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Tensorial description of the plasticity of amorphous composites
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We use a continuous mesoscopic model to address the yielding properties of plastic composites, formed
by a host material and inclusions with different elastic and/or plastic properties. We investigate the flow
properties of the composed material under a uniform externally applied deviatoric stress. We show that due
to the heterogeneities induced by the inclusions, a scalar modeling in terms of a single deviatoric strain of the
same symmetry as the externally applied deformation gives inaccurate results. A realistic modeling must include
all possible shear deformations. Implementing this model in a two-dimensional system, we show that the effect
of harder inclusions is very weak to relatively high concentrations. For softer inclusions instead, the effect is
much stronger; even a small concentration of inclusions affecting the form of the flow curve and the critical
stress. We also present the details of a full three-dimensional simulation scheme and obtain the corresponding
results for harder and softer inclusions.
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I. INTRODUCTION

The properties of heterogeneous materials have been the
subject of study for many years. From a practical point of
view, in many cases the addition of a fraction of foreign
particles with different properties than the host has been
widely used as a mean to improve the mechanical properties
of the sample [1]. In the case of plastic materials, there is
a finite shear strength that is macroscopically supported by
the sample and can be taken as an example of a mechanical
property that can be optimized. For instance, to reinforce a
metallic glass, one possibility is to introduce some amount
of a ductile phase [2,3]. This was shown to be effective in
controlling the appearance of shear bands, thus preventing
the nucleation of cracks. A reinforcement effect is obtained
despite the fact that the effective yield stress of the amorphous
composite is lowered with respect to that of the matrix.

In the theoretical mechanics community, the field that deals
with the determination of effective mechanical properties is
that of homogenization. Elastic properties have been inten-
sively studied under this approach [1] but not so much for the
case of plastic properties [4–6]. From a statistical mechanics
point of view, the study of the properties of plastic materials
has had important advances in the past few years [7]. This
has been boosted by the importance that materials of this
kind have gained both in industrial processes and everyday
life [8]. In this respect, many remarkable findings have been
obtained through the use of numerical techniques. Besides
other possibilities, for our present purposes we want to con-
centrate here on a modeling method that has been termed
elastoplastic modeling [9–13]. In this scheme, the system
is represented in a coarse-grained manner over an ordered
(usually cubic) lattice, with each site representing a small
portion of the real material. Different elements in the system
interact through elastic couplings that are defined by the usual
elasticity properties of the material. The possibility of plastic

rearrangements is contained in the internal dynamics of each
mesoscopic element in the system.

It is clear that a full description of the elastoplastic behavior
of materials requires a full description of elasticity and thus a
consideration of the full strain elastic tensor. This is manda-
tory in cases in which macroscopic inhomogeneous experi-
ments or samples are being studied. Indentation is a typical
case [12]: The directions of the principal axis of the strain
tensor vary across the sample, and thus the consideration of a
single shear deformation is clearly insufficient.

However, in many cases one is interested in how the
microscopic properties that are fed into the model manifest
in the macroscopic behavior of the material (such as its
yielding behavior), and in this case the simplest case of
a homogeneous sample (numerically accomplished by the
use of periodic boundary conditions) under a single mode
external shear stress is the situation we are interested in. If
this is the case, then it has been argued that the full tensorial
description can be simplified to a scalar one, in which only the
deformation with the same symmetry than the applied stress is
considered. This of course greatly simplifies the problem and
speeds up the numerical computations necessary to calculate
the material properties.

There is evidence that when the material that is being
simulated is homogeneous the results using scalar models is
quite accurate [14,15]. This also includes the case in which
the homogeneity of the material is obtained on average over a
long period of time. For instance, it may happen that the local
yield strength of the material at a fixed time has some spatial
dependence. However, if in a very long time period the time
average of the local yield strength is uniform, then the scalar
implementation will produce very good results.

In the present paper we want to analyze a case in which
this average spatial homogeneity does not exist. It corresponds
to a composite material, in which a host material which is
homogeneous in the sense of the preceding paragraph, is
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added with inclusions of a second material with different
properties. The inclusions may typically have different elastic
or yielding properties than the host. In this case the inclusions
keep their different elastic or plastic properties in time, and the
time average argument does not apply. It could be argued that
the composite is homogeneous if its properties are spatially
averaged over distances larger than the typical distance among
inclusions, which may be typically microscopic. However, it
turns out that this does not imply that a scalar description of
the global plasticity is accurate. In fact, we will show that only
a full tensorial description of the problem provides sensible
results in these cases.

