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Slow coarsening in unstable liquid films under gravity on a disordered substrate
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We study the evolution of unstable liquid films via numerical solutions of the thin-film equation. The film is
placed on a coated substrate with disorder. This is modeled by a random spatial variation of the relative value
of the Hamaker constants for the substrate and coating. The free energy consists of (a) the van der Waals term
for the substrate/coating interactions with the film and (b) a term due to gravity. This free energy admits a
Maxwell double-tangent construction with two coexisting phases, i.e., “thin” and “thick” phases. In the absence
of disorder, the film dewets by true morphological phase separation (MPS), i.e., the elimination of domain walls
between the coexisting phases. The introduction of disorder may result in the trapping of these domain walls, with
a drastic slowdown in growth kinetics. We present detailed numerical results in D = 2 and D = 3 to understand
this slow coarsening, where D is the dimensionality of the liquid-film system.
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I. INTRODUCTION

A homogeneous thin film on a substrate may be sponta-
neously unstable to segregation into thin and thick regions,
depending on the film thickness [1–10]. We stress that the
liquid film does not undergo phase change during this evolu-
tion; i.e., it stays in the liquid phase. A free-energy functional
which admits a double-tangent construction characterizes the
film under the influence of gravity. This segregation has been
termed “true morphological phase separation” (true MPS)
[11,12], owing to the formation of two true equilibrium phases
(thin and thick), unlike dewetting in thin films not influenced
by gravity [13]. In the latter case, dewetting proceeds via
MPS, where the film phase separates into an equilibrium thin
phase and a defect phase whose height diverges to infinity.
The thin and thick phases in true MPS correspond to the
two equilibrium liquid-film heights which are obtained by
the Maxwell double-tangent construction on the free energy
of the liquid-film system (which will be presented shortly).
Therefore, “thin” and “thick” denote the minimum and max-
imum heights which the liquid film can attain during self-
organization.

Two distinct pathways of true MPS have been observed,
namely the “defect pathway” and the “direct pathway”:

(a) The evolution of an unstable film closer to the thin
phase results in the appearance of an equilibrium flat film
and circular droplets [11,12]. The flat film corresponds to the
thin phase. The droplets have a range of thicknesses and are
termed defects. These defects are not at local equilibrium.
Thus, coarsening proceeds at a rapid pace until the droplets
reach the thickness corresponding to the thick phase. Clearly,
there may be a considerable delay in the appearance of the
thicker phase. This pathway has been termed as the defect
pathway [11,12]. The free-energy functional for these thin-
film systems is often asymmetric, and most of the unstable
film thicknesses are closer to the thin phase. Therefore, most
of the films undergoing true MPS follow the defect pathway.

The duration of the defect-coarsening stage depends on the
initial thickness of the film.

For films that are closer to the thick phase, the thick phase
appears first in a “reverse defect pathway.” The evolution is
characterized by a pattern with a percolating thick phase with
circular holes.

(b) Films with initial thickness midway between the equi-
librium phases undergo true MPS through the direct path-
way. Here, both the thin and thick phases appear at ap-
proximately the same time. The coexisting phases coarsen
via an evaporation-condensation mechanism. A bicontinuous
morphology is observed for thin films undergoing true MPS
through the direct pathway.

Disorder, either physical or chemical, is a standard feature
of self-organizing systems. The presence of disorder which
is mobile (annealed) or immobile (quenched) can hinder
pattern formation in some cases [14]. However, in other cases,
disorder may provide a template for the formation of unique
patterns [15,16]. An understanding of the effects of random
disorder is essential for experimentalists, because real-life
substrates are neither smooth nor homogeneous. Many exper-
iments on relatively homogeneous substrates show departure
from the usual pathways for MPS [17]. These observations
suggest the presence of heterogeneous sites, e.g., dust par-
ticles, microcavities, chemical contamination, variation of
oxide layer thickness on silicon, variable chain adsorption,
etc. This results in the formation of localized patches with
surface properties different from those of the surrounding
substrate [18].

For coated substrates, the chances of random disorder
being present on the substrate are higher due to the possibility
of uneven coating or impurities in the coating material. Thus,
it is important to study the effects of random disorder on a
dewetting film.

In earlier work [19], we found the surprising result that
quenched disorder only affects the early stages of MPS—the
late stages of MPS are not affected by disorder. This is because
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disorder sites are unable to effectively trap the continuously
steepening defect boundaries. This result is experimentally
important because it shows that the universal aspects of MPS
kinetics are independent of disorder. In this paper, we turn our
attention to the effects of quenched disorder on the kinetics of
true MPS. The primary narrative of this paper is as follows.
We have seen that the incorporation of gravity terms in the
free energy of a thin film enables existence of two genuine
equilibrium phases (thin and thick). In this case, dewetting
proceeds via the formation and motion of interfaces between
the thin and thick phases, a process which we term as “true
MPS.” This process is analogous to the more extensively
studied problem of spinodal phase separation (SPS) in binary
mixtures [1,11]. Using insights gained from SPS [20–23], we
expect true MPS to be drastically slowed down by interface
trapping at sites of quenched disorder. This paper shows that
the real situation is considerably more subtle due to the highly
asymmetric free energy in the present problem. For true MPS
through the direct pathway, the system establishes interfaces
between equilibrium phases at early times. These are indeed
trapped by disorder, yielding logarithmic coarsening analo-
gous to that in SPS [23]. However, for true MPS through the
defect pathway, there is no formation of equilibrium interfaces
for prolonged time windows, as the film does not have enough
time to saturate to its thick phase. This situation is analogous
to MPS; i.e., the disorder is irrelevant as it cannot trap the ever-
steepening interfaces. Thus, one sees an extended regime of
power-law growth similar to that in the disorder-free system.
An experimentalist can access both the direct and defect
pathways of true MPS by tuning the initial film thickness
vis-à-vis the free energy. Thus, the above predictions can be
tested experimentally.

