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Kinetics of random sequential adsorption of two-dimensional shapes on a one-dimensional line
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Saturated random sequential adsorption packings built of two-dimensional ellipses, spherocylinders, rectan-
gles, and dimers placed on a one-dimensional line are studied to check analytical prediction concerning packing
growth kinetics [A. Baule, Phys. Rev. Lett. 119, 028003 (2017)]. The results show that the kinetics is governed by
the power law with the exponent d = 1.5 and 2.0 for packings built of ellipses and rectangles, respectively, which
is consistent with analytical predictions. However, for spherocylinders and dimers of moderate width-to-height
ratio, a transition between these two values is observed. We argue that this transition is a finite-size effect that
arises for spherocylinders due to the properties of the contact function. In general, it appears that the kinetics of
packing growth can depend on packing size even for very large packings.
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I. INTRODUCTION

Random sequential adsorption (RSA) [1] is a model of
random packing generation in which objects are added to the
packing according to the following scheme:

(i) a virtual object’s position and orientation are selected
randomly inside a packing;

(ii) if the object does not intersect with previously added
particles, it is added to the packing and holds its position and
orientation unchanged;

(iii) if the object intersects with any of the existing objects,
it is removed and abandoned.

These iterations are repeated until the packing becomes
saturated, which means that there is no possibility of placing
another object there. RSA owes its popularity to the obser-
vation that such packings resemble monolayers obtained in
irreversible adsorption processes [2,3]. From the theoretical
point of view, RSA packings are interesting as probably
the simplest, yet not trivial random packing model which
accounts for excluded volume effects. In contrast to more
popular random close packings, where neighboring particles
are in touch, the RSA packings have well-defined mean
packing fraction, which is an additional asset for numerical
and theoretical studies [4,5]. However, only for some specific
two-dimensional shapes, there exist algorithms, which gen-
erate saturated RSA packings [6–11] and estimation of the
mean saturated packing fraction is straightforward. In general
case, the knowledge about packing growth kinetics is needed
because the above-described RSA protocol does not give any
hint when packing becomes saturated and no other particle
can be added to it. Therefore, typically the packing generation
is interrupted after some finite number of iterations and the
number of particles in saturated state is estimated using the
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power law:
θ (t ) = θ − At−1/d . (1)

Here θ (t ) and θ are the mean packing fraction after t iterations
and at saturation, respectively, and A is a positive constant
[2]. Parameter d , for packings built of spherically symmetric
particles, is equal to the packing dimension [12,13]. For
two-dimensional packings built of anisotropic shapes, it is
typically equal to 3 [14–18], and therefore it was assumed
that it is equal to the number of shape’s degrees of freedom
[19,20]. Situation changes when two-dimensional shapes are
placed on a one-dimensional line. Recently, Baule provided
analytical arguments that the RSA packing built of ellipses,
whose centers are on a one-dimensional line, approaches sat-
uration faster than similar packings built of rectangles or sphe-
rocylinders [21], which is different than for two-dimensional
packings [14,15,18]. The difference in growth kinetics origi-
nates in the properties of the contact function, which is defined
as the separation distance at which two particles of given
orientations are in contact. For ellipses the contact function is
always analytical, but it can be nonanalytical, i.e., piecewise-
continuous, for rectangles and spherocylinders depending on
the orientations of the particles.

The main aim of this study is to check this effect
numerically, using recent algorithms that allow generating
strictly saturated RSA packings [8,9]. Besides ellipses, rectan-
gles, and spherocylinders, packings built of two-dimensional
dimers are also analyzed to study if there is any difference
for nonconvex shapes. Additionally, the dependence of the
packing fraction on the anisotropy of particles that build the
packing and the scaling of the number of RSA iterations
needed to generate a saturated packing with the size of the
packing are studied. For spherically symmetric particles this
scaling is governed by the same parameter as the kinetics of
packing growth [22].