In the next section we sketch the strategy to obtain the
model equations in full tensorial description for a two-
dimensional (2D) system. We clearly indicate the approxima-
tions that should be made if we restrict to a scalar description.
Then, in Sec. III, we present numerical simulations and com-
pare the results obtained using the scalar model with those
of the tensorial description. In Secs. IV and V we extend
the results of Secs. II and III to three-dimensional samples.
Finally, in Sec. VI we present our conclusions.

II. GENERAL MODELING OF ELASTOPLASTIC
PROPERTIES IN TERMS OF THE STRAIN TENSOR

Here we describe the simulation method for the two-
dimensional case. The origin of the method can be traced
back to the work of Bulatov and Argon [16], which was then
applied in quite different contexts [17–21]. The starting point
is to consider the (infinitesimal or linearized) strain tensor εi j

in terms of the displacement field ui,

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (1)

where i, j = 1, 2. From here we define one volumetric,

e1 ≡ (ε11 + ε22)/2, (2)

and two deviatoric strains,

e2 ≡ (ε11 − ε22)/2, (3)

e3 ≡ ε12. (4)

The deviatoric strains are related by a symmetry rotation of
45◦. The overdamped equations of motion are obtained by
equating the time derivatives of ei to (minus) the variation
of the total free energy F with respect of ei. However, in
this process it has to be remembered that e1, e2, e3 are not
independent but are related through

Q1e1 + Q2e2 + Q3e3 = 0 (5)

(with Q1 ≡ ∂2
x + ∂2

y , Q2 ≡ ∂2
y − ∂2

x , Q3 ≡ −2∂x∂y) that fol-
lows immediately as an identity after writing e1, e2, e3 in
terms of ui j . Thus using a Lagrange multiplier � to satisfy
the constraint, the equations of motion are written as

λėi = fi + �Qi, (6)

where fi ≡ − δF
δei

define the local forces and λ is an overall
effective viscosity coefficient. To satisfy the compatibility

constraint, we require

� = −
∑

fiQi

2Q4
, (7)

with

2Q4 ≡ Q2
1 + Q2

2 + Q2
3 = 2

(
∂2

x + ∂2
y

)2
. (8)

To write down the dynamical equations explicitly, we must
specify the form of a free energy. An isotropic elastic material
is defined as having a free-energy density given by

Fel =
∫ (

B

2
e2

1 + μ

2

(
e2

2 + e2
3

))
dxdy. (9)

The values of B and μ (which can vary across the sample)
are the local (two-dimensional) bulk and shear modulus. To
model a plastic material we must allow for the existence of
plastic deviatoric strain, which we call e20, e30. Note that these
quantities do not satisfy any additional constraint. The free
energy for given values of e20, e30 is then written as

Fam =
∫ {

B

2
e2

1 + μ

2
[(e2 − e20)2 + (e3 − e30)2]

}
dxdy (10)

and the equations of motion are explicitly written as

λė1 = −Be1 + Q1�, (11)

λė2 = −μ(e2 − e20) + Q2�, (12)

λė3 = −μ(e3 − e30) + Q3�, (13)

and Eq. (7) becomes

� = BQ1e1 + μ[Q2(e2 − e20) + Q3(e3 − e30)]

2Q4
. (14)

These are the dynamical equations of the system.
We will consider for simplicity a limiting case in which

equations simplify a bit further. It corresponds to a situation
where the bulk modulus is taken to be much larger than the
shear modulus, B � μ. In this case, Eqs. (11), (12), and (13)
show that e1 has a much more rapid dynamics than e2 and e3

and can be always considered to be at equilibrium, namely

e1 = Q1�/B. (15)

Now eliminating e1 from here and Eq. (14) we get

� = μ[Q2(e2 − e20) + Q3(e3 − e30)]

Q4
. (16)

The dynamical equations are then written explicitly in this
case as

λė2 = f2 − Q2
2

Q4
f2 − Q2Q3

Q4
f3, (17)

λė3 = f3 − Q2Q3

Q4
f2 − Q2

3

Q4
f3, (18)

with f2 = −μ(e2 − e20) and f3 = μ(e3 − e30). We typically
perform the simulations calculating f2, f3 in real space, then
Fourier transforming, and considering Eqs. (17) and (18)
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in Fourier space. In this case, the form of the interaction
kernels is

Q2
2

Q4
=

(
q2

x − q2
y

)2

(
q2

x + q2
y

)2 , (19)

Q2
3

Q4
= 4q2

x q2
y(

q2
x + q2

y

)2 , (20)

Q2Q3

Q4
= 2qxqy

(
q2

x − q2
y

)
(
q2

x + q2
y

)2 . (21)

