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From canyons to valleys: Numerically continuing sticky-hard-sphere clusters
to the landscapes of smoother potentials
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We study the energy landscapes of particles with short-range attractive interactions as the range of the
interactions increases. Starting with the set of local minima for 6 � N � 12 hard spheres that are “sticky,” i.e.,
they interact only when their surfaces are exactly in contact, we use numerical continuation to evolve the local
minima (clusters) as the range of the potential increases, using both the Lennard-Jones and Morse families of
interaction potentials. As the range increases, clusters merge, until at long ranges only one or two clusters are
left. We compare clusters obtained by continuation with different potentials and find that for short and medium
ranges, up to about 30% of particle diameter, the continued clusters are nearly identical, both within and across
families of potentials. For longer ranges, the clusters vary significantly, with more variation between families
of potentials than within a family. We analyze the mechanisms behind the merge events and find that most
rearrangements occur when a pair of nonbonded particles comes within the range of the potential. An exception
occurs for nonharmonic clusters, i.e., those that have a zero eigenvalue in their Hessian, which undergo a more
global rearrangement.
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I. INTRODUCTION

Metastable states of a system of interacting particles deter-
mine much of the system’s behavior, yet they can be difficult
to study because they are sensitive to the interaction potential
between the particles [1–3]. For mesoscale particles such as
colloids, the interaction potential is not always well known
because it depends on a combination of factors that occurs
on a much smaller scale than the particles, such as electro-
static interactions, van der Waals interactions, the presence
of impurities in solution, complex surface interactions created
by tethered polymers, and other physical effects. Experimen-
tally, the interaction potential is hard to measure because
the particles typically interact over a distance much smaller
than their diameters [4]. To model attractions between such
particles, one typically chooses an interaction potential from
a canonical family such as Morse, Lennard-Jones, or square-
well potentials, and chooses parameters to fit aspects of the
experimental data. Yet, even for these families of potentials,
it is not known how sensitive the metastable states are to
the choice of potential or parameters, nor how the metastable
states for different choices are related to each other.

Conveniently, it has been shown that when particles have
short- or even medium-range attractive interactions, aspects
of their phase behavior are insensitive to the exact shape
of the interaction potential, but rather depend on a single
parameter characterizing the potential, i.e., the second virial
coefficient [5]. The same is true of the set of metastable states,
provided the range is short enough [6–8]. This observation
has motivated the study of the energy landscape in the sticky
limit when the range of the potential goes to zero and the
depth goes to infinity, in such a way that the partition function
approaches a δ function at the point of contact [9,10]. In

this limit, the metastable states of a system of N identical
spherical particles are the set of sphere packings that have
the most pairs of spheres in contact. Finding these sticky-
hard-sphere (SHS) clusters is a problem in geometry that has
been addressed using several techniques, both analytical and
numerical [11–14], and the resulting data have given insight
into a variety of physical properties of mesoscale particles
[6,7,15,16]. However, real experimental colloidal systems do
not always lie close enough to the sticky limit for it to be quan-
titatively accurate, and discrepancies from the predictions of
the sticky limit have been observed even for systems as small
as N = 8 particles [6].

We seek to understand how sensitive the metastable states
are to the choice of potential when a system is near, but not
exactly at, the sticky limit. Starting with the sticky-sphere
landscape, which is thought to be the most rugged and to con-
tain the most local minima, we apply numerical continuation
to follow local minima as we slowly increase the range within
a family of potentials for systems of 6 � N � 12 spheres.
This procedure finds most of the local minima for smooth
potentials and, in particular, all the known deep local minima.
We compare clusters that come from the same SHS cluster
using different potentials, and find that clusters are similar
for short ranges, up to about 30% of particle diameter, but
vary significantly for longer ranges. We keep track of bifur-
cation events, where local minima split, merge, or disappear,
and show that most bifurcations involving rearrangements
occur when a pair of nonbonded particles comes within the
range of the potential. An exception is bifurcations involving
nonharmonic SHS clusters (those whose Hessian has a zero
eigenvalue which does not extend into a finite floppy mode),
which undergo a more global rearrangement whose location
cannot be predicted from the starting SHS cluster.
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Our study builds on others that have examined how en-
ergy landscapes vary as the range of the pair potential is
varied. Wales [17] argued that catastrophe theory gives a
quantitative relationship between local minima and the nearest
saddle points when close to a bifurcation, and empirically
showed this relationship holds reasonably well even away
from the bifurcation. Trombach et al. [18] performed a local
optimization in a Lennard-Jones(m, n) potential with varying
m, n (varying range) at fixed energy, using SHS clusters as
an initial condition for the optimization, and found most
of the local minima on the Lennard-Jones landscapes; they
showed the ones not found were from a small set of initial
“seeds.” Trombach et al. [19] followed a similar approach
to study the “kissing problem,” which asks how to arrange
12 spheres on the surface of a central sphere, in a family of
Lennard-Jones potentials. The latter two approaches are the
closest to ours; however, these studies performed a one-step
optimization for each value of range, and hence could only
compare the number of clusters found. In contrast, we vary
the range parameter slowly, using the previously found cluster
as the next initial condition, so we can additionally find and
study bifurcations.

II. METHODS

We begin with a set of SHS clusters that is thought to
be nearly complete, and likely missing only a small num-
ber of high-energy, nonharmonic clusters [14]. This set was
produced using an algorithm to enumerate clusters that starts
with a single rigid cluster, breaks a contact, and follows the
one-dimensional transition path until a new contact is formed,
producing a new rigid cluster. Iterating over all bonds and
then all rigid clusters in the evolving list gives the dataset
[14]. We consider how each of these clusters evolves as we
slowly smooth out the pair potential into either a Morse or
Lennard-Jones potential, given, respectively, by

UM (r) = E (e−2ρ(r−d ) − 2e−ρ(r−d ) ), (1)

ULJ(r) = E

m

[
m

(
d

r

)2m
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(
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]
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Here, r is the interparticle distance, E > 0 is the well depth,
ρ and m are parameters governing the inverse range of the
potential, and d is the equilibrium bond distance; we choose
units so that d = 1.