II. MODEL

Random packings of ellipses, rectangles, spherocylinders,
and dimers (see Fig. 1) were generated using algorithms
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FIG. 1. Four types of shapes used for RSA packing generation.
All the shapes were characterized by their anisotropy x which is
defined as width-to-height ratio. Note that a dimer, which is built
of two identical disks (left bottom panel), is equivalent to the smooth
shape in the right bottom panel.

for saturated packing generation [8,9,11]. These algorithms
trace regions where subsequent shapes can be added. Note
that each figure placed on a line blocks some area around it
because placing there the center of the next shape will cause
intersection. The size of this area varies with the orientation of
the next figure. The algorithms trace these regions and when
they fill the whole line for any orientation of the shape that
can be added to the packing then the packing is saturated.
This approach was first used for generation of saturated RSA
packings built of spherically symmetric figures [6,23,24] and
further was extended to some anisotropic shapes like ellipses
and spherocylinders [8], rectangles [9], and dimers [11].

Centers of shapes were placed on a one-dimensional line
segment. Typically, the length of this line segment was L =
106, but for spherocylinders and dimers different sizes L ∈
[102, 107] were also used. Periodic boundary conditions were
used to minimize finite-size effects [25]. Each shape had a
unit surface area. It is worth noting that this assumption is one
of many other possibilities of comparing results obtained for
shapes with different anisotropies. For example, in the study
of Chaikin et al., different ellipses had the same length of short
axis [26]. Simulations were performed for width-to-height
ratios x < 3 for ellipses, rectangles, and spherocylinders.
For dimers the highest studied anisotropy is x = 2.4. Here,
considering their smooth version, it ceases to be connected
for x > 1 + √

3. However, the equivalence between two disks
and smoothed dimers breaks already for x � 1 + √

2, because
there it becomes possible to arrange nonintersecting disks in
a way that they correspond to intersecting dimers. For each
particular shape and the packing size L, 100 independent
saturated random packings were generated and analyzed to
determine the mean saturated packing fraction and the kinetics
of packing growth. In particular:

θ = 1

100

100∑
i=1

θi

σ (θ ) = 1

100

[
100∑
i=1

(θ − θi )
2

] 1
2

, (2)

FIG. 2. Fragments of illustrative saturated random packings of
ellipses, spherocylinders, rectangles, and dimers. The width-to-
height ratio for all of these shapes is x = 2.0.

where θi is the coverage of ith packing, θ is the mean
coverage, and σ (θ ) is its standard deviation that estimates its
error. The number of packings used in these calculations guar-
antees that the statistical error of studied properties will be
negligible. To compare results for differently sized packings,
the number of iterations n was measured using dimensionless
time units,

t = n

L
. (3)

III. RESULTS AND DISCUSSION

Fragments of illustrative packings are shown in Fig. 2.

A. Mean saturated packing fraction

In contrast to the case where shape and packing dimen-
sions are the same, here the mean saturated packing fraction
can be defined at least in two ways: using the coverage
ratio θ or using the mean density of shapes N/L. Because
a single, anisotropic object covers a different amount of a
line depending on its orientation, these definitions can lead
to different results and, what is even more interesting, to
different conclusions—see Fig. 3.

For x = 1, in the cases of ellipses and spherocylinders
the coverage ratio should be equal to Rényi car parking
constant θ = 0.7475979 . . . [27]. Here numerical simulation
gives θ (1.0) = 0.747573 ± 0.000022, which agrees with the-
oretical predictions within slightly more than one standard
deviation error range. For squares this value is a little smaller,
θ (1.0) = 0.734679 ± 0.000021, which seems counterintu-
itive. In contrast to disks, the case of squares corresponds
to packing of variable size segments on a one-dimensional
line, and such shapes typically form denser packings [28,29].
However, here the space for placing another object can be
blocked due to crossing in the additional (in this case the
second) dimension, which was not the case in already studied
RSA of multidispersive shapes.