The previous equations leave the value of the uniform
mode q = 0 undefined. Its evolution is fixed by the driving
condition imposed. For instance, for a deformation at constant
rate γ̇ with the symmetry of e2, the uniform mode is set as

e2 = γ̇ t, (22)

e3 = 0, (23)

where the bar indicates average on the whole system.
It remains to define the way in which the plastic strains

e20, e30 evolve in time. In the spirit of the shear transformation
zone theory [22], we will consider that these quantities remain
fixed when the local forces f2, f3 are sufficiently small. In
this case the material behaves effectively as an elastic solid.
However, when f2, f3 become too large, a plastic reaccom-
modation (namely, a variation of e20, e30) occurs. We use as
a local yielding prescription the von Mises criterion, namely
reaccommodation occurs when the elastic energy reaches
some local threshold �, i.e.,

(e2 − e20)2 + (e3 − e30)2 = 2�/μ ≡ κ2. (24)

The value of κ is taken from a random distribution (in order
to account for the disordered nature of an amorphous plastic
material) and renewed every time condition (24) is met. The
form of the distribution is the same for all sites of the host
material, then making the host uniform on the long run. Each
time Eq. (24) is satisfied, we relax the elastic energy allowing
e20, e30 to approach the current e2, e3. Although we could set
e20, e30 to become the precise values of e2, e3 (relaxing elastic
energy to zero), we will consider (taking into account the
findings in molecular dynamic simulations by Nicolas et al.
[23]) that the local plastic rearrangements are typically not
exactly aligned with the axis of local maximum stress. Then
our prescription will be to set new values of e20, e30 according
to

enew
20 = e2 + η2, (25)

enew
30 = e3 + η3, (26)

where η2, η3 are Gaussian variables with some width of
the order of the typical value of κ . Note that the use of
Gaussian random variables places the new values of e20, e30

isotropically around e2, e3, thus preserving the isotropy of the
material being simulated. As can be seen, there is a good piece
of freedom in the details of the dynamics of the plastic strain.
We have tried a few variations and observed that the results
obtained are rather insensitive to these details. In particular,
the results to be shown remain unaltered if η2, η3 are set to

zero, namely if the plastic rearrangements occur exactly along
the direction of maximum local stress.

It is now interesting to see how the use of a scalar model
to describe plasticity can be justified starting from the full
tensorial description we are presenting here. If the external
driving is along one single deviatoric mode (let us suppose it
to be e2), then the scalar approximation appears if we assume
that plastic behavior occurs only with this symmetry. In other
words, in this case plastic deformation along e3 is taken to be
zero: e30 ≡ 0. Then Eq. (17) becomes

λ

μ
ė2 = −(e2 − e20) + Q2

2

Q4
(e2 − e20) + Q2Q3

Q4
e3 (27)

and here e3 can be substituted by its expression from the
compatibility condition, namely e3 = −(Q2/Q3)e2, providing

λ

μ
ė2 = −(e2 − e20) − Q2

2

Q4
e20. (28)

Note that for this transformation to be valid, the value of the
shear modulus must be one and the same all across the sample.
This is the final expression. It represents a scalar model in
which e2 evolves in time due to the elastic force and also due
to the effect of the plastic strain all across the system, propa-

gated through the kernel Q2
2

Q4
. Note that this kernel [Eq. (19)] is

nothing but the Eshelby interaction that is used in elastoplastic
models of plasticity. The dynamics of the plastic strain e20 in
the case of the scalar model is considered to be the following.
e20 is kept fixed as long as |e2 − e20| < κ . When this threshold
is reached, e20 is renewed to a value enew

20 = e2 + η, with η a
stochastic variable of zero mean and a width or order of κ .
The connection between a scalar model like the one defined
by Eq. (28) and more standard implementation of elastoplastic
models has been recently elucidated in Ref. [24]. We will now
apply either the tensorial model [Eqs. (17) and (18)] or the
scalar one [Eq. (28)] to describe the properties of a plastic
composite and compare the results.

III. RESULTS FOR TWO-DIMENSIONAL COMPOSITES

We will present here the results for a macroscopically
homogeneous two-dimensional sample (a square sample with
periodic boundary conditions) driven by the application of a
uniform deformation of symmetry e2 at a constant rate γ̇ . The
main interest will be in the average stress that appears in the
sample under the action of this deformation rate. In particular,
the stress when γ̇ → 0 defines the overall yield stress of the
sample σc. We will also pay special attention to the spatial
distribution of the plastic deformation.