We perform continuation on the set of SHS clusters as
follows. We set the initial range parameters to be ρ = m = 50,
and choose a corresponding energy parameter E . At each
step of the continuation, we decrease the range parameter by
0.01, which slowly increases the range, and we update E in
a way that we describe momentarily. We then minimize the
potential energy (either UM or ULJ) under the new parameter
values using the conjugate gradient algorithm, with the clus-
ters obtained at the previous step as an initial condition (see
Appendix A for details). These steps are repeated until the
range parameter becomes 1.

Figure 1 illustrates the continuation procedure using a
Morse potential for N = 6. There are two SHS clusters, which
we will call the polytetrahedron and the octahedron. The

FIG. 1. Merging tree for N = 6 particles. The top row of the
tree contains all SHS clusters (left = polytetrahedron; right =
octahedron), and the tree follows unique clusters through the con-
tinuation process. The ordered pair (ρ, m) beneath the final cluster
gives the range values for which the clusters merged for the Morse
and Lennard-Jones potentials, respectively. The polytetrahedron sud-
denly rearranges and becomes identical to the octahedron. The
octahedron remains the same throughout the continuation procedure.
The topology of the trees is the same for each choice of κ and for each
potential. Green (light) arrows denote a smooth transition between
clusters; black arrows indicate a cluster rearranged nonsmoothly.
Bars indicate an interparticle distance less than or equal to 1.

octahedron remains the same throughout the continuation pro-
cess. The polytetrahedron remains nearly the same for range
parameters ≈ρ > 5, with interparticle distances varying by
less than about 3%. As ρ decreases below 5, the central bond
in the polytetrahedron (between the blue and cyan particles)
stretches slightly, and then the outer bonds (pink-yellow and
red-green) stretch slightly too, by about 10%, as the red and
pink particles come slightly closer together. At ρ = 4.09,
the cluster suddenly rearranges, in one optimization step,
when the red and pink particles come together to form the
octahedron. For ρ < 4.09, there is only one Morse cluster,
which is identical to the original octahedron.

During the optimization step, it is possible to reach a
saddle point rather than a local minimum. This possibility is
checked by computing the eigenvalues of a Hessian matrix.
If a negative eigenvalue is found, a reoptimization procedure
is performed in which the critical point is displaced in both
directions along the corresponding eigenvector to obtain new
starting points for the conjugate gradient algorithm. The al-
gorithm could then produce two distinct local minima and we
keep track of any such splitting events.

After constructing these lists of clusters, we compare each
cluster pairwise to determine whether they are unique up to
translations, rotations, and permutations (see Appendix B for
details.) If two clusters are not unique, we say their “parent”
clusters from the previous step have “merged.” For each
family of potentials and each choice of energy parameters,
we construct a bifurcation diagram showing how clusters
merge and split as a function of the range parameter. It is this
bifurcation diagram that we study in the remainder of the text.
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During the continuation, we must decide how to vary the
energy E as a function of the range parameters ρ, m. We do
not believe this choice is terribly important to the results. We
decided to try to keep the equilibrium distributions for systems
along a single continuation path roughly comparable, so we
chose E so that the partition function for a bond between a pair
of particles on a line remains approximately constant. That is,
define the one-dimensional pair partition function to be κ =∫ rc

0 e−βU(·) (r)dr, where rc is a cutoff beyond which U(·) ≈ 0,
and β = (kBT )−1 is the inverse of Boltzmann’s constant times
the temperature. The partition function κ is proportional to
the time that a pair of one-dimensional particles in isolation
spend within a distance of rc of each other, when the system
is in thermal equilibrium. The parameter κ is known as the
sticky parameter because it measures how sticky the particles
are—larger κ means the particles spend more of their time
nearly in contact with each other [10]. It can be shown (see
Appendix C) that the sticky parameter is a linear function
of the second virial coefficient B2, which characterizes the
thermodynamic properties of a system through the Law of
Corresponding States [5].

The sticky parameter can be approximated using Laplace
asymptotics for a potential with a deep and narrow attrac-
tive well as κ = √

2πe−βU(·) (d )/
√

βU ′′
(·)(d ) (see Appendix C

for details). Evaluating this expression for the Morse and
Lennard-Jones potentials and nondimensionalizing the energy
using units of β (so we may set β = 1 in the above formulas)
gives

κM (ρ, E ) =
√

π

Eρ2
eE , κLJ(m, E ) =

√
π

Em2
eE . (3)

Although these expressions are meaningful only for very
short-range potentials, we use them to determine the rela-
tionship between the range parameters ρ, m and the energy
parameter E at all ranges. Notice that both of the parameters
ρ, m measure the inverse range and they appear in the formu-
las above in the same way, so we will use these parameters
interchangeably hereafter.

We perform continuation for each of UM , ULJ, and for
each of three different values of the sticky parameter, κLOW =
23.4, κMED = 49.5, and κHIGH = 100.4. At each step of the
continuation, we solve (3) for E using Newton’s method. This
gently increases E as ρ or m decreases (the range increases).