This paper is organized as follows. In Sec. II, we discuss a
mathematical model of the substrate-film system with random
disorder. We also provide details of our simulation. In Sec. III,
we present detailed results for the kinetics of true MPS with
disorder. We will study growth laws and other statistical
measures characterizing the evolving patterns. In Sec. III A,
we discuss morphological evolution in D = 2 liquid films
with random disorder. In Sec. III B, we describe the effects
of random disorder in D = 3 liquid films. Here, D is the
dimensionality of the liquid-film system. Thus, D = 2 corre-
sponds to a one-dimensional substrate, with the film height
along the perpendicular axis. Similarly, D = 3 corresponds to
a two-dimensional substrate. Clearly, d = D − 1 is the dimen-
sionality of the substrate. Finally, in Sec. IV, we conclude this
paper with a summary and discussion of our results.

II. THIN-FILM MODEL AND SIMULATION DETAILS

The standard thin-film evolution equation is derived by
the application of the lubrication approximation [3] to hy-
drodynamic equations of motion. (The relevant derivation is
provided in the Appendix.) In the lubrication approximation,
the lateral size of the liquid film is much larger than its height.
Let L and h be the sizes of the film in the lateral and vertical
directions, respectively. When the Navier-Stokes equation is
written in terms of h/L, we obtain different terms involving
powers of h/L. In the lubrication approximation, we focus
on the limit h/L � 1. We also consider very low Reynolds

number, which is the ratio of the inertial and viscous shear
forces, i.e., the inertia is negligible compared to the viscosity,
and fluid flow is Stokes flow.

The thin-film equation has been used extensively for stud-
ies of dewetting and MPS in liquid films [1]. It can be written
[13] in a form similar to the Cahn-Hilliard (CH) equation
[24,25] of phase-separation kinetics:

∂

∂t
H ( �X , t ) = �∇ ·

[
M �∇

(
δF

δH

)]
. (1)

The CH equation models phase separation by the
“evaporation-condensation” mechanism, which operates
as follows. We emphasize that the term “evaporation” used
above should not be confused with the evaporation of the
liquid film. Recall that we are only considering situations
where the liquid remains liquid. The chemical potential on the
surface of a smaller droplet of phase 1 (say, the thick phase)
is higher than that on a larger droplet due to the difference
in curvature. Thus, smaller droplets of phase 1 shrink, and
the surplus material is transported through regions rich in the
other phase, say 2 (the thin phase). This material then settles
elsewhere on larger droplets of phase 1. A similar scenario
applies to droplets of phase 2.

The above dynamical equation is written in dimensionless
units, and we will set the length scales and timescales below.
In Eq. (1), H ( �X , t ) is the height of the film at space-point
�X (lying on the substrate) and time t . We will refer to a
film on a substrate of dimensionality d as a D-dimensional
system, where D = d + 1. We study cases with D = 2, 3 or
d = 1, 2. The mobility is height dependent with M(H ) = H3,
corresponding to the no-slip condition of the Stokes flow (see
Appendix). The free-energy functional in Eq. (1) is given by

F {H} =
∫

d�r
[

f (H ) + 1

2
( �∇H )2

]
, (2)

where f (H ) is the local free-energy density and the square-
gradient term represents the interfacial tension.

To set length scales and timescales, let us consider the
dimensional form of the local free energy e(h), where h(�r, τ )
is the dimensional height field at time τ . Consider a liquid
film on a substrate with a coating of thickness d . The substrate
provides a long-range Lifshitz–van der Waals attraction, and
the coating provides a relatively short-range Lifshitz–van der
Waals repulsion [1,11,12]:

e(h) = Acd2
0

h2
+ (As − Ac)d2

0

(h + d )2
+ 1

2
ρgh2. (3)

Here, Ac > 0 is the spreading coefficient of liquid on the
coating in the presence of a bounding fluid, and As < 0 is the
spreading coefficient of liquid on the substrate. The quantity
d0 is the closest distance of approach of the film and is nonzero
to prevent unphysical divergence of the force field as h → 0.
The liquid density is ρ, and g is the acceleration due to
gravity.
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The chemical potential [φ = e′(h)] and the spinodal pa-
rameter [e′′(h)] are

e′(h) = −2As
d2

0

h3

[
1 − B

(1 + d/h)3
+ B

]
+ ρgh, B = Ac

As
,

e′′(h) = 6As
d2

0

h4

[
1 − B

(1 + d/h)4 + B

]
+ ρg. (4)