For growing anisotropy the coverage ratio increases and
reaches its maximum for moderate width-to-height ratio x.
This is typical for a packing built of anisotropic shapes
[14,15,17,18]. Here the highest observed coverage ratios
are θ (1.5) = 0.775380 ± 0.000019 for ellipses, θ (1.5) =
0.781249 ± 0.000020 for spherocylinders, and θ (1.3) =
0.749575 ± 0.000016 for rectangles. Results for dimers were
not included in this discussion, because of the equivalence of
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FIG. 3. The dependence of the mean coverage ratio θ (a) and the mean density of shapes (b) on the width-to-height ratio x for studied
shapes. Dots are numerical data obtained for packing size L = 106 and solid lines are to guide the eye.

different shapes (see Fig. 1), which results in different values
of packing fractions.

Packing density behaves differently. It starts from a lower
value than the coverage ratio, which is a consequence of
the normalization used. Because of the unit surface area, the
diagonal of the disk is 2/

√
π ≈ 1.128 . . . . Therefore, packing

densities for disks are smaller by this factor than the coverage
ratio, which does not depend on the size of the shape. It is
worth noting that for x = 1, packing densities for all studied
shapes are almost equal to each other. With an increase of the
width-to-height ratio, the objects’ density grows monotoni-
cally, which is a consequence of the assumption that all shapes
have the same surface area. Therefore, for larger anisotropy
x, the shapes become thinner and the expected value of their
cross section with the line becomes lower. Thus, more of them
can be placed there. However, this reasoning does not work in
case of dimers, because their height does not decrease as fast
as for other studied shapes. Therefore, here we observe the
maximum density of 0.774962 ± 0.000027 for x = 2.3.

It is worth noting that the mean packing fraction can also
be determined by studying cumulative distribution function:

CDF(θ ) = Prob(θi < θ ), (4)
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FIG. 4. The cumulative distribution function (4) for packings of
different lengths. Dots correspond to numerical data obtained by
studying 100 independent random packings.

where θi is the packing fraction of the ith random packing. For
infinitely large packings the CDF(θ ) is a step function, but for
finite ones it grows continuously from 0 to 1; see Fig. 4. The
mean packing fraction at the limit of infinite packing can be
estimated by finding the crossing of the CDF’s for different
packing sizes. This method is especially useful for studying
RSA on lattices [30–35]. However, in our case, the precision
given by (2) is enough due to quite large size of packings used
in this study.

B. The kinetics of packing growth

Although in general the kinetics of packing fraction growth
and particles density growth is different, here, to be consistent
with the previous theoretical study [21], we will focus on
the second one. We have also checked that for large-enough
t , both kinetics converge to each other; thus, the presented
results should be universal.

Examples of kinetics of the mean density of particles in
the packing are shown in Fig. 5. Besides the fact that the
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FIG. 5. The dependence of the increments of the mean particles’
density on time for ellipses, spherocylinders, rectangles, and dimers
of width-to-height ratio x = 2.0. The inset shows the dependence of
the exponent d from Eq. (1) on the dimensionless time t (3). The
value of parameter d for a given time t was estimated as a best
fit of Eq. (1) to numerical data in the range [10−2t, t]. Ends of the
lines correspond to the time tmin for which the first of 100 generated
packings saturates.
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FIG. 6. The dependence of the exponent d near saturation on
the width-to-height ratio x for ellipses, rectangles, spherocylinders,
and dimers. Dashed lines correspond to d = 1.5 and d = 2 derived
analytically for shapes with analytical and nonanalytical contact
function [21].

kinetics in a log-log scale for high-enough value of t seem to
agree with the power law (1) for all shapes, the more detailed
analysis shows that the slopes of these lines are apparently not
constant—see the inset in Fig. 5. Here we are mainly inter-
ested in the asymptotic value of the parameter d; however, the
accuracy of the power law (1) fitting decreases near saturation
due to poor statistics—there are only very few shapes added to
the packing there, so a single placing event can significantly
affect the result. Additionally, the number of iterations until
a packing becomes saturated is a random variable described
by heavy-tail probability density function [22], so after the
same number of iterations, different packings are not similarly
close to saturation. Therefore, as a final value of the parameter
d the result of fitting in the range [10−3tmin, 10−1tmin] was
used, where tmin is the smallest observed number of iterations
needed to generate saturated packing for the given shape.
The dependence of such exponent d on the anisotropy of the
shape packed is shown in Fig. 6. The results for ellipses and
rectangles are in a good agreement with analytical predictions
[21]. Interesting behavior is observed for spherocylinders and
dimers. For spherocylinders of small anisotropy (x � 1.3) the
RSA kinetics is the same as for ellipses, but for large ones
(x > 2.0) it resembles kinetics of packings built of rectangles.
For medium anisotropies, a continuous transition between
these two limits is observed. A similar smooth transition is
observed for dimers.