Particular details of the simulations are the following.
System size is 128 × 128. λ/μ ≡ τ sets a time constant in
the problem. The values of κ for the implementation of von
Mises criterion [Eq. (24)] are uniformly chosen between κ0

and 2κ0, with the vale of κ0 (expected to be κ0 � 1 in a
realistic situation) thus setting the scale of the strains e and
e0 in the system. Also η2, η3 [Eqs. (25) and (26)] have a width
of 0.2κ0. In summary, the reported values of strain rates γ̇ are
given in units of κ0/τ , values of strains e and e0 in units of κ0,
and those of stresses σ in units of κ0μ.
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FIG. 1. The flow curve for a host without inclusions, calculated
with the scalar (open circles) and the tensorial (full squares) model.
There are only minor differences between the two curves. We also
show the average plastic deformation rate in a simulation at γ̇ = 0.03
during times intervals corresponding to a nominal global deformation
of 0.3 (a), 3 (b), and 30 (c). The short-time correlated plastic events
distribute uniformly across the sample for large deformations.

In the first place we consider the case of a pure host
sample and compare the results obtained with the scalar and
tensorial models. The results obtained for the flow curve
are contained in Fig. 1. Scalar and tensorial implementation
provide practically equivalent results, as was found already
in a number of previous works [14,15]. When looking in
more detail at the spatial distribution of deformation (Fig. 1,
insets), it is seen that in short time periods there is a strong
tendency of the deformation to appear correlated along the
diagonals of the sample (that are the soft directions for the e2

symmetry). However, when averaging the plastic deformation
over large periods of time deformation becomes uniform.
This behavior can be explicitly verified in the following way.
Suppose that (for a given value of the applied γ̇ ) we calculate
the local average (over a time interval 
t) velocity of plastic

10-2 10-1 100 101 102 103 104 105
10-1

100

101

102

scalar

γ
1
0.3
0.1
0.03

Δε

σu

tensorial
.

FIG. 2. Spread of the plastic deformation across the sample, as a
function of the average deformation (
ε ≡ γ̇ 
t) for different values
of the external strain rate. Dotted line indicates the diffusive (σu ∼

ε1/2) behavior.
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0.5

γ φ=0

FIG. 3. Flow curves of samples with a fraction φ of inclusions
with a yield stress larger by a factor h compared to the host, for
systems of two different sizes (L × L), using the scalar (a) and the
tensorial model (b). Note the strong size effect in the scalar case at
low values of γ̇ (the size dependence of the yield stress σc in the
curve for φ = 0.2 is indicated) and the very different form of scalar
and tensorial results when φ �= 0.

deformation

u(r,
t ) ≡ 
e20(r)


t
(29)

at any position r of the sample. The spatial average of this
quantity is simply γ̇ . By calculating its spread

σu(
t ) ≡
√

u2 − γ̇ 2, (30)

we can tell whether the deformation becomes uniform as

t → ∞ or whether different regions have different average
deformation rates. The results from the numerical simulation
(Fig. 2) clearly show a sublinear behavior of σu(
t ) as 
t →
∞, namely the plastic deformation is uniform in the long run.
Note that the spread is lower (for the same total applied strain)
at larger applied strain rates but saturates to a well-defined
behavior as γ̇ → 0. For the tensorial model, a typical diffusive
behavior [σu(
t ) ∼ 
t1/2] is observed. In the scalar case, the
increase of σu(
t ) seems to be slower, although it may be that
we have not reached yet the diffusive regime. The increase
without limit of σu(
t ) with 
t (either in a diffusive or in
a different way) is a consequence of the zero modes of the
interaction kernel. Should the kernel be strictly positive for
any q �= 0 the amplitude of any mode should saturate and so
should the value of σu(
t ) for large 
t . Note in this respect
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FIG. 4. Yield stress of systems with hard inclusions. Results for
the scalar model with h = 10 with two system sizes to emphasize
the strong size effect. In the tensorial case (with L = 128) we show
the results for h = 10 (to be compared with the corresponding scalar
case) and h → ∞ (i.e., inclusions that do not yield at all).

that the lower value of σu in the scalar case can be associated
to the underestimation of the number of zero modes in the
scalar case compared to the true tensorial one.

The main conclusion of the present case of a pure, uniform
host is that the use of a scalar model captures essentially all
important features of the more complete tensorial modeling.

Things become different when a fraction φ of sites are
replaced by inclusions with different elastic and/or plastic
properties. The spatial distribution of inclusions is supposed
to be totally uncorrelated, namely each site of the sample has
a probability φ of being an inclusion, and (1 − φ) of being
part of the host. We consider the case in which the inclusions
have the same elasticity (i.e., the same μ) than the host, but a
different plastic threshold. In concrete, for the inclusions the
value of κ [Eq. (24)] is chosen to differ by a factor h from
that of the host. For h > 1 this represents the case of harder
inclusions, and some sort of “hardening” effect of the whole
material is expected. This case was studied in Ref. [25] using
a scalar model. The first thing to be shown here is that with
our present implementation of the scalar model the results
obtained reproduce those in Ref. [25].