III. RESULTS

A. Completeness of the set of continued clusters

First we ask whether this continuation procedure produces
all the local minima for a given landscape. We compare the
set of Morse clusters obtained by continuation for ρ = 30 and
ρ = 6 to the local minima found by a basin-hopping technique
in [20]. The number of unique local minima in each set is
given in Table I. Our method finds all local minima in the
basin-hopping dataset for N � 8, but for larger N it misses a
few. Upon inspection, the unmatched clusters are mostly high-
energy clusters: each unmatched cluster has energy greater
than −(3N − 6)E and usually close to −(3N − 7)E , whereas
a typical matched cluster has energy between −(3N − 5)E
and −(3N − 6)E . Figure 2 compares the energy distributions

TABLE I. Number of unique SHS clusters with N particles, CN ,
as well as the number of Morse clusters found through the continua-
tion procedure, |SHS → Mρ |, and the total number of Morse clusters,
|Mρ |, for range parameters ρ = 6, 30. The difference between the
continued and complete sets, �, is also reported. The continued
clusters were generated using sticky parameter κMED. The ∗ indicates
that a heuristic algorithm was used to determine the uniqueness of
the clusters, described in the Appendix.

N CN |SHS → M30| |M30| �30 |SHS → M6| |M6| �6

6 2 2 2 0 2 2 0
7 5 4 4 0 4 4 0
8 13 10 10 0 8 8 0
9 52 30 31 1 17 19 2
10 263 151 170 19 57 61 4
11 1659 866 1127 259 161 170 9
12∗ 11980 5684 8059 2375 489 506 17

of the clusters that we find at ρ = 30 and the basin-hopping
data. A smaller fraction of clusters is missing at longer range:
at ρ = 30, the method missed 11% and 23% for N = 10, 11,
respectively, whereas for ρ = 6, the method missed 6.5%
and 5.3%, respectively. The continuation procedure did not
find any structures that were not present in the basin-hopping
dataset.

Our results are comparable to those of Trombach et al.
[18], who computed Lennard-Jones clusters with m = 6, E =
1 (κ = 0.8) by performing a one-step optimization from a
SHS cluster. For N = 10, 11, their method failed to find 2/64
(3.1%) and 5/170 (2.9%) for N = 10, 11, respectively, i.e.,
slightly smaller numbers than ours. They also found that most
missing clusters were high energy.

If missing clusters are high energy, this suggests that
as the range increases, local minima are created on the
flat, higher-energy parts of the sticky-sphere landscape, from

FIG. 2. Histogram of the cluster energies Ecl scaled by the well
depth, E , for N = 10 and N = 11. We compare the energies of the
clusters found at ρ = 30 for the Morse potential with κ = κMED

using continuation, against the set of all known clusters. Most of the
clusters that are missed using continuation are high energy.
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FIG. 3. (a) Potential energy of all clusters as a function of
ln(ρ ) for N = (6, 7, 8) from top to bottom, respectively, and (b) the
average symmetry number of all N � 9 clusters as a function of
ln(ρ ), as well as a scatter plot of the change in symmetry number
for each individual cluster as a function of ln(ρ ). Negative values for
the scatter plot mean a cluster’s symmetry decreased when it merged.
The clusters used for these calculations were generated using the
Morse potential and κ = κMED.

configurations corresponding to floppy clusters with one or
more internal degrees of freedom. Such creation of local
minima cannot be detected by our procedure. Because we
obtain better agreement at longer ranges, we hypothesize that
these high-energy local minima disappear at larger ranges.
Typically, one is interested in low-energy minima, so we
feel confident using our dataset going forward to understand
bifurcations in the low-energy parts of the landscape.

As a brief application of our nearly complete data, we
show how statistical and geometric properties of the clusters
evolve as a function of the range. Figure 3 shows how the
Morse potential energy and symmetry number (order of the
point group) vary with range. The average potential energy
decreases as the range of the potential increases, presumably
because particles can interact attractively with neighbors that
are farther away. The average symmetry number increases
as the range increases: clusters for longer-ranged potentials
are more symmetric, on average. Interestingly, the symmetry
number does not always increase monotonically following
a particular cluster; occasionally a cluster acquires lower
symmetry as the range increases.

B. Visualizing bifurcations in the energy landscape

Next we examine bifurcations in the energy landscape
and compare bifurcation diagrams for different potentials
and parameters. There are two kinds of bifurcations that we
can detect: merging events, when two or more local minima
become the same cluster (like when the polytetrahedron and
octahedron merge in Fig. 1), and splitting events, when one
local minimum splits into two or more.

We find many merging events as the range parameter
decreases. Interestingly, we find no nonisomorphic splitting
events. Splitting events are possible when a cluster hits a
saddle point in the optimization. This only happened when we
tracked nonharmonic clusters, the smallest of which occurs
at N = 9. These clusters hit a saddle point initially, and then
continued to hit saddle points every so often until ≈ρ < 30.
However, every time we hit a saddle point and searched both
directions of the negative eigenvector, we always found two
local minima that were the same up to a rigid rotation or

FIG. 4. Merging tree for N = 7, with Morse clusters plotted
at nodes of the tree. The top row of the tree contains all SHS
clusters and the tree follows unique Morse structures through the
continuation process. The topology of the trees is the same for each
choice of κ and for each potential. The ordered pairs (ρ, m) beneath
each cluster give the range value for which the merge happened
for Morse and Lennard-Jones potentials, respectively. Green (light)
arrows denote a smooth transition between clusters; black arrows
indicate a cluster rearranged nonsmoothly. Bars indicate an interpar-
ticle distance less than or equal to 1.

a permutation of the particle labels, and hence, which are
identified as the same cluster. This result was unexpected—
our original hypothesis was that nonharmonic clusters would
lead to nontrivial splitting events—and we do not have an
explanation for why we see none.

Because we find only merging events, our data can be rep-
resented as a graph with a tree structure. The top row contains
all SHS clusters, and clusters which merge are connected at
a branch in the tree, with a node representing the cluster they
merge into. When two or more clusters merge into one, we
call the clusters before the merge the “parents” and the cluster
just after the merge the “child.”

