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Optimal actuation of flagellar magnetic microswimmers
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We present an automated procedure for the design of optimal actuation for flagellar magnetic microswimmers
based on numerical optimization. Using this method, a magnetic actuation method is provided which allows these
devices to swim significantly faster compared to the usual sinusoidal actuation. This leads to a novel swimming
strategy which makes the swimmer perform a three-dimensional figure-eight trajectory. This shows that a faster
propulsion is obtained when the swimmer is allowed to go out of plane. This approach is experimentally validated
on a scaled-up flexible swimmer.
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I. INTRODUCTION

Untethered robotic microswimmers have the potential to
make a serious impact on the development of new promising
therapeutic techniques [1–7]. However, due to their micro-
scopic size, controlling their navigation through fluids inside
the body faces numerous challenges [8,9]. These devices
can take different shapes and designs (helicoidal [3,10,11],
beating flexible tail [12,13], 2-linked structure [14], ciliary
microrobots [15], etc.) and are actuated using multiple meth-
ods like chemical fuel propulsion [16,17], acoustic-based
actuation [18], or external magnetic fields [1,19]. In this
paper, we focus on sperm cell-inspired robotic swimmers
composed of a magnetic head and an elastic tail and actuated
by external magnetic fields [13,20]. As far as we know, the
most commonly used actuation method for these swimmers
is sinusoidal actuation. This consists in applying the super-
position of a static orientating magnetic field parallel to the
desired swimming direction and a perpendicular sinusoidal
field that induces a planar symmetric beating of the tail,
allowing a displacement along the swimming direction [21].
The purpose of this paper is to propose an automatic design
method for the actuation of flexible magnetic microrobots
that optimizes the swimming speed. The aim of this work
is twofold: first, to provide a more efficient alternative to the
commonly used sinusoidal actuation, and, second, to present
an optimal control design method than can be adapted to deal
with more demanding tasks, like swimming in a complex
environment. Our method is based on the resolution of an
optimal control problem under the constraints of an approx-
imate dynamical model of the swimmer’s displacement. In
particular, we focus on computing a magnetic field shape

that maximizes the horizontal swimming speed of these de-
vices. This actuation pattern is experimentally validated on
a scaled-up flexible magnetic swimmer and compared to the
classical sinusoidal actuation. The key for this approach is the
use of a dynamical model that is sufficiently computationally
inexpensive to be used as a constraint for an optimization pro-
cess but still accurate enough to predict the displacement of
a real-life low-Reynolds-number swimmer. For this purpose,
we use a three-dimensional (3D) simplified dynamic model
based on the approximation of the hydrodynamical forces
using resistive force theory, [22,23] and the discretization
of the curvature and elasticity of the tail of the swimmer,
generalizing the planar “N-Link” models of Refs. [24–26].
Using this dynamic model as a constraint, the optimal control
problem is numerically solved with a direct method using the
software ICLOCS [27]. This results in a magnetic actuation
pattern that induces a significantly faster propulsion than the
common sinusoidal actuation. The optimal magnetic field has
two time-varying components which makes the trajectory of
the swimmer nonplanar. In particular, the optimal swimming
strategy is to perform a 3D “figure-eight” trajectory around the
swimming direction. This indicates the importance of going
out of plane in order to maximize the propulsion speed of
flexible swimmers. The optimal actuation is experimentally
validated on a scaled-up flexible magnetic swimmer using a
similar setting as in Ref. [20] and compared to the sinusoidal
field. The horizontal displacement of the experimental swim-
mer is accurately predicted by the dynamic model for both
fields. These results show the usefulness of the simplified
swimmer model for the design of optimal controls that are
usable in experiments.
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FIG. 1. Experimental setup [20]. The three orthogonal
Helmholtz coils generate a homogeneous magnetic field in the
center, where the swimmer has been placed. The swimmer is tracked
using two perpendicular cameras. In the corner: Scaled-up flexible
magnetic swimmer used in the experiments.

II. EXPERIMENTAL SETTING

The flexible swimmer used in experiments consists of
magnetic disk (neodyminum-iron-boron permanent magnet)
with 0.3 mm in height and 0.77 mm in diameter attached to a
silicone tail with 7 mm in length and 1 mm in diameter (see
Fig. 1). The swimmer is immersed in pure glycerol to ensure
low-Reynolds-number conditions (≈ 10−2). It is placed at the
center of three orthogonal Helmholtz coil pairs that generate
the actuating magnetic field. Each pair of coils is driven by
a servoamplifier (Maxon Motor) which outputs a constant
current for a fixed input voltage. Two cameras provide a side
view and a top view of the swimmer, and its position in
3D is tracked in real time using Visp software [28]. More
information on the experimental setting used can be found in
Refs. [20,29].