Figure 3(a) shows the flow curves for different values of φ

(using inclusions with h = 10) and for two different system
sizes, using the scalar model. As a general rule, the presence
of harder inclusions shift the stress in the system to larger
values for a given value of γ̇ . Curves for different system
sizes show a very strong size effect at low values of γ̇ but
a much weaker one at larger γ̇ . If the yield stress σc is plotted
as a function of φ, then we obtain the results in Fig. 4 (open
symbols). This qualitatively reproduce results in Fig. 6 of
Ref. [25]. There the authors analyze the strong size effects
and conclude that for N → ∞ the value of the yield stress
interpolates linearly between the value for the pure host σH

and that for pure inclusions σI , namely σc(φ) = φσH + (1 −
φ)σI . The very strong size effects are attributed to the fact that
inclusions tend to localize the deformation in certain regions
of the sample and reduce it in others. In the scalar model the
large 
t behavior of the quantity u(r,
t ) previously defined

FIG. 5. Distribution of the plastic deformation for φ = 0.2 in
very long runs at different values of γ̇ as indicated, using the scalar
(left images) and tensorial model (right images).

has to be composed only by Fourier modes with zero energy.
The most generic function satisfying this fact is

u(r,
t → ∞) = u1(x + y) + u2(x − y) (31)
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FIG. 6. Flow curves in the presence of a fraction φ of “liquid
bubbles” in the system (i.e., regions with μ = 0) (L = 128), using the
tensorial model. The inset shows the dependence of the yield stress
with φ. Red dotted line shows the function σ (φ) = σ (0) − Cφ2/3.
Black dashed line is the “linear interpolation” result.
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for arbitrary functions u1 and u2. The results confirm this
analysis. Figure 5 shows the accumulated plastic strain over
a very large time interval, at decreasing values of γ̇ . For the
scalar case (left images) the structure in terms of two different
functions along the diagonals is clearly visible. In addition,
the tendency to localize the deformation in a single narrow
slip region is clearly visible as γ̇ is reduced. The same trend
occurs even for a single inclusion in a perfect host, no matter
how large the hosts is. This is the origin of the very large size
effect that is seen in Fig. 3(a) and in Ref. [25].

The situation changes dramatically when the full tensorial
model is used. Figure 3(b) shows curves equivalent to those
in (a), but the results are very different. First, the strong size
effects of the scalar case have disappeared. Also the overall
form of the curves and the values of σc are quite different from
those of the scalar case. The yield stress (Fig. 4) to values of
φ 
 0.3 is almost identical to that for φ = 0. This behavior
(that is also observed even in the case in which inclusions
do not yield at all; Fig. 4, blue curve) is an indication that
for low strain rates and not-too-large φ, the system is able to
accommodate the deformation without accumulating plastic
deformation at the inclusions. This is now possible because
the zero modes of the tensorial model are not limited to
the two sets of lines at 45◦ but consists of any straight line
at arbitrary angle. This becomes apparent by comparing the
spatial distribution of plastic deformation in the scalar case
(Fig. 5, left panels) with the present tensorial case (Fig. 5,
right panels). In the scalar case plastic deformation is more
and more localized as γ̇ → 0, as discussed in Ref. [25].
However, we see in the more realistic tensorial modeling that
plastic deformation remains finite in any finite fraction of the
sample even in the limit γ̇ → 0. This may be considered the
fundamental difference between scalar and tensorial modeling
and responsible for all differences we are observing in the
simulations.

A situation that does not seem to have been previously in-
vestigated is the possibility of having inclusions that are softer
than the host. It is expected than these inclusions produce an
overall softer composite, but it is not clear to what extent. We
model a limiting case of softer inclusions, considering them
as spots where μ = 0 (or, equivalently, where the local yield
stress is zero). This is like considering that we are introducing
in the host a certain amount of “liquid bubbles.” The results
of the flowcurves in this case can be seen in Fig. 6 (we
only show curves for the realistic tensorial modeling in this
case). Although for large values of γ̇ the behavior of the flow
curves seems to be simply shifted downward in an amount
proportional to φ, at very low values of γ̇ the decreasing
is more dramatic. We associate this effect to the fact that at
very low strain rates, regions of plastic deformation can snake
through the impurities finding softer paths of deformations
and then reducing σc in a larger extent. The plot of σc vs.
φ (Fig. 6, inset) indicates that at very low values of φ the
behavior seems to be superlinear. In fact, we fit σc(φ) =
σc(0) − Cφ2/3 pointing to nontrivial long-range interactions
among the inclusions.