The simplest merging tree is the one for N = 6 (Fig. 1.)
The topology of the merging tree is the same for all potentials
and all parameter values that we considered. The single merge
event occurs at slightly shorter range for the Morse potential
(ρ = 4.09) than for the Lennard-Jones potential (ρ = 4.07).

For N = 7, the merging trees continue to have the same
topology for all potentials and parameters, while the range
at which the merges occur depends on the potential (Fig. 4.)
Lennard-Jones clusters usually merge at smaller values of the
range parameter (longer range) than Morse clusters, although
for the single merge at large range parameter (ρ = 38.13, m =
38.23), the Lennard-Jones cluster merged first. Similar
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FIG. 5. Merging trees for the Morse potential with N = 9 parti-
cles. The top row of the trees contains all SHS clusters and the trees
follow unique Morse structures through the continuation process.
The black nodes and edges are the same for each κ value. The green
nodes and edges are specific to the κMED = 49.5 tree. The blue nodes
and edges are specific to the κLOW = 23.4 and κHIGH = 100.4 trees,
which are (interestingly) the same. The nonharmonic cluster and its
path are shown in red. Note that only the topology of the trees is
being shown, i.e., the vertical positions of the nodes are not to scale.

observations hold for N = 8 (see Appendix E, Fig. 15): the
trees are all topologically the same, but the ranges where
merges occur differ slightly between the two potentials.

How do the clusters of N = 7 merge? In each merge, there
is always one parent cluster that does not change and one that
rearranges significantly. We speculate on the mechanism of
the more dramatic rearrangement by inspecting the clusters. In
the first merge in Fig. 4, the red and yellow particles of cluster
1 (counting clusters from the left) begin to interact with each
other and pull toward the center of mass, pushing the central
particles apart to form the more symmetric child cluster. This
child cluster has a ring of outer particles that are slightly
farther apart than they were in the smoothly varying parent
SHS cluster, i.e., cluster 2, presumably because spreading
apart the ring allows the central blue and brown particles to
come closer together. The second and third merges are like the
N = 6 merge: clusters 3 and 5 each contain a polytetrahedron,
which suddenly rearranges into an octahedron, a substructure
of cluster 4 that they each merge with. The merges occur at
slightly different ranges; one reason could be that clusters 4
and 5 in the second merge both have six symmetries, so they
are more similar to begin with than clusters 3 and 4 in the
third merge, which have two and six symmetries, respectively.
In the final merge, the square base of the rightmost cluster
absorbs the red particle to become a pentagon. Overall, only
one SHS cluster, i.e., cluster 2, evolves smoothly throughout
the whole continuation process; this cluster happens to be the
one with the most symmetries initially.

For N = 9, the topology of the merging trees varies with
both parameters and potential. The Morse trees are identical
for short range, but not for long range (Fig. 5). The first
difference occurs at ρ = 3, where a single cluster merges
with two distinct clusters depending on the value of κ . The
SHS cluster as well as these two continuation possibilities
are shown in Fig. 6. The SHS parent cluster is built from
cluster 1 of N = 7 by adding two extra particles, red and pink,
along nonadjacent edges of the pentagon. The leftmost child
cluster looks similar and can be formed by pulling the red

FIG. 6. The SHS cluster 10 for N = 9 (top), as well as the two
possible results of the continuation procedure at ρ = 3 for the Morse
potential. Choosing κMED = 49.5 results in the green (right) path,
while choosing κLOW = 23.4 and κHIGH = 100.4 results in the blue
(left) path, consistent with the coloring in Fig. 5.

and pink particles toward the center of mass, close enough to
bond. The rightmost child cluster is quite different, containing
an octahedron fragment that the others do not. In addition
to the red and pink particles being pulled closer together in
this cluster, the dark-purple particle seems to get pushed away
from the center of the cluster. This child cluster is the only
remaining cluster when the range becomes 1, and has lower
energy than the leftmost child cluster. We are not sure why
the sticky parameter affects the result in this way or if there
is physical intuition behind it. One possibility is that slight
perturbations in the potential energy caused the optimization
algorithm to find a deeper minimum.

For N = 10, 11, merging trees continue to depend on the
sticky parameter and potential, although the upper portions
of the trees are still independent of parameters. For both
potentials, the trees are exactly the same for ρ > 32 and
ρ > 40, respectively, though the differences for ρ > 30, cor-
responding to a range of about 8% of particle diameter, in both
cases are minimal: a difference of between 1 to 10 nodes.

For these larger values of N , it is hard to compare the
topology of the trees quantitatively, so instead we compare
the geometry of the individual clusters. Suppose we wish to
compare two sets of clusters at a given range, where each
set is obtained by performing continuation with different
well-depth parameters E or potential. There is a one-to-one
mapping between the sets of clusters because each cluster
comes from a unique SHS cluster. We use this mapping to
compare clusters: for each pair that comes from the same SHS
cluster, we compute the root-mean-square deviation (RMSD;
see Appendix B for details.) We then sum the RMSD over all
clusters to obtain a metric comparing the sets, which we call
the total RMSD. We compute the total RMSD as a function of
the range parameter ρ.

Figure 7 shows the total RMSD as a function of ρ for
8 � N � 11, for clusters from different potentials or different
κ (different well depths E , since the ranges at which they are
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FIG. 7. Total RMSD between clusters plotted as a function of
ln(ρ ) for (a)–(d) N = 8, 9, 10, 11, respectively. Blue (dashed) curves
compare low and medium values of κ for the Morse potential,
red (dotted) curves compare low and medium values of κ for the
Lennard-Jones potential, and yellow (solid) curves compare Morse
and Lennard Jones with medium κ value. To interpret the magnitude
of these curves, note that a typical RMSD between a pair of distinct
clusters is about 1–2.

compared is the same). Remarkably, the total RMSD is nearly
zero for all comparisons until relatively long ranges, roughly
ρ < 6, or about 35% of particle diameter. This means that
not only are the topologies of the merging trees nearly the
same up to longer ranges, but the geometries of the clusters
themselves are also nearly the same—in other words, for a
fixed range, it does not matter whether you use a Morse or
a Lennard-Jones potential, or what you choose for the well
depth (within the limits we considered); the metastable states
are nearly identical.