We consistently use a fixed frame (x, y, z) where the z axis
is vertical and the y axis is along the axis of the side camera.
In what follows, the desired swimming direction will be along
the x axis.

The propulsion of the experimental swimmer is character-
ized by measuring its velocity-frequency response [given by
the dotted line in Fig. (3)] under a magnetic field of the form:

B(t ) = [Bx By sin(2π f t ) 0]T , (1)

where Bx = 2.5 mT and By = 10 mT.

III. MODELING OF THE SWIMMER

A simplified dynamical model of the swimmer is used
to simulate the swimmer’s displacement under a three-
dimensional magnetic field. The hydrodynamic effects on the
swimmer are approximated by resistive force theory [22] and
the shape of the tail is discretized into an articulated chain of
N rigid slender rods, as done in the planar swimmer models
of [24–26].

FIG. 2. Reference and local frames of the discrete-shape model.
The swimmer’s head frame is oriented relative to the reference frame.
For each link i, the corresponding local frame Ri is oriented relative
to Rh.

A. Kinematics of the swimmer

We consider a moving frame Rhead = (Oh, eh
x, eh

y , eh
z ) as-

sociated to the head of the swimmer, where Oh is the center
of the head. The orientation of each link i is represented
by the moving frame Ri = (Oi, ei

x, ei
y, ei

z), where Oi is the
extremity of the ith link. We call Rhead ∈ SO(3) the rotation
matrix that allows the transformation of coordinates from the
fixed reference frame to Rhead. Similarly, the matrix Ri ∈
SO(3), for i = 1 · · · N , denotes the relative rotation matrix that
transforms coordinates from Rhead to Ri. We use the angles
(θx, θy, θz ) resulting from a (Z-X -Y ) rotation sequence to
parametrize Rhead. Since each link is considered to be slender
and axisymmetric, the vectors ei

y and ei
z are only defined up

to one rotation around, and hence we parametrize each matrix
Ri by only two angles (φi

y, φ
i
z ), resulting from a Z-Y rotation

sequence relative to the head frame.
With these notations, the swimmer is described by two sets

of variables: The six position variables: (X ,�), where

X = (xh, yh, zh) ∈ R3 and

� = (θx, θy, θz ) ∈ [0, 2π ]3,
(2)

and the 2N shape variables, denoted by

� = (
φ1

y , φ
1
z , . . . , φ

N
y , φN

z

)
. (3)

The parametrization of the swimmer is shown in Fig. 2.

B. Dynamics of the swimmer

We assume that the swimmer is immersed in an unbounded
domain of a viscous fluid. Due to its scale, we consider that the
swimmer moves at low Reynolds number, i.e., that viscosity
prevails over inertia and thus that the fluid is governed by
Stokes equations. In what follows, the hydrodynamical inter-
actions between the fluid and the swimmer are further simpli-
fied by using the resistive force theory (RFT) framework [22],
where the interactions on the global scale between a slender
Stokesian swimmer and the surrounding fluid are neglected
in favor of the local anisotropic friction of the surface of the
slender body with the nearby fluid. This results in explicit
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expressions of the density of force applied by the fluid to the
swimmer that are linear with respect to the velocities, hence
to (Ẋ , �̇, �̇).

From the integration of the local hydrodynamic force den-
sities on each link, we are able to obtain the expression of
Fh

head and Fh
i , the hydrodynamic drag forces on the head of

the swimmer and on each link i ∈ (1, . . . , N ) respectively.
The expressions for T h

head,P and T h
i,P, the moments of these

forces about any given point P, are similarly derived from
the local drag densities. We consider that the head of the
swimmer is magnetized along the eh

x axis. Denoting by M the
magnetization vector of the head and considering an external
homogeneous time-varying field B(t ), the following torque is
applied to the swimmer:

T mag = M × B(t ). (4)

The acceleration terms in the dynamics are neglected due
to the low-Reynolds-number assumption [30], and, thus, the
balance of forces and torques applied on the swimmer gives:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Fh
head +