The characteristic length and timescales are [1]

ξ = h2
0

d0

(
γ

6|As|
)1/2

,

(5)

τ0 = h5
0

d4
0

ηγ

12

(
1

As

)2

,

where h0 is the thickness of the homogeneous film. Here, η is
the viscosity of the liquid film, and γ is the interfacial tension
between the film and the bounding fluid. We also introduce
the conjoining pressure:

φ0 = 6
h2

0

d2
0

|As|. (6)

The dimensionless variables used in Eq. (1) are then
defined as

�X = �r
ξ
, H = h

h0
, t = τ

τ0
. (7)

As stated earlier, the thin film is supported on an apolar
solid substrate with a nanocoating of wettability B = Ac/As <

0, where Ac and As are also known as Hamaker constants
[26] for the coating and substrate, respectively. Then, the
dimensionless free-energy density is obtained from Eq. (3) as

f (H ) = e(h)

φ0
= −1

6

[
1 − B

(H + 
)2
+ B

H2
− GH2

]
. (8)

In Eq. (8), 
 = d/h0 is the dimensionless thickness of the
coating. Further, G = ρgh4

0/(3d2
0 |As|) is the strength of grav-

ity.
The functional derivative of the free energy in Eq. (2)

yields

δF

δH
= f ′(H ) − ∇2H. (9)

We substitute Eqs. (8) and (9) in Eq. (1) to obtain the follow-
ing nonlinear model for the evolution of the coated-apolar-
gravity system:

∂H

∂t
= �∇ ·

{
H3 �∇

[
1

3

(
1 − B

(H + 
)3
+ B

H3
+ GH

)
− ∇2H

]}
.

(10)

The linear stability analysis of Eq. (10) about the initial height
H = 1 (in dimensionless units) shows that the wavelength
corresponding to the most unstable mode is

LM = 4π

[
1 + |B|

(1 + 
)4
− |B| − G

3

]−1/2

. (11)

The growth of the unstable modes, followed by their nonlinear
saturation, results in the formation of two true equilibrium
phases, i.e., thin and thick. Their heights are determined by
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FIG. 1. Schematic diagram of the chemically heterogeneous sub-
strate, i.e., a substrate coated with patches of wettability Bi, i =
1, 2, 3, . . . . The distribution of wettability is random, and the patches
are rectangular with random sizes. Each value of Bi corresponds to an
asymmetric double-well potential with two finite equilibrium phases
H1 and H2 (see Fig. 2).

Maxwell’s double-tangent construction for f (H ), which will
be presented shortly.

The quenched disorder is introduced through random
patches of linear size l and wettability B (see Fig. 1). The
mean values of l and B are lm and Bm. These parameters are
uniformly distributed in the intervals [lm − δl, lm + δl] and
[Bm − δB, Bm + δB], with

δl

lm
= ld ,

δB

|Bm| = Bd . (12)

In Fig. 2, we show typical free-energy plots [ f (H ) versus H]
for 
 = 0.74, 0.32 and different values of B with Bm = −0.1
and δB = 0.025. The points of double tangency determine
the thicknesses of the coexisting phases and are marked on
the free-energy plots. Thus, the substrate is segmented into
patches with nonuniform sizes and wettability constants. This
random disorder is expected to better mimic the experimental
situation than striped, checkerboard, or other patterned hetero-
geneities.

The thin film evolution equation (10) is solved numerically
in D = 2 and D = 3. The initial condition for the simulation
consists of small-amplitude random fluctuations ε, uniformly
distributed in (−0.01, 0.01), about the homogeneous state,
namely H ( �X , 0) = 1 + ε. The small-amplitude fluctuations
in the initial condition mimic thermal fluctuations and are
commonly used in the study of domain growth problems [1].
These are required as the homogeneous state H ( �X , 0) = 1 is
an equilibrium state, though it is unstable. The fluctuations
in our initial conditions are two orders of magnitude smaller
than the average film height and do not affect the lubrication
approximation used in the derivation of the thin-film equation
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FIG. 2. Dimensionless free energy [ f (H ) vs H from Eq. (3)] for
three different values of wettability Bi. (a) In dimensional units, coat-
ing thickness d = 128 nm and initial film thickness h0 = 400 nm, so

 = d/h0 = 0.32. The strength of gravity is G = 0.105. (b) d = 128
nm and h0 = 172 nm, so 
 = 0.74. Further, G = 3.5 × 10−3.

(see the Appendix). The system size in D = 2 simulations is
nLM , where LM is the dominant wavelength for B = Bm (n
ranges from 16 to 8192). The system size in D = 3 simula-
tions is (16LM )2. Periodic boundary conditions are applied
in all directions. A 512-point grid per LM was found to be
sufficient for our numerical study when central differencing
in space (with half-node interpolation) was combined with
Gear’s algorithm for time marching. This algorithm is con-
venient for stiff equations like Eq. (10). The parameters 
,
Bm, and δB were chosen so that the film is always spinodally
unstable at H = 1. The mean patch size lm was taken as f LM ,
where f varied from 1/16 to 16. Thus, the size of the patches
varied from being much smaller than the spinodal length scale
to being much larger than it.