For longer ranges, the total RMSD increases the most
for clusters from different potentials: the geometry of the
metastable states is sensitive to the choice of potential.
The total RMSD increases only a little bit for clusters from
the same family of potential but with different well depths;
here the clusters have a much more similar geometry. The
differences could be caused by slight differences in geometry
or by merging at slightly different ranges; we cannot tell the
difference using this metric. Table II shows a more extensive
comparison than is contained in the figure and supports the
observation that there is more variety between families of
potentials than within a single family.

Finally, we return to the observation that for merges at
small N , exactly one parent transitioned smoothly, and we ask
whether this holds true for larger N as well. We consider every
merge event for N � 10 and compute the RMSD between
each cluster just before and just after it merged. For each
group of merging clusters, we find exactly one cluster with
a small RMSD, and all the others have much larger RMSDs

TABLE II. Total RMSD summed over all integer values of ρ,
for different comparisons. Left: Morse potentials compared at low
(L), medium (M), and high (H) values of κ . Middle: Lennard-Jones
potentials, also compared at different values of κ . Right: Morse and
Lennard-Jones clusters compared at the same values of κ .

Morse Lennard-Jones Comparison

N L-M M-H L-H L-M M-H L-H L M H

6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0.7 0.7 0.7
8 0 0 0 0 0 0 4.1 4.1 4.1
9 0.6 0.6 0.1 0.6 0.1 0.6 12 11 12
10 14 13 21 21 22 18 125 128 132
11 67 65 63 74 78 76 702 713 711

(Fig. 8). Therefore, up to N = 10, there is a unique smoothly
varying parent cluster for each merge event. This observation
also suggests that the merges occur as fold bifurcations, in
which a local maximum and local minimum annihilate, leav-
ing no extrema. The annihilated local minimum then jumps
abruptly in configuration space upon optimization past the
bifurcation. The merges do not appear to occur as pitchfork
bifurcations, in which two local minima separated by a local
maximum smoothly coalesce into a single local minimum;
such a bifurcation would give two smoothly varying parents.

C. Predicting merge events

Next we ask whether there is a geometric criterion that gov-
erns when clusters merge. Intuitively, we expect that a cluster
rearranges when the range of the pair potential becomes com-
parable to the distance between a pair of nonbonded particles.

To make this hypothesis quantitative, we define a function
ri(ρ) to be the minimum interparticle distance that is greater

FIG. 8. Scatter plot of RMSD values between a cluster before
and after a merge at a given value of ρ, for all merge events for
N � 10, with a log-log scale. For each group of merging clusters,
the smallest RMSD is unfilled and the rest are filled in with blue.
Each merge group has only one cluster with a small RMSD, with
most being nearly 0, implying that all merge events occur by fold
bifurcations.
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FIG. 9. (a) r13(ρ ), r9(ρ ), the minimum interparticle distance
greater than 1 for clusters 13 and 9 for N = 8. Note that r9(ρ ) varies
smoothly, but r13(ρ ) jumps at ρ = 38, when the clusters merge and
become identical to cluster 9. The corresponding SHS clusters (13
and 9) are plotted in (b) and (c), respectively, in a way that minimizes
the root-mean-square difference between them. The main difference
between the clusters is the distance between particles 1 and 2 and
particles 3 and 4. In cluster 9, r9(ρ ) measures the distance between
particles 1 and 2, and in cluster 13, r13(ρ ) measures the distance
between particles 3 and 4. These clusters merge when particles 3
and 4 get close enough to bond.

than 1, for cluster i at range parameter ρ. Our hypothesis is
that merges depend on ri(ρ) in some way.

To investigate how the function ri(ρ) behaves, we plot
it as a function of ρ in Fig. 9 for two Morse clusters at
N = 8, i.e., clusters 9 and 13 in [14]. The SHS clusters have
r9(∞) = 1.0515, r13(∞) = 1.0887. As ρ decreases, r9(ρ) de-
creases smoothly past ρ = 38, whereas r13(ρ) jumps at ρ =
38, from ri(38+) = 1.07 to ri(38−) ≈ 1.03, when the cluster
rearranges and becomes identical to cluster 9.

This behavior is the same for all merges that occur at ρ =
38 for 7 � N � 10. In each merge, the cluster i that rearranges
has ri(∞) = 1.0887 and the cluster j that varies smoothly has
r j (∞) = 1.0515. Just before the merge, the values are also
the same across all merges: ri(38+) ≈ 1.07, r j (38+) ≈ 1.03.
Interestingly, the cluster that transitions smoothly is always
the one that has the largest minimum eigenvalue in the Hessian
at ρ = 50.

One might guess from this data that ri(∞), the minimum
gap in the SHS cluster, directly determines the value ρc at
which a cluster i first rearranges. Unfortunately, the story is
not so simple: among clusters with 7 � N � 10, there are 101
clusters with ri(∞) = 1.0887, with values of ρc ranging from
31.60 to 38.76. To show this nonuniqueness, a scatter plot of
ri(∞) vs ρc is shown in Fig. 14.