N∑
i=1

Fh
i =03

T h
head +

N∑
i=1

T h
i,H = − T mag

, (5)

which leads to six independent equations. In addition to these
equations, the internal contributions of the tail are taken into
account by adding the balance of torque on each subsystem
consisting of the chain formed by the links i to N for i =
(1 · · · N ). These additional 3N equations reduce to 2N non-
trivial equations by taking only the components perpendicular
to the link k when calculating the sum of the torques from k
to N . The elasticity of the tail is discretized by considering
a restoring elastic moment T el

i at each joint Oi that tends to
align each pair (i, i + 1) of adjacent links with each other:

T el
i = kelei

x × ei−1
x . (6)

Thus, the dynamics of the swimmer are described by the
following system of 2N + 6 equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fh
head +

N∑
i=1

Fh
i = 03

T h
head +

N∑
i=1

T h
i,H = −T mag

N∑
i=1

T h
i,1.e

1
y = −T el

1 · e1
y

N∑
i=1

T h
i,1.e

1
z = −T el

1 · e1
z

...

T h
N,N .en

y = −T el
n · en

y

T h
N,N .en

z = −T el
n · en

z

. (7)

Following resistive force theory, the hydrodynamic contri-
butions (left-hand side of the previous system) are linear with

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Simulated mean speed
Observed mean speed

FIG. 3. Experimental (N = 6) and simulated horizontal swim-
ming velocities for the frequency range f = (0 · · · 3 Hz).

respect to the rotational and translational velocities, thus, the
previous system can be rewritten matricially in the form:

Mh(�,�)

⎛
⎝Ẋ

�̇

�̇

⎞
⎠ = B(X ,�,�) , (8)

where Mh(�,�) is a 2N + 6 × 2N + 6 matrix. The left-
hand side of the equation represents the hydrodynamic effects
on the swimmer and the right-hand side B(X ,�,�) is the
magnetic and elastic contributions on the swimmer. We refer
the reader to the Appendix A for the full derivation of the
matrix Mh. The previous equation can be rewritten as a control
system where the dynamics of the swimmer are affine with
respect to the components of the actuating magnetic field
viewed as a control:⎛
⎝Ẋ

�̇

�̇

⎞
⎠ = F0(�,�) + [Bx(t ) By(t ) Bz(t )]

⎡
⎣F1(�,�)

F2(�,�)
F3(�,�)

⎤
⎦, (9)

where the vector fields F0, . . . , F3 are functions of the columns
of (Mh)−1 and of the magnetic and elastic constants.

C. Parameter identification

The hydrodynamic parameters (RFT coefficients) and the
elasticity coefficient of the model are identified by nonlinear
fitting to match the observed velocity-frequency response
curve of the experimental swimmer under sinusoidal actua-
tion. Three links were used for the approximation of the tail.
Figure 3 shows the agreement between the experimental and
simulated frequency responses. The fitted parameter values
are given in Table I.

It is worth noting that using a finer discretization (more
than three) of the tail only marginally improves the fitting
error while adding to the computational cost of the magnetic
field optimization, as it is shown in Fig. 9.

IV. MAGNETIC FIELD OPTIMIZATION

In what follows we focus on finding the time-varying
magnetic field that maximizes the mean horizontal propul-
sion speed of the swimmer under the constraint of a peri-
odic deformation. The admissible controls are of the form
(Bx, By(t ), Bz(t )), where the static orientating field Bx is
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FIG. 4. Actuating magnetic field that maximizes the horizontal
speed of the swimmer. Panels (a) and (b) are respectively the y and z
components of the magnetic field. (c) Shape of the actuating optimal
magnetic field deriving from the optimization process during one
period.

fixed and the two dimensional time-varying actuating field
(By(t ), Bz(t )) is optimized. The bounds on the orientating field
and the time-varying fields are taken to be the same as the
sinusoidal field used in the experiments (Bx = 2.5 mT and
||(By(t ), Bz(t ))|| < 10 mT). The deformation period is chosen
to be the same as the observed optimal period for a sinusoidal
actuation and it is imposed that the swimmer returns in its
initial orientation and position on the y and z axes at the end
of the period. This optimal control problem is numerically
solved with the direct solver ICLOCS [27]. Figure 4 shows
the result of the numerical optimization, where we can see
the y [Fig. 4(a)] and z [Fig. 4(b)] components of the optimal
magnetic field. Interestingly enough, this results in a simple
magnetic field shape, shown in Fig. 4(c), where the actuating
strategy over one deformation period is a partial rotation
(about two thirds of a circle) of the magnetic field followed
by a full rotation in the opposite direction. Repeating this
pattern over time makes the swimmer revolve around the x
axis, drawing a figure eight in the y-z plane. Figure 5 shows
the simulated optimal trajectory of the swimmer compared to
the trajectory under the sinusoidal field. The simulated fields
perform better (mean propulsion speed of 1.45 × 10−3 ms−1)
than the sinusoidal actuation (mean propulsion speed of 1.2 ×
10−3 ms−1).