IV. MODELING OF THREE-DIMENSIONAL SYSTEMS

The previous results for two-dimensional systems clearly
point to the necessity of being careful when deciding whether

a scalar modeling of elastoplastic behavior can produce sensi-
ble results. We have made clear that in order to understand
the behavior of 2D composites a full tensorial modeling is
necessary.

We should expect the same behavior in 3D. Modeling 3D
systems can be proposed along the same lines used for 2D
systems, with the expected increase of algebraic complexity.
We sketch the main steps here and refer to the Appendix for
the full expressions. In 3D we start from the 3 × 3 symmetric
strain tensor that contains one volumetric (noted e1) and five
deviatoric (e2, . . . , e6) strains. The deviatoric modes can be
defined in such a way that the free energy of a perfect elastic
isotropic material is written [compare with Eq. (9)] as

Fel =
∫ ⎛

⎝B

2
e2

1 + μ

2

6∑
j=2

e2
j

⎞
⎠d3r. (32)

In order to model amorphous plastic systems, plastic strain
fields e20, . . . , e60 are introduced in such a way that

Fam =
∫ ⎡

⎣B

2
e2

1 + μ

2

6∑
j=2

(e j − e j0)2

⎤
⎦d3r. (33)

There are three compatibility constraints in 3D (that reduce
the six variables e1, . . . , e6 to three true degrees of freedom)
that can be considered to be equations of the form of Eq. (5)
for planes xy, yz, and zx. After a rather long process (sketched
in the Appendix) that involves introducing three Lagrange
multipliers, and taking already the limit B � μ, the dynamic
equations of the system can be written as

λėi = fi +
6∑

j=2

Qi j f j, (34)

where f j ≡ −μ(e j − e j0) and Qi j are differential operators
(or algebraic operators in Fourier space) analogous to those
defined in Eqs. (19), (20), and (21). The explicit form of Qi j

is presented in the Appendix.
The modeling of plastic strain is made in analogy with 2D

by calculating the deviatoric elastic energy Edev

Edev = μ

2

6∑
j=2

(e j − e j0)2. (35)

If Edev overpasses a von Mises threshold �, then new values
of ee0, . . . , e60 are chosen according to

e j0 = e j + η j, (36)

where η j are random Gaussian variables (to preserve the
rotational symmetry in the e2, . . . , e6 space).

As in the 2D case, if all but one (this is supposed to be
e2) deviatoric stresses are assumed to be perfectly elastic
(i.e., e j0 = 0 for j = 3, 4, 5, 6), then the explicit forms of
e3, . . . , e6 can be plugged into the equation for e2 to produce
the equation

λė2 = f2 + μQ22e20. (37)

This is the way in which a “scalar” model in the 3D case
appears.
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FIG. 7. Yield stress as a function of the fraction of inclusions φ

(which have a yielding threshold with a factor of h different than the
host) in three dimensions. Now the scalar modeling does not display
large size effect, and all results are presented for L = 24. The linear
interpolation behavior displayed by the scalar model does not match
the results obtained using the tensorial model.

V. RESULTS FOR THREE-DIMENSIONAL COMPOSITES

There is a twofold interest in generalizing the results in
Sec. III to three dimensions. On one side, the finding that in
2D scalar and tensorial modeling give very different results
raises the expectation that the same occurs in 3D. The second
reason is that some results obtained in 2D using tensorial
modeling are rather detrimental from a practical point of
view, and it is important to see if they persist in 3D. For
instance, in 2D we have obtained that a fraction of harder
inclusions (to approximately φ 
 0.3) does not really produce
any hardening effect on the material, i.e., does not increase its
yield stress. It is important to see if this effect also occurs in
3D.

The main results we will present for 3D systems are
contained in Figs. 7 and 8, which should be compared with
the corresponding ones in 2D case (Figs. 4 and 6). First, we
mention that in scalar 3D modeling we have not observed
the strong size effects that were present in 2D. Systems of
size L � 16 are already representative of the “thermodynamic
limit.” Yet for harder inclusions (Fig. 7) the results for σc using
the scalar model that show an almost perfect linear increase of
σc with φ do not coincide with the results obtained using the
more complete tensorial modeling. In fact, the full tensorial
simulation shows that the effect of harder impurities is weak
at low concentrations yet much more appreciable than in 2D:
We observe in 3D an approximately quadratic increase of σc

with φ for low values of φ. This behavior persists even if the
inclusions do not yield at all.

The case of very soft inclusions displays also some inter-
esting differences compared with the 2D case. Figure 8 shows
the flow curves and the values of σc. Now the decrease of σc

with φ is linear at small values of φ, yet it is about a factor of
two larger than the one expected from the weighted average
of yield stress of host and inclusions.
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FIG. 8. Same as Fig. 6 for three-dimensional systems (L = 24).
The decrease of σc with φ is now linear but about a factor of two
more rapid than the linear interpolation result (black dashed line).