What is true is that ri(ρc+), the minimum distance for non-
bonded particles just before the rearrangement, determines ρc.
Figure 10 shows a scatter plot of ρc versus ri(ρc+) for all
clusters i that rearrange, for both potentials. The data are very
well fit by the curve ri(ρc+) = 2.1ρ−1.05

c + 1.03, which we
obtained using nonlinear least squares to fit the data with a
function of the form axb + c. Since the width of the attractive

FIG. 10. The minimum interparticle distance greater than 1 right
before a cluster rearranges, ri(ρc+), vs the value ρc at which it
rearranges for the first time, for both the Morse and Lennard-Jones
potentials for 6 � N � 10. The scatter plot only includes merge
events for clusters that rearrange discontinuously, and such that the
parent SHS clusters are harmonic.

well of the potential scales with ρ as cρ−1 + 1, where c is
a constant, this fit is strong support for the hypothesis that
a cluster’s first rearrangement occurs when the closest non-
contacting pair comes within the range of the pair potential.
The distance of this noncontacting pair can change during the
continuation, which is why the distance in the SHS cluster
does not determine the range at which the cluster rearranges
(it does seem to determine it approximately, since the distance
does not usually change too much during the continuation.
See Appendix D). What is useful about our formula is that it
gives a specific number with which to measure the width of
the potential—it tells us that when the gap between particles
is closer than 2.1/ρ, their interaction starts to matter.

This formula does not hold for the smoothly transitioning
parents, which comprise about 1/3 of the clusters and initially
merge without rearranging. If we applied the formula to these
clusters anyway, approximating ρi(ρc+) ≈ ρi(∞), it would
falsely predict a large ρc (short range for rearrangement.)
Some of these smoothly transitioning parents do rearrange in
later merges. We tried to find a relationship between ri(ρ) for
these clusters and the value of ρ at which they first rearrange
discontinuously, but we could not find any relationship.

Another exception to this behavior occurs for the nonhar-
monic clusters, which rearrange at much shorter ranges than
predicted by the formula above. Every a nonharmonic SHS
cluster for 9 � N � 11 has ri(∞) ≈ 1.4142, so the formula
above would predict that they merge via rearrangement at
ρc ≈ 5; using actual distances when they rearrange, which are
closer to ri(ρc) ≈ 1.3, gives ρc ≈ 7. However, most nonhar-
monic clusters undergo a large rearrangement at ρc ≈ 15–20,
well before the minimum gap is within the range of the
potential.

This suggests that nonharmonic clusters rearrange by a
more global mechanism. To explore this mechanism, recall
that nonharmonic clusters reach saddle points during the mini-
mization for larger values of ρ and a reoptimization procedure
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FIG. 11. Plot of the minimum eigenvalue of the Hessian of the
Morse potential as a function of ρ for the N = 9 nonharmonic cluster.
Plots of the SHS cluster taken from [8] are shown as well: the left plot
shows particles with unit diameter, and the right plot has arrows on
the sphere centers showing the zero mode of the Hessian.

is performed. The result of the reoptimization is a cluster
that is structurally very similar to the starting nonharmonic
cluster, with a nonzero but very small minimum eigenvalue.
The cluster stays close to this configuration until ρ ≈ 15–20,
when it rearranges and merges with harmonic clusters. As
an example, Fig. 11 plots the minimum eigenvalue in the
Hessian of the energy for the N = 9 nonharmonic cluster.
As ρ decreases, the minimum eigenvalue slowly increases
from 0 until a jump occurs near ρ = 17, at which point the
cluster merges with a harmonic cluster. Similar behavior is
exhibited for all 9 � N � 11 nonharmonic clusters except for
4 (of 35) nonharmonic clusters at N = 11: they are nearly
constant, with a small minimum eigenvalue, until they rapidly
rearrange at ρ ≈ 15–20. The exceptions at N = 11 had a
minimum eigenvalue that moved away from zero before the
cluster merged.

We examine the nonharmonic cluster 6 for N = 10 in
detail. This cluster, as well as most others, has a planar or near
planar set of six particles that attach to each other in a ring and
to a seventh central particle. This cluster stays nearly the same
until ρ ≈ 30, when the particles on the outer ring begin to

FIG. 13. SHS clusters (a) 34 and (b) 58, for N = 10. When a bar
is added to cluster 34 between particles 5 and 8, i.e., the two closest
nonbonded particles, it has the same adjacency matrix as cluster 58.
However, while these clusters both merge at ρ = 38, they do not
merge together.

separate. This outer ring then begins to be pulled downward
until ρ ≈ 17, where the cluster rearranges and merges with
another cluster. Various stages of this process are shown in
Fig. 12. This general rearrangement mechanism occurred for
most of the nonharmonic clusters.

Despite being able to often predict when a cluster will
merge based on its geometry, we have not found a way to
predict which clusters will merge together. One idea was to
compute an adjacency matrix for each cluster representing
the pairs of particles whose distances are comparable to the
minimum distance between nonbonded particles, and then
to compare adjacency matrices. This does not work unfortu-
nately; a counterexample is shown in Fig. 13.

IV. CONCLUSION

We used numerical continuation to study the evolution
of sticky-hard-sphere clusters as the range of interaction
increased, for Morse and Lennard-Jones potentials. This pro-
cedure finds most local minima of the smoother energy land-
scapes; the relatively few unmatched clusters were higher-
energy clusters. This suggests that a similar technique could
be used to find deep minima of larger systems, since SHS
clusters with a maximal number of contacts can sometimes be

FIG. 12. Evolution of cluster 6 for N = 10, a nonharmonic cluster, during the continuation process. (a) Starting SHS cluster. Note the near
planar set of particles surrounding particle 10. (b) Morse cluster at ρ = 35. The bonds between the outer ring of particles have been pushed
apart. (c) Morse cluster at ρ = 17. The planar particles have been pulled down below particle 10 now. At this point, the cluster has merged
with another cluster that was not initially nonharmonic. Gray bars represent interparticle distances less than or equal to 1 and blue (dark) bars
represent interparticle distances less than 2.1ρ−1.05 + 1.03.
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found theoretically [21,22], but exploring short-range energy
landscapes numerically is a challenge because the potential
develops very high gradients.