III. DETAILED NUMERICAL RESULTS FOR TRUE MPS
WITH DISORDER

We present results from simulations in both D = 2 and
D = 3 to obtain a better understanding of the effects of
random disorder on true MPS. The D = 3 results provide

a realistic scenario for pattern formation in experiments.
However, D = 2 results enable us to better understand the
kinetics, since these simulations can be carried out for very
large systems and long times. We remark that the effect of
disorder is more pronounced in D = 2 simulations. As the
transport of liquid is restricted to one direction, the domains
may be completely arrested by disorder. On the other hand,
coarsening may continue in D = 3 as diffusion can take place
in multiple directions. Thus, if the droplets can escape the
pinning effect of quenched disorder in D = 2 systems, they
are also able to escape in the corresponding D = 3 systems.

A. Case with D = 2

We first consider the case with D = 2. We will study films
of thickness 400 and 172 nm, placed on a substrate with
coating of thickness d = 128 nm. Thus, the values of 
 =
d/h0 are 0.32 and 0.74, respectively. The patches on the sub-
strate are assigned random values of B. For Bm = −0.1 and
δB = 0.025, the free-energy curves of every possible patch
are characterized by B ∈ [−0.125,−0.075]. For 
 = 0.32,
the free-energy curves are shown in Fig. 2(a). Figure 2(b)
corresponds to 
 = 0.74.

Figures 3 and 4 show the evolution of thin films undergoing
true MPS on a disordered substrate through the direct and
defect pathways, respectively. The disorder profile is shown
at the bottom of the snapshots in Figs. 3 and 4. The 400-nm
film in Fig. 3 is close to the midpoint of the equilibrium
phases—see Fig. 2(a). Thus, the thinner and thicker phases
appear simultaneously from the amplification of initial ran-
dom perturbations. Further, the values of equilibrium phase
thicknesses change with the value of B [see Fig. 2(a)]. Since
each patch is assigned a random value of B, the domains
residing on them will have different equilibrium thicknesses.
In Fig. 3, the coarsening of domains freezes during the late
stages. The equilibrium domains are pinned to their respective
patches. In this case, true MPS is analogous to conventional
SPS [1], where the domains are arrested at the sites of disorder
[20–23].

The 172-nm liquid film in Fig. 4 lies closer to the thin phase
than the thick phase—see Fig. 2(b). Hence, the thick phase ap-
pears only after significant coarsening of the droplets (defects)
that emerge in conjunction with the flat-film phase from the
amplification of initial fluctuations. The bottom panel of Fig. 4
shows that coarsening of the droplets continues unhindered
by disorder until they reach the equilibrium thickness. The
droplets overcome the pinning effects of the disorder and
self-organize until they reach the height of the thick phase.
The pinning due to disorder only manifests when the system
forms domain walls between two coexisting phases. It can be
seen from Fig. 4 that only a few droplets reach equilibrium
thickness in the defect pathway.

The kinetics of MPS can be efficiently characterized by
studying the time variation of the number of local maxima
in the height profile Nm. We exclude bumps (or local maxima)
in the flat-film domains by defining an appropriate cutoff for
the height variable. This quantity is the inverse of the domain
scale, Nm ∼ L(t )−1.

The top panel of Fig. 5 shows Nm versus t for the true MPS
of a 400-nm film on a disordered substrate (cf. Fig. 3) and a
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FIG. 3. True MPS of a 400-nm thin film on a 128-nm coating
in D = 2 through the direct pathway [see Fig. 2(a)]. The top and
bottom panels show the nondimensional thickness (H vs X ) at the
specified nondimensional times. The system size is 8192LM , and
the simulation parameters are Bm = −0.1, δB = 0.05, lm = 256, and
δl = 10. The strength of gravity is G = 0.105.

homogeneous substrate. The early-stage kinetics of true MPS
is similar to that of MPS and is not affected by disorder. This is
apparent from the early-time behavior in Fig. 5(a). However,
Nm becomes constant in the late stages of true MPS with
disorder. The kinetics of true MPS in the 400-nm film without
disorder is also slow and is characterized by a logarithmic
decay. For the analogous problem of SPS on a line, it is known
that late-stage domain growth proceeds logarithmically, i.e.,
L(t ) ∼ ln(t/t0). This is because the domain walls only interact
via their exponentially decaying tails [27]. For the disordered
thin-film system studied here, the domains are clearly arrested
at the disorder sites. The system can only overcome these
disorder barriers via thermal fluctuations, which would appear
as noise in our thin-film equation. In this paper, we focus on
the deterministic model in Eq. (10).