To be sure that these results are not affected by the par-
ticular definition of packing growth kinetics, another way of
determining the parameter d at saturation can be used. It is
based on the dependence of the median of the number of
iterations required to reach the saturation on the packing size
[22]. Namely Mt (L) ∼ Ld , where t is the random variable
denoting the number of iterations needed to generate saturated
packing expressed in dimensionless time units, and d is the
same exponent as in (1). The dependence is shown in Figs. 7
and 8.

Exponents d obtained from fitting are 1.486 ± 0.014,
1.581 ± 0.025, 1.852 ± 0.023, and 1.967 ± 0.023 for el-
lipses, dimers, spherocylinders, and rectangles of width-to-
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FIG. 7. The dependence of the median of the number of itera-
tions needed to generate saturated packing on packing size. Dots
correspond to numerical data for shapes of anisotropy x = 2.0 and
solid lines are power fits corresponding to d = 1.486, d = 1.851,
d = 1.852, and d = 1.967 for ellipses, dimers, spherocylinders, and
rectangles, respectively.

height ratio x = 2.0, respectively. These results confirm pre-
vious conclusions and agree with theoretical predictions for
packings built of ellipses and rectangles [21]. However, in
order to check if the continuous character of transition of
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FIG. 8. The dependence of the median of the number of iter-
ations needed to generate saturated packing on packing size for
spherocylinders (a) and dimers (b). Insets show the dependence of
parameter d determined from such power fits on aspect ratio x.
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FIG. 9. The dependence of the mean packing density (a) and the exponent d near saturation (b) on packing size. Dots correspond to
numerical data for shapes of anisotropy x = 2.0. Dashed black lines on the right panel correspond to d = 1.5 and d = 2 derived analytically
for shapes with analytical and nonanalytical contact function [21].

d from 1.5 to 2.0 observed for spherocylinders and dimers
of moderate anisotropy will be preserved for arbitrary large
packings, the dependence of packings properties on packing
size should be examined more carefully.

C. Finite-size effects

As was shown for disks, when considering packing frac-
tion, finite-size effects in RSA packings vanish along with
the oscillations of the density autocorrelation function [25].
Therefore, because the density autocorrelations vanish su-
perexponentially with the distance [36], it is not expected
to observe any finite-size effects for the packings studied.
Figure 9 shows the dependence of the mean measured value
of the shape density and the exponent d near saturation on a
packing size. For smaller packings L � 103, some deviations
of the measured densities can be noticed but it can be rather a
statistical effect due to large uncertainty of the mean density
than a systematic error caused by a finite size of the packing.
Parameter d obtained from fitting Eq. (1) to numerical data
varies more, but in case of packings built of ellipses and rect-
angles it stabilizes around L � 105. The situation is different
for spherocylinders and dimers, where it is clear that at least
for x = 2.0 parameter d increases with packing size.

Detailed analysis of this dependence for other anisotropies
is shown in Fig. 10. The stable value of d is observed
only for quite large anisotropies (x = 3.0), while for smaller
ones, parameter d estimated from (1) after initial decline
seems to slightly grow with packing size. Moreover, for small
anisotropies the rate of this growth is larger for larger x. The
only exception to this behavior is the case of x = 1.1, but
it is possible that in this case the packing is still too small
to observe any growth there. It means that the continuous
transition from d = 1.5 to d = 2.0 can be caused by the
finite size of a packing, and in the limit of infinitely large
system the transition can be discontinuous. Interestingly, for
dimers of small anisotropy and packing sizes L ≈ 105–106,
parameter d is significantly below 1.5, which is not observed
for spherocylinders.