As the range of interaction increased, distinct clusters
merged together, so the total number of unique clusters de-
creased. Interestingly, we found no nontrivial splitting events,
where one cluster split into two unrelated by rotations or
permutations. We analyzed the mechanism behind individ-
ual merge events in details for small clusters. Many larger
clusters contain these smaller clusters as subunits, so these
simple merge events provide insight into how larger clusters
merge.

We found that all merges involved one cluster that varied
smoothly, hence whose structure did not change, while the
other clusters rearranged significantly during the merge. This
suggests that all merges in our data were fold bifurcations.
In addition, we found that the clusters that rearranged did so
when the range of the interaction potential became compa-
rable to the minimum distance between particles that were
not yet bonded. We found a specific formula to measure the
relevant range: when the pairwise distance became about 1 +
2.1/ρ, these clusters rearranged. This formula may be useful
for simulations or experiments that wish to use a threshold
distance for saying particles are bonded.

An exception to this formula occurred for the nonharmonic
clusters, which rearranged by a more global mechanism.

We compared sets of clusters obtained by continuation
for different potentials and different parameters, and found
the corresponding clusters to be nearly identical for short
and medium ranges, i.e., roughly 30% of particle diameter,
but varied quite a lot for longer ranges. There was more
variation when we changed the family of potentials than
when we changed parameters within the same family of
potentials.

Our observations show that for short-range interactions
up to about 8% of particle diameter, the exact choice of
pair potential and parameters has a negligible effect on the
number of accessible ground states and the structure of local
minima on the energy landscape; however, these states do
differ from SHS clusters beyond a range of about 5% (for the
values of N considered.) For longer range potentials, greater
than about 30% of particle diameter, the particular choice of
interaction potential can affect the structure of these states.
An intriguing extension would be to study the dynamics as
the range increases and to find a continuation procedure to
study transition rates and paths between local minima or other
dynamical quantities. Are they also similarly insensitive to the
choice of potential?
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APPENDIX A: OPTIMIZATION ALGORITHM

The conjugate gradient algorithm [23] was used to mini-
mize the potential energy. For N particles, the potential energy
is a function of 3N − 6 position variables. There are six
degrees of freedom corresponding to rigid body translation
and rotations, which are removed by constraining particle 1
to the origin, particle 2 to the x axis, and particle 3 to the x-y
plane. The conjugate gradient algorithm terminates when the
change in the objective function is less than 10−13 and it is
verified that the point is a local minimum via the eigenvalues
of the Hessian. The condition number of the minimization
problem scales with E , so the convergence rate scales like
1 − 1√

E
for E � 1. However, for large enough E , E ∼ ln κ ,

so the convergence rate does not change much with sticky
parameter. This is consistent with what we see in practice.

The conjugate gradient method is unstable from some
starting points and can blow up or take very large steps. This
depends on the value of the sticky parameter, as a larger sticky
parameter corresponds to a deeper well depth, which results
in steeper gradients. A check for instability is performed after
every optimization and if either possibility occurs, we reset
and try one of a variety of methods. The methods are, in order
of application, gradient descent followed by conjugate gradi-
ents, conjugate gradients with resets every 3N − 6 iterations,
swapping two random particle labels among the last N − 3
particles and then applying conjugate gradients, or perturbing
the starting point by a random vector of norm 10−12 and
applying conjugate gradients. If all of these methods fail, the
starting point is logged as the minimum. This usually results
in a point with potential gradient norm 10−7E , instead of
the usual tolerance of 10−13E . The fraction of optimizations
that results in such an error is (5.6, 3.5, 1.5, 0.74, 0.6)% for
6 � N � 10.

FIG. 14. Scatter plot of the minimum distance between non-
bonded particles in a SHS cluster, ri(∞), vs the range value where
the cluster merges, ρc, for all harmonic clusters with 6 � N � 10.
Blue points show clusters which merge smoothly; red points show
clusters which merge by rearranging. The blue curve is fit by
1.03ρ−0.43

c + 0.83, and the red curve is fit by 1.45ρ−0.63
c + 0.94. The

yellow curve shows the fit for ri(ρc+), which sits between the red
and blue curves.
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FIG. 15. The merging tree for a system with N = 8 particles. The top row of the tree contains all SHS clusters and the tree follows unique
Morse clusters through the continuation process. The trees are the same for each choice of κ . The values ρ and m in each node give the value
of the range parameter for which the merge occurred.

When a saddle point is reached (minimum eigenvalue
becomes negative), a reoptimization procedure is applied to
reach a local minimum. This involves displacing along the
eigenvector corresponding to the negative eigenvalue and
reapplying conjugate gradients until a minimum is found.
In some cases, a saddle point with more than one negative
eigenvalue is reached; usually only 2, but occasionally more.
We found that the choice of eigenvector to displace along did
not affect the result of reoptimization, so the eigenvector cor-
responding to the eigenvalue of largest magnitude is chosen
for consistency.

A C + + implementation of this continuation procedure
using DLIB [24] and additional code used (merge detection,
RMSD, etc.) is available on GITHUB [25].

APPENDIX B: TESTING UNIQUENESS

To determine when two clusters are the same, we begin by
checking that they have the same set of interparticle distances.
If so, the Kabsch algorithm [26] is applied to compute an

optimal rotation of one cluster onto the other, and the root-
mean-square deviation is computed as

RMSD =
(

1

N

N∑
i=1

D2
i

)0.5

,

where Di is the Euclidean distance between particle i in cluster
one and cluster two. If this is less than a tolerance of 10−6, we
consider the clusters the same.