Figure 5(b) plots Nm versus t for the true MPS of a 172-nm
film on a disordered substrate (cf. Fig. 4) and a homogeneous
substrate. Recall that this film undergoes true MPS via the
defect pathway. It is clear from Fig. 5(b) that the kinetics
for both systems is comparable on the timescales of our

0.5

1.0

2.0
(a)

H

t =6.2x10−1

t = 8.9x103

t = 3.3x104

0.5

1.0

3.0

6.0

0 5LM 10LM 15LM

(b)

H

X

t = 4.3x105

t = 1.1x107

t =4.9x1010

FIG. 4. True MPS of a 172-nm thin film on a 128-nm coating
in D = 2 through the defect pathway [see Fig. 2(b)]. The top and
bottom panels show the nondimensional thickness (H vs X ) at the
specified nondimensional times. The system size is 8192LM , and
the simulation parameters are Bm = −0.1, δB = 0.05, lm = 256, and
δl = 10. The strength of gravity is G = 3.5 × 10−3.

simulations. In earlier work [13], we have demonstrated that
defect-driven coarsening obeys the Lifshitz-Slyozov (LS)
growth law: Nm ∼ t−1/3 or L ∼ t1/3. We expect disorder
effects to show up only when both equilibrium phases are
formed and they are separated by genuine domain walls.

In Fig. 6, we show Nm versus t for the true MPS of a
400-nm film on substrates with various disorder strengths
[see Fig. 6(a)] and patch sizes [see Fig. 6(b)]. The change
in kinetics is comparatively small to variation of the disorder
strength. However, it is clear that domains get arrested at
smaller length scales for larger disorder amplitude [Fig. 6(a)].
The effect of patch sizes is more significant [see Fig. 6(b)].
The arrest occurs earlier for smaller patch sizes. Further, the
coarsening is arrested at smaller length scales for smaller
patch sizes.

For self-organizing processes like true MPS, the driving
force is the minimization of free energy of the system. The
free energy F in Eq. (2) is the sum of the excess free energy
Fe and the interfacial free energy Fi. Figure 7 shows F versus
t for the 400-nm film (top panel) and the 172-nm film (bottom
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FIG. 5. Variation of number density of local maxima for the 400-
nm film in Fig. 3 (top panel) and the 172-nm film in Fig. 4 (bottom
panel). For comparison, we also show Nm vs t for the films on a
homogeneous substrate.

panel) for systems with and without disorder. The sudden
drop in the total free energy for the 400-nm film is due to
the simultaneous appearance of the two equilibrium phases.
Before this time, the F values are comparable for both cases.
The system without disorder proceeds slowly with logarithmic
coarsening of domains. However, for the 400-nm film with
disorder, F becomes constant with time, indicating that the
system has reached a metastable state.

For the 172-nm film in Fig. 7(b), there is no significant
difference between the cases with and without disorder on
the timescales of our simulations. As we have emphasized
earlier, defects do not undergo trapping by disorder sites. It
is evident that the coarsening of domains (until they reach the
equilibrium thickness) has a greater effect on lowering the free
energy than arrest by the disorder.

B. Case with D = 3

The same methodology for introducing disorder has also
been applied for D = 3 simulations. However, both sides of
a patch are taken as independent random variables, i.e., each
patch is rectangular (see Fig. 1). Figures 8 and 9 show the

102

103

104

(a)

N
m

δB = 0.010
δB = 0.025
δB = 0.050

10

102

103

104

10−2 104 108 1012

(b)

N
m

t

lm = 512
lm = 256
lm = 128

FIG. 6. Variation of number density of local maxima in D = 2
for (a) different strengths of disorder and (b) different patch sizes.
The film thickness is 400 nm and G = 0.105. The system size is
8192LM , and the simulation parameters are (a) Bm = −0.1, lm = 256,
δl = 32 and (b) Bm = −0.1, δB = 0.01, δl = 8.

morphological evolution during true MPS of 400-nm (direct
pathway) and 172-nm (defect pathway) films, respectively.
The left-hand panels show the D = 3 snapshots, and the right-
hand panels present the top view. Both the size and strength of
the patches are random. (The parameters are provided in the
figure caption.) Hence, some patches are more wettable than
others. The chemical potential of the more wettable patches is
lower. The droplets first appear on these and may also assume
their shapes.

The 400-nm film undergoes true MPS through the direct
pathway. Hence, both the equilibrium phases appear almost
simultaneously. Then, coarsening becomes very slow, as ev-
ident from Figs. 8(e)–8(f). This phenomenon can be under-
stood by recalling that each patch has its own free energy
and chemical potential. Droplets are formed on more wettable
patches. If these are surrounded by less wettable patches,
further coarsening would mean an increase in the excess free
energy of the system. As long as the decrease in interface
leads to lowering of total free energy, coarsening will occur,
but not thereafter. This leads to the pinning of the domains
by the disorder. Thus, incoherent and odd-shaped structures
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FIG. 7. Variation of free energy with time for the 400-nm film
in Fig. 3 (top panel) and the 172-nm film in Fig. 4 (bottom panel).
For comparison, we also show the free energy for the films on a
homogeneous substrate.

are formed which do not closely resemble the patterns of true
MPS in thin film systems without disorder.

The 172-nm film shown in Fig. 9 undergoes true MPS
through the defect pathway. Regardless of disorder, the coars-
ening of domains continues until the droplets reach the thick-
ness corresponding to the thicker equilibrium phase. In the
process, they overcome the disorder and retain their identity
as individual droplets, instead of becoming incoherent struc-
tures.

