε

C1
+ ε2C1

150

[
2 − 5C2

1 + ε2

4900

(
368 − 700C2

1 + 875C4
1

)]
, (A1b)

R(1)
11 = εS1
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+ ε3S1
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(
712 − 1400C2

1 + 875C4
1
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, (A1c)

R(2)
00 = −2

ε

{
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6
[6C1 + L(3C2 − 5)] + 3

5

(ε
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)4
[

11C1 + 9C3 + L

60
(1109 − 1380C2 + 135C4)
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, (A1d)

R(2)
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( ε
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+ 1

882

( ε
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)4
(A1e)

×
[
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C1
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, (A1f)

R(2)
11 = −3S1

2ε2

{
C1

S2
1

− 2L −
( ε

10

)4
[

8C1
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5 − 1

S2
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− 8L(33 + 5C2)
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− 1

196

( ε

10
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[

85800C1 − 1750C3

+ 712C1

S2
1

− L(106324 − 76950C2 − 1750C4)

]}
,

R(3)
nm = R(1)

nm + iR(2)
nm, (A1g)

where R(2)
nm is the radial function of the second kind. Note that R(i)

nm = R(i)
n,−m, with i = 1, 2, 3. The auxiliary functions are expressed

by

Cn = 1

2
[(

√
ξ 2 − 1 + ξ )n + (

√
ξ 2 − 1 + ξ )−n], Sn = 1

2
[(

√
ξ 2 − 1 + ξ )n − (

√
ξ 2 − 1 + ξ )−n],

L = 1

2
ln

[
1 + (

√
ξ 2 − 1 + ξ )−1

1 − (
√

ξ 2 − 1 + ξ )−1

]
.
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APPENDIX B: WIGNER D FUNCTION

The Wigner D function Dn
μm(0,−π/2, 0) was evaluated with Mathematica Software. To the dipole approximation, we have

D0
00 = 1, (B1a)

D1
−1,−1 = D1

−1,1 = D1
1,−1 = D1

11 = 1

2
, (B1b)

D1
−1,0 = D1

01 = − 1√
2
, (B1c)

D1
0,−1 = D1

10 = 1√
2
, (B1d)

D1
00 = 0. (B1e)
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