If not, we check possible permutations. To do so efficiently,
we begin by computing the moment of inertia tensor, diago-
nalizing it, and using it to rotate each set of particles to the
principal axes. Then we need to realign (permute) the particles
so both clusters have the same configuration. We do this by
solving a minimum cost assignment problem, where the cost
matrix is the Euclidean distance between particle i in cluster
one and particle j in cluster two. We then reapply the first part
of the algorithm.

This still does not account for certain reflectional and
rotational symmetries, so we repeat this procedure for all
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FIG. 16. Cluster images of the major merge events for the N = 8 system, for values of ρ near (a) ρ = 38, (b) ρ = 6, (c) ρ = 4, and
(d) ρ = 2. The parent clusters are SHS clusters. Green (light) arrows indicate smooth transitions.

swaps and sign combinations of (x, y, z) coordinates, i.e.,
48 possibilities. Taking the minimum value among all these
possibilities gives the RMSD.

In the case of 12 particles, this procedure becomes too
slow to compare all pairs of clusters. In this case, we adopt
a heuristic approach where we simply compare a sorted list
of interparticle distances between clusters. This is a necessary
condition for uniqueness but may not be sufficient. Up to N =
11, the heuristic approach gives the same results as comparing
RMSD values, so we are hopeful this extends to N = 12.

APPENDIX C: STICKY PARAMETER

Here we discuss the origin of the sticky parameter κ and its
relation to the second virial coefficient B2. In our numerical
experiments, we seek to vary the range ρ of potentials, U (r),
in our continuation procedure. This leaves a free parameter in
the potential function E , the well depth. Keeping E fixed as
the range varies changes properties of the potential function
at every stage. One such property is how “strong” a bond be-
tween two nearby particles is, which is given by the partition
function

Z =
∫ rc

0
e−βU (r)dr, (C1)

where rc is a cutoff beyond which the pair potential is essen-
tially constant. Thus a natural way to choose E after changing
the range is to pick E such that Z = κ remains constant. To
approximate this integral, we can use the method of Laplace

asymptotics. The potential function has a minimum at r = d ,
such that U ′(d ) = 0, and U ′′(d ) > 0. We expand the poten-
tial function in a second-order Taylor series to get U (r) ≈
U (d ) + 1

2U ′′(d )(r − d )2 near the minimum. The integrand
then becomes a Gaussian, and since it decays very fast away
from the minimum, we may extend the limits of integration to
±∞. Evaluating the Gaussian integral gives us the expression
given for κ in Sec. I,

κ ≈ e−βU (d )
∫ ∞

−∞
e− 1

2 βU ′′(d )(r−d )2
dr =

√
2π

βU ′′(d )
e−βU (d ).

(C2)
We can show that our sticky parameter is related to the

more commonly used second virial coefficient B2. The second
virial coefficient can be expressed as [27]

B2(β ) = −1

2

∫ ∞

0
(e−βU (r) − 1)4πr2dr, (C3)

and appears as the second coefficient in a power-series cor-
rection to the ideal gas law for a given interaction potential.
Again, we can approximate B2 by using Laplace asymptotics
in the same way. We first note that for r � d , U (r) ≈ 0.
Therefore, the term (e−βU (r) − 1) goes to 0 exponentially
fast, contributing nothing to the integral. Near the minimum,
(e−βU (r) − 1) ≈ e−βU (r), and we can proceed as before. We
make a second-order approximation of the potential and eval-
uate the second moment of the Gaussian integral. The final
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result is

B2(β ) ≈ −1

2
e−βU (d )

∫ ∞

−∞
4πr2e− 1

2 βU ′′(d )(r−d )2
dr

= −
[

2π

βU ′′(d )

]3/2

e−βU (d )

= − 2π

βU ′′(d )
κ,

showing B2 is a approximately linear function of the sticky
parameter.

APPENDIX D: PREDICTING MERGE EVENTS
FROM SHS GEOMETRY

We established a relationship between the value of the
range parameter in which a cluster rearranges, ρc, and the min-
imum distance between nonbonded particles just before this
rearrangement, ri(ρc+). Ideally, a one-to-one map between
ρc and ri(∞), coming from the sticky-hard-sphere geometry,
would allow us to predict when any structure would merge.
Figure 14 shows a scatter plot of ri(∞) vs ρc, with smooth
transitioning clusters in blue and rearranging clusters in red.
The curves are fit using nonlinear least squares with the form
axb + c.

Unfortunately, we find that the map is not one to one. There
are many points for which ri(∞) = 1.0887 and ri(∞) = √

2,
but the corresponding ρc values are spread over a large range.
Despite this, ri(∞) does provide us with an approximation of
when clusters will merge. This minimum distance can evolve
differently as a function of cluster geometry, but the variations
are typically small. Hence, if ri(∞) = 1.0887 or ri(∞) = √

2,
you can safely state that the cluster will merge around ρ = 38
and ρ = 6, respectively.

APPENDIX E: N = 8 MERGING TREES

Figure 15 shows the merging tree for N = 8. As for N = 7,
the tree is insensitive to the value of the sticky parameter.
Changing the form of the potential affects the range at which
clusters merge. Figure 16 separates the tree into the four major
merge events, with SHS clusters at the top and green arrows
indicating a smooth transition. In Fig. 16(a), we see that the
N = 7, ρ = 38 mechanism is responsible for this merge. In
Fig. 16(b), the rearranging clusters have an octahedron as
a substructure and the smooth cluster is new, i.e., it does
not contain any N = 6 or N = 7 clusters as substructures. In
Fig. 16(c), all the SHS clusters have a polytetrahedron as a
substructure and they merge with the resulting cluster from
Fig. 16(b). Finally, Fig. 16(d) contains one structure with an
octahedron substructure and a new cluster, which rearrange to
form the final cluster.
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