As before, the minimization of free energy plays an im-
portant role in the self-organization of this thin-film system.
Figure 10 shows the variation of F versus t (top panel) and
entropy S versus t (bottom panel) for the 400- and 172-nm
films. The configurational entropy is defined as a functional
of the height field:

S{H} = −
∫

d �X H ( �X , t ) ln H ( �X , t ). (13)

For the 400-nm film, F and S become constant during the
late stages, showing that the coarsening has been arrested.
For the 172-nm film, F and S continue to decrease over our
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FIG. 8. Pattern formation during true MPS of a 400-nm film
on a disordered substrate in D = 3. The frames (a)–(c) show the
lateral view, and frames (d)–(f) show the top view. The system size
is (16LM )2. The simulation parameters are Bm = −0.1, δB = 0.05,
lm = 16, δl = 4, and G = 0.105.

simulation time window, showing that the coarsening defects
have overcome the pinning effects of the disorder.

Next, we discuss some statistical measures to character-
ize domain growth morphologies. A widely used statisti-
cal measure for probing the morphology is the correlation
function [1]:

C(�r, t ) = 〈H ( �R, t )H ( �R + �r, t )〉 − 〈H ( �R, t )〉〈H ( �R + �r, t )〉
= 〈δH ( �R, t )δH ( �R + �r, t )〉, (14)

where the angular brackets denote an averaging over indepen-
dent runs with distinct initial conditions and disorder configu-
rations. An equivalent measure, which is experimentally more
relevant, is the structure factor, which is the Fourier transform
of C(�r, t ) [1]:

S(�k, t ) = 〈δH (�k, t )δH (−�k, t )〉 =
∫

d�r ei�k.�r C(�r, t ). (15)
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FIG. 9. Pattern formation during true MPS of a 172-nm film on
a disordered substrate in D = 3. The frames (a)–(c) show the lateral
view of the system, and frames (d)–(f) show the top view. The system
size is (16LM )2. The simulation parameters are Bm = −0.1, δB =
0.05, lm = 16, δl = 4, and G = 3.5 × 10−3.

Note that the structure factor is measured directly in scattering
experiments, e.g., neutrons, light, x rays, etc.

In the late stages of evolution, when the initial fluctuations
have been relaxed, there is only one time-dependent length
scale L(t ) in the emerging pattern. The domain morphology
is independent of time when scaled by L(t ); i.e., the system
shows dynamical scaling. In that case, C(�r, t ) and S(�k, t ) have
the scaling forms [1]

C(�r, t ) = C(r, t ) = f
( r

L

)
,

S(�k, t ) = S(k, t ) = Ld g(kL). (16)

Here, we have assumed that the patterns are isotropic, and d
denotes the substrate dimensionality.

Now we calculate the characteristic length scale L(t ).
There are several methods of defining this quantity, but they
are all equivalent (up to prefactors) in the scaling regime. In
Sec. III A, we used the inverse defect density to define the

−5500
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−25000

−20000

−15000

−10000

−5000

 0
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(b)

S

t

172nm
400nm

FIG. 10. (a) Variation of free energy during true MPS of D = 3
films for the pattern dynamics shown in Figs. 8 and 9. (b) Analogous
to panel (a), but for the entropy.

length scale. Here, we obtain L(t ) as the inverse of the first
moment of S(k, t ):

L = 〈k〉−1, (17)

where

〈k〉 =
∫ ∞

0 kS(k, t )dk∫ ∞
0 S(k, t )dk

. (18)

In Fig. 11, we demonstrate the dynamical scaling of the
structure factor by superposing data for S(k, t )L−2 versus
kL from three different times. In Fig. 11(a), we plot data
for the 400-nm film, whose evolution is shown in Fig. 8.
In this case, the structure factor data hardly changes as the
evolution is approximately frozen over these timescales due
to the trapping of interfaces by disorder sites. The structure
factor tail is consistent with the Porod law, S(k, t ) ∼ k−D,
which characterizes scattering from sharp interfaces [1]. In
Fig. 11(b), we plot data for the 172-nm film, whose evolu-
tion is shown in Fig. 9. This film is undergoing true MPS
via the defect pathway. The defects are not trapped by the
disorder sites, and pattern dynamics is unaffected over the
timescales of our simulation. At early times, the structure
factor does not show a clear Porod tail as the defects consist of
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FIG. 11. Scaling plot of structure factors for the evolution shown
in (a) Fig. 8 and (b) Fig. 9. The length scale L is obtained as the
inverse of the first moment of the structure factor. The line of slope
−3 denotes the Porod law, S(k, t ) ∼ k−D, which is characteristic of
scattering from sharp interfaces.

ever-steepening walls. At late times, the system begins to
establish stable interfaces (see Fig. 9). Thus, the Porod tail
is recovered in the asymptotic regime.