VI. CONCLUSIONS

In this paper we have presented a full tensorial scheme
to describe the elastoplastic properties of materials (both in
2D and 3D) that accounts for the elastic compatibility of
the material and also for the possibility of plastic yielding.
The model has been presented for the case in which the
bulk modulus is much larger than the shear modulus, but
the general case can be treated along the same lines in a
straightforward way. As a side result, the conditions under
which this full tensorial model reduces to a scalar one have
been elucidated: To obtain a scalar model involving a single
shear mode of definite symmetry, all remaining shear modes
must behave harmonically (i.e, yielding must not occur in the
remaining modes), and the shear coefficient of all remaining
modes must be a single unique number, namely it is not
allowed to fluctuate neither spatially, nor temporally.

In addition, we have addressed in a particularly important
case (namely that of a plastic material that contains harder, or
softer inclusions) the differences that appear between the full
(more realistic) tensorial modeling, and an approximate scalar
modeling. Our result—consistent with previous findings—
suggests that in the absence of inclusions, the use of a scalar
model (that disregards yielding in the remaining shear mode)
is quantitatively very precise to describe for instance the flow
curve. Other works have shown that it is also appropriate to
describe quantitatively the avalanche statistics in the system
[12]. In the case in which the material contains harder or
softer inclusions, we have shown clearly that the results using
a full tensorial model differ dramatically from those obtained
using the scalar model. In particular, we do not find strong size
effects as they were obtained using the scalar model, and the
inclusion of a fraction up to about 20% of harder inclusions
does not affect appreciable the value of the shear stress of the
material (even in the case in which the inclusions are infinitely
hard) because plastic deformation can appear in the system
along wavy paths that avoid the hard inclusions. It has to be
kept in mind however, that these results apply to the present
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case of inclusions added to the host in a totally uncorrelated
manner. In cases in which the inclusions are accommodated
in particularly convenient forms, the hardening effect can be
much more appreciable.

The present work brings the attention to the fact that there
are circumstances in which the description of the plasticity
of solid materials using a single scalar field may yield totally
unrealistic results. However, it has to be emphasized that at
the present stage the tensorial model presented here, although
producing qualitatively more consistent results (as the over-
all shape of the flow curve), cannot be considered either a
realistic description of any particular system. To reach this
goal, a more careful analysis of typical parameters of actual
systems would be necessary. In any case, one of the main
conclusions of the present work is that one has to be careful
when deciding if a scalar model is enough to describe the
elastoplastic properties of a material. Even cases in which
the system is uniform on average (as the present case) may
require the use of a full tensorial machinery. We note that the
explicit simulation scheme we have presented (particularly
the formulas for the 3D case shown in the Appendix) can
have interesting applications to other problems such as the
study of cases in which the sample is anisotropic and the
orientation of the anisotropy varies from point to point or
cases in which there is the possibility to generate cracks in
the sample (modeled for instance as regions where the bulk
and shear modulus of the material are set down to zero) when
some deformation threshold criterion is met.
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APPENDIX

Here we provide a more detailed derivation and the final
expressions necessary to implement the full three-dimensional
modeling [Eq. (34)]. The starting point is the definition of the
strain tensor εi j in terms of the displacement field ui,

εi j ≡ 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (A1)

From its very definition, components of εi j satisfy identically
the three constraints:

(
∂2

x +∂2
y

)
(ε11+ε22) − (

∂2
x − ∂2

y

)
(ε11 − ε22) − 4∂x∂yε12 = 0,

(A2)

(
∂2

y +∂2
z

)
(ε22+ε33) − (

∂2
y − ∂2

z

)
(ε22 − ε33) − 4∂y∂zε23 = 0,

(A3)

(
∂2

z +∂2
x

)
(ε33+ε11) − (

∂2
z − ∂2

x

)
(ε33 − ε11) − 4∂z∂xε31 = 0.