Theoretical arguments also support the explanation of the
transition as a finite-size effect. In the analytical solution of
the growth kinetics [21], it is shown that d is determined by

the analytic properties of the function ψ (z, α, β ) = r(α, z) +
r(z, β ) as z approaches the minimum z∗ of ψ for given
α, β. Here r denotes the contact function and α, β are the
orientations of the particles at the left or right end of the
interval of length z. If ψ is analytic around z∗ as for ellipses,
then d = 3/2, and if it is nonanalytic (piecewise-linear), then
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FIG. 10. Dependence of the parameter d estimated from (1) on
packing size for RSA packings built of spherocylinders (a) and
dimers (b) of several different anisotropies x. Dots are the data
obtained from numerical simulations and solid lines were drawn to
guide the eye. Insets show the dependence of the parameter d on the
anisotropy for packing size L = 107.
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d = 2. However, depending on α, β the behavior around
z∗ can be either analytic or nonanalytic for rectangles and
spherocylinders. This implies that the asymptotic approach
is governed by a superposition of power laws with ∼t−2/3

and ∼t−1/2 such that the true asymptotic scaling ∼t−1/2

requires much larger t to be clearly visible. Translated to the
simulation of saturated packings, L needs to be likewise larger
for rectangles and spherocylinders than for ellipses to exhibit
the correct asymptotic scaling.

Following this argument, the difference in the measured d
values for rectangles and spherocylinders at the same value
of L should be due to the different frequencies at which ana-
lytic or nonanalytic configurations are observed for these two
shapes. To verify this argument, we have uniformly sampled
orientations α, β and determined the relative frequency of
nonanalytic minima z∗ in ψ (see Fig. 11). We see that over the
range of aspect ratios considered the fraction of nonanalytic
minima is >0.4 throughout for rectangles, while it is much
smaller for spherocylinders, increasing monotonically. The
increase in the relative frequency for larger x explains the
transition observed in Fig. 6 for fixed L. Moreover, Fig. 11
also clarifies that for the same x, spherocylinders will need
larger L than rectangles to reveal the true asymptotic scaling,
confirming the observations in Fig. 9 (right).

Figure 10 likewise confirms that d will generally approach
the asymptotic limit for larger L. However, the discrepancy
for x = 1.1 is striking. It might be that for such small aspect

ratios the number of configurations with nonanalytic minima
is simply not sufficient for the overall packing to exhibit the
predicted scaling. From a theoretical perspective, this relates
to the measure of such configurations in the continuous α, β

range, which has not been taken into account in the analysis
in Ref. [21]. Extensions of the theory might thus be needed to
explain the behavior in the regime of small x.

Likewise, the case of dimers is special theoretically, be-
cause the function ψ can exhibit continuously degenerate
minima due to the nonconvex shape. This case is thus not
covered by the results in Ref. [21] and requires further
analysis. The fact that dimers behave overall very similar to
spherocylinders indicates that the effect of the degeneracy
might be small.

IV. SUMMARY

The numerical study of saturated random packings built
of two-dimensional ellipses, spherocylinders, dimers, and
rectangles placed on a one-dimensional line confirms the
analytical results concerning the kinetics of packing growth
for packings built of ellipses and rectangles [21]. The first one
is characterized by a power law (1) with the exponent 3/2,
and the second is governed by the exponent 2. The behavior
of the kinetics of packing growth for packings built of sphero-
cylinders and dimers depends on the shape’s anisotropy. For
small values of the width-to-height ratio, it is the same as for
ellipses, while for large values it is governed by the same
exponent as for packings built of rectangles. For moderate
anisotropies, and finite packing size, a continuous transition
between these two regimes is observed, which can be ex-
plained for spherocylinders based on finite-size arguments. In
contrast to the packing fraction, which quickly approaches its
limiting value, parameter d may vary significantly from its
value for infinitely large packing even for very large systems
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