In Fig. 12, we present data for L(t ) versus t on a log-log
plot. In Fig. 12(a), we show data for the direct pathway
followed by the 400-nm film. The length scale grows for a
while and then saturates due to trapping of the domain walls.
The data in Fig. 12(b) correspond to the defect pathway taken
by the 172-nm film. In this case, there is no trapping due to
disorder and defects coarsen via the LS growth law, L(t ) ∼
t1/3, over the timescale of our simulation. In Fig. 12(b), we ex-
pect disorder effects to manifest themselves only subsequent
to the formation of genuine domain walls between coexisting
equilibrium phases.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results. We have studied the usual kinetic model of
dewetting in liquid films on a coated substrate. The relevant
free energy contains the standard substrate-film and coating-
film interaction terms in conjunction with a gravity term,
which is important in experimental situations. We also con-
sider a disordered substrate, which is comprised of random-
sized patches with inhomogeneous values of the wettability,
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L(
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1/3

t

t 2.36×1069×1053×1052.5×104

6.27×1065×1051×104 2×106

FIG. 12. Variation of length scale for the evolution shown in
(a) Fig. 8 and (b) Fig. 9. The line of slope 1/3 denotes the Lifshitz-
Slyozov growth law, L(t ) ∼ t1/3.

i.e., the ratio of Hamaker constants of the substrate and
coating.

In the absence of gravity, our earlier studies [28] have
shown that the film undergoes morphological phase separation
(MPS). In MPS, the film segregates into a thin equilibrium
phase and droplets whose thickness continues to grow. This
may be understood as a consequence of the fact that the
Maxwell double-tangent construction locates the second equi-
librium phase at height H = ∞. The presence of gravity
dramatically changes this scenario and results in the existence
of two equilibrium phases – a thin phase at H1 and a thick
phase at H2. In the case with gravity, coarsening is driven by
the desire of the system to reduce interfacial area between the
coexisting equilibrium phases. We refer to this as true MPS,
in contrast to MPS which is driven by defects between a thin
phase and an ever-steepening droplet phase.

In this paper, we study how true MPS is affected by
the presence of quenched disorder, which is experimentally
inevitable. Our numerical studies uncover two scenarios for
true MPS. This can be understood in the context of the free
energy density, which is highly asymmetric (see Fig. 2).

(1) First, consider the case where the initial film thickness
H0 = 1 lies approximately midway between the equilibrium
phase H1 and H2 [Fig. 2(a)]. The initial fluctuations are
amplified exponentially and saturated to form H1 and H2

approximately simultaneously. We refer to this as the direct
pathway. In the direct pathway, domain growth is driven
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by genuine domain boundaries which are prone to trapping
by disorder sites. In this case, the initial power-law domain
growth crosses over to a much slower growth. In the absence
of noise, the system freezes into a metastable state. In the
presence of noise, we expect logarithmically slow coarsening
at late times [29,30].

(2) Second, consider the case when H0 = 1 is much closer
to H1 than H2 [Fig. 2(b)]. In this case, the exponential growth
of initial fluctuations is rapidly saturated to H1 for H < H0

but continues to grow for H > H0. In this regime, we ob-
serve defect-driven coarsening similar to that in MPS. We
refer to this scenario as the defect pathway. The defects are
continuously steepening and are not prone to trapping by
disorder sites. Therefore, there can be a prolonged regime
of Lifshitz-Slyozov (LS) growth (L ∼ t1/3), which is not
affected by disorder. The effects of disorder are only seen
once equilibrium interfaces are formed. This onset could be
extremely delayed for a highly asymmetric free energy.

For experimentalists, our study provides the range of initial
film thicknesses which can overcome the trapping effects of
disorder. Since the same equilibrium height can be achieved
for various initial film thicknesses (note that the equilibrium
heights depend on wettability B and coating thickness δ),
our study enables us to pre-determine those film thicknesses
which actually show the disorder effects and those which are
unaffected by the disorder on a given timescale.

The above discussion is not specific to thin films under
gravity. Clearly, it is applicable whenever the free-energy
density is strongly asymmetric and admits two genuine phases
via the Maxwell double-tangent construction. There are sev-
eral experimental routes whereby this could be realized. We
hope the numerical study presented here will motivate further
interest in these problems. It would be particularly welcome
if the proposed scenarios could be subjected to experimental
verification.
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APPENDIX: DERIVATION OF THIN-FILM EQUATION
FROM THE NAVIER-STOKES EQUATION IN THE

LUBRICATION APPROXIMATION

To derive the dynamical equation for thin liquid films, we
consider a D = 3 Newtonian liquid film on a solid substrate
in the (x, y) plane. The local film thickness h(x, y, τ ) is along
the z direction and is a function of time τ . We assume that
the volume of the film is conserved, i.e., there is no loss due
to evaporation. Following Ruckenstein and Jain [3], we derive
the thin-film equation in the long-wavelength (or lubrication)
approximation in which h � L, where L is the lateral size of
the film. The Navier-Stokes (NS) equation for a viscous liquid
with body forces −�∇φ is

ρ

[
∂�v
∂τ

+ (�v · �∇ )�v
]

= −�∇p − �∇φ + η∇2�v. (A1)

Here, �v ≡ (u, v,w) is the velocity at a fixed point in space
and p is the pressure field. The quantities ρ and η are the

density and viscosity, respectively. The x component of the
NS equation is

uτ + uux + vuy + wuz = −Px

ρ
+ η

ρ
(uxx + uyy + uzz ),

P ≡ p + φ. (A2)