(A4)

Now we define the volumetric,

e1 ≡ ε11 + ε22 + ε33, (A5)

and deviatoric strains,

e2 ≡ (ε11 − ε22)/
√

2, (A6)

e3 ≡ (ε11 + ε22 − 2ε33)/
√

6, (A7)

e4 ≡
√

2ε12, (A8)

e5 ≡
√

2ε23, (A9)

e6 ≡
√

2ε31. (A10)

In terms of deviatoric and volumetric strains, the con-
straints are written as

P1e1 + Ae2 + De3 + Ge4 = 0,

P2e1 + Be2 + Ee3 + He5 = 0,

P3e1 + Ce2 + Fe3 + Ie6 = 0,

where

P1 = 2

3

(
∂2

x + ∂2
y

)
, P2 = 2

3

(
∂2

y + ∂2
z

)
, P3 = 2

3

(
∂2

z + ∂2
x

)
,

(A11)

A = −
√

2
(
∂2

x − ∂2
y

)
, B = −

√
2∂2

z , C =
√

2∂2
z ,

(A12)

D =
√

6

3

(
∂2

x + ∂2
y

)
, E =

√
6

3

(
∂2

z − 2∂2
y

)
,

F =
√

6

3

(
∂2

z − 2∂2
x

)
, (A13)

G = −2
√

2∂x∂y, H = −2
√

2∂y∂z, I = −2
√

2∂z∂x.

(A14)

We assume a free energy of the system of the form

F =
∫

d3r

[
B0

2
e2

1 + V (e2, . . . , e6)

]
, (A15)

and overdamped equations of motion,

λė1 = −B0e1 − P1�1 − P2�2 − P2�3, (A16)

λė2 = f2 − A�1 − B�2 − C�3, (A17)

λė3 = f3 − D�1 − E�2 − F�3, (A18)

λė4 = f4 − G�1, (A19)

λė5 = f5 − H�2, (A20)

λė6 = f6 − I�3, (A21)

where Lagrange multipliers �1, �2, �3 are used to enforce
the constraints and fi = −∂V/∂ei (i = 2, . . . , 6).

From now on, we will consider the bulk modulus B0 to be
very large compared with shear moduli in the system in such a
way that e1 can be safely set to 0. In this limit, by transforming
to Fourier space, a direct but lengthy calculation yields
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λė2 = f2 −
(
q2

x − q2
y

)2 + q2q2
z

q4
f2+

√
3q2

z

(
q2

x − q2
y

)
q4

f3 + 2qxqy
(
q2

y − q2
x

)
q4

f4 − qyqz
(
3q2

x − q2
y + q2

z

)
q4

f5 − qxqz
(
q2

x − 3q2
y − q2

z

)
q4

f6

λė3 = f3 +
√

3q2
z

(
q2

x − q2
y

)
q4

f2−
q4 − 3q2

z

(
q2

x + q2
y

)
q4

f3 + 2
√

3qxqyq2
z

q4
f4 −

√
3qyqz

(
q2

x + q2
y − q2

z

)
q4

f5 −
√

3qxqz
(
q2

x + q2
y − q2

z

)
q4

f6

λė4 = f4 + 2qxqy
(
q2

y − q2
x

)
q4

f2 + 2
√

3qxqyq2
z

q4
f3 − 4q2

x q2
y + q2

z q2

q4
f4 − qxqz

(
4q2

y − q2
)

q4
f5 − qyqz

(
4q2

x − q2
)

q4
f6

λė5 = f5 − qyqz
(
3q2

x − q2
y + q2

z

)
q4

f2 −
√

3qyqz
(
q2

x + q2
y − q2

z

)
q4

f3 − qxqz(4q2
y − q2

r )

q4
f4 − 4q2

y q2
z + q2

x q2

q4
f5 − qxqy

(
4q2

z − q2
)

q4
f6

λė6 = f6 − qxqz
(
q2

x − 3q2
y − q2

z

)
q4

f2 −
√

3qxqz
(
q2

x + q2
y − q2

z

)
q4

f3 − qyqz
(
4q2

x − q2
)

q4
f4 − qxqy

(
4q2

z − q2
)

q4
f5 − 4q2

z q2
x + q2

y q2

q4
f6

where q2 ≡ q2
x + q2

y + q2
z , q4 ≡ (q2)2, and fi must be under-

stood as evaluated at the corresponding value of q. These
equations can be written as

λėi = fi +
6∑

j=2

Qi j f j (A22)

that allow us to define the Qi j used in Eq. (34).
To this point, the model equations are given in terms of

the total strain ei and the generalized forces fi ≡ −∂V/∂ei

obtained from a general free energy [Eq. (A15)]. In the case in
which the form of the V function is piecewise parabolic, the
forces become fi ≡ −μ(ei − ei0), where ei0 can be identified

with the “plastic” strain. In this case, the equations simplify by
noticing that all parts of fi proportional to ei in the last term
of (A22) sum to zero, providing

λėi = fi + μ

6∑
j=2

Qi je j0. (A23)

From this form of the equations the scalar model is obtained
very easily as the equation for e2 if we assume that plastic
deformation occurs only with the symmetry of e2 and then
e j0 = 0 for j = 3, . . . , 6, namely

λė2 = f2 + μQ22e20. (A24)
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