Let the typical scale of u be u0. The typical length scale
along the x, y axes is L, and along the z axis it is h. Therefore,
we rescale variables as

x = Lx′, y = Ly′, z = hz′, u = u0u′, v = u0v
′,

w = u0
h

L
w′, τ = τ0τ

′, P = P0P′, (A3)

where τ0 and P0 are the typical scales of time and P. In terms
of the rescaled variables, Eq. (A2) becomes (assuming that h
is a slowly varying function)

u0

τ0
u′

τ ′ + u2
0

L
(u′u′

x′ + v′u′
y′ + w′u′

z′ )

= − P0

ρL
P′

x′ + ηu0

ρh2

(
h2

L2
u′

x′x′ + h2

L2
u′

y′y′ + u′
z′z′

)
. (A4)

Dividing both sides by ηu0ρ/h2, we have

h2

ηρτ0
u′

τ ′ + u0h

ηρ
· h

L
(u′u′

x′ + v′u′
y′ + w′u′

z′ )

= − P0h2

ρ2ηu0L
P′

x′ + 1

ρ2

(
h2

L2
u′

x′x′ + h2

L2
u′

y′y′ + u′
z′z′

)
. (A5)

Further, we assume that (u0h)/(ηρ) = O(1) and h2/(ηρτ0) �
1. Now, applying the lubrication approximation (i.e., h/L �
1) and keeping only dominant terms, we obtain

0 = − P0h2

ηu0L
P′

x′ + u′
z′z′ . (A6)

In terms of our original variables, Eq. (A6) becomes

Px = ηuzz (A7)

Similarly, Py = ηvzz and Pz = 0. Therefore, in the lubrication
approximation, we have

Px = ηuzz, (A8)

Py = ηvzz, (A9)

Pz = 0. (A10)

Further, for incompressible liquids we have

�∇ · �v = ux + vy + wz = 0. (A11)

Let us next consider the boundary conditions for the liquid
film at the substrate (z = 0) and liquid-gas boundary (z = h).
The no-slip boundary condition at the substrate implies that

u = v = w = 0, at z = 0. (A12)

The zero-shear boundary condition at the liquid-gas boundary
implies that

uz = vz = 0, at z = h. (A13)

042801-10



SLOW COARSENING IN UNSTABLE LIQUID FILMS … PHYSICAL REVIEW E 101, 042801 (2020)

The condition of pressure jump at the liquid-gas boundary is

p − P = γ (hxx + hyy), at z = h, (A14)

where γ is the surface tension of the liquid film.
The kinematic condition for the equation of motion now

becomes

hτ + uhx + vhy = w. (A15)

We can obtain the velocity component u from Eq. (A8) after
two integrations as

ηu = Px
z2

2
+ c′z + c′′, (A16)

where Px is assumed to be independent of z. The boundary
conditions at z = 0 and z = h yield the values of c′ and c′′. The
condition u = 0 at z = 0 yields c′′ = 0. The condition uz = 0
at z = h yields c′ = −Pxh. Therefore,

ηu = Pxz
( z

2
− h

)
. (A17)

Similarly,

ηv = Pyz
( z

2
− h

)
. (A18)

The component w is calculated from the incompressibility
condition in Eq. (A11). Using Eqs. (A17) and (A18) for u, v,
we have

ηw = z3

6
(Pxx + Pyy) + z2

2
[(Pxh)x + (Pyh)y] + c′′′, (A19)

where c′′′ is a constant of integration. The condition w = 0 at
z = 0 gives c′′′ = 0. Therefore,

ηw = z3

6
(Pxx + Pyy) + z2

2
[(Pxh)x + (Pyh)y]. (A20)

Substituting u, v,w in Eq. (A15), we obtain

ηhτ − zh(Pxhx + Pyhy)

= − 1
6 z3(Pxx + Pyy) + 1

2 z2h(Pxx + Pyy). (A21)

At the liquid-gas interface (z = h), Eq. (A21) simplifies to

ηhτ − h2(Pxhx + pyhy) = 1
3 h3(Pxx + Pyy). (A22)

Equation (A22) can be rewritten as

∂h

∂τ
= 1

3η
[(h3Px )x + (h3Py)y]

= �∇ ·
[

h3

3η
�∇P

]
≡ �∇ · [M(h) �∇P]. (A23)

Comparing Eq. (A23) with the continuity equation, we
identify the current as �J = −M(h) �∇P, where the mobility
M(h) = h3/(3η) is a function of the order parameter h. Now,
from Eq. (A14) with P = p + φ, we have at z = h:

P = p0 + φ − γ (hxx + hyy). (A24)

Substituting P in Eq. (A23), we get

∂h

∂τ
= �∇ ·

[
h3

3η
�∇(φ − γ∇2h)

]
. (A25)

Recall that φ = e′(h) is the derivative of the local free energy
e(h) resulting from the intermolecular forces and bulk forces.
Equation (A25) describes the spatiotemporal evolution of an
unstable thin liquid film and is known as the thin-film equation
for liquids.
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