FIG. 5. Simulated trajectory of the head of the swimmer under
both the optimal and sinusoidal field for 3 s of straight swimming
under both actuation patterns. In the corner, the trajectory in the y-z
plane.

FIG. 6. Simulated and experimental horizontal displacements
of the swimmer actuated by the optimal magnetic field and the
sinusoidal magnetic field for 3 s of straight swimming under both
actuation patterns.

V. EXPERIMENTAL RESULTS

The numerical solution of the optimal control problem
(Fig. 4) is interpolated by its truncated Fourier expansion (first
10 modes) and then implemented in the magnetic generation
system to actuate the swimmer. As predicted by the simula-
tions, the optimal field out-performs the sinusoidal field in
terms of horizontal propulsion speed, as shown in Fig. 6.
Figure 7 shows the 3D trajectory of the experimental swimmer
during one period. Figure 8 shows the deformation pattern
undergone by the swimmer in the two perpendicular planes.
Under optimal actuation, the swimmer reaches a mean hori-
zontal propulsion speed of 1.54 ± 0.3 × 10−3 ms−1 (N = 6).
The mean relative error (∞ norm) between the simulated and
observed x displacement is 0.16(±0.02).

We refer the reader to the supplemental movies [31] for a
side-by-side comparison of the displacements of the swimmer
actuated by the optimal and sinusoidal field.

VI. DISCUSSION

The optimization process exploits two time varying com-
ponents of the field in order to maximize the horizontal speed
of the swimmer, which allows the swimmer to perform a
3D trajectory. This swimming strategy shows the necessity
of allowing flagellar swimmers to go out of plane in order
to swim at a maximal propulsion speed, as illustrated in
Fig. 5 and Fig. 7. The effectiveness of nonplanar actuation has
been corroborated in the literature by studies where nonplanar
helical waves have been shown to induce a faster propulsion
speed for flagellar swimmers. For example, in Ref. [32], the
spermlike swimmer’s swimming speed increases between 1.2

FIG. 7. Trajectory of the experimental swimmer actuated by the
optimal magnetic field given in Fig. 4 during three periods of the
magnetic field.
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FIG. 8. Deformation pattern of the experimental swimmer actu-
ated by the optimal magnetic field and the sinusoidal magnetic field
over one period in two planes. (a) Optimal field, top view; (b) sinu-
soidal field, top view; (c) optimal field, side view; (d) sinusoidal field,
side view. The snapshots of the experimental swimmer are taken at
equal time steps over a period of the actuating fields. We observe (as
expected) no deformation in the side plane for the sinusoidal field.

and 2 times (depending on the viscosity of the fluid) when
switching between a planar swimming induced by sinusoidal
actuation and helical swimming induced by a conical mag-
netic field. This characteristic is also shown in Ref. [33] for
self-propelled swimmers. However, our work differs from
these approaches as it does not rely on an a priori prescribed
actuation pattern or shape deformation but optimizes the 3D
driving magnetic field of the swimmer which allows the gener-
ation of swimmer-specific optimal actuation. From Fig. 6, we
see that the dynamic model accurately predicts the horizontal
displacements of the swimmer under both magnetic fields.
It is less accurate in predicting the value of the amplitudes
of the oscillations of the swimmer along the y and z axis
as can be seen from comparing Figs. 7 and 5. However, the
shapes of the predicted and experimental trajectories match
qualitatively. The swimmer’s displacements are characterized
by the deformations of its tail, as a consequence of the forces
and torques balances in Eq. (5). The experimental deformation
patterns of the tail under both magnetic fields are shown in
Fig. 8, which illustrates how the swimmer breaks the time-
reversible symmetry of the Stokes flow to propel in both cases.
In particular, the deformation pattern under the optimal field
shows a torsion of the tail of the swimmer in addition to a
beating pattern. This torsion of the tail causes the swimmer
to go out of plane. This same effect of the torsion on the
trajectory has been shown in the case of flagellated cells that
self-propel along a 3D chiral path when the torsion of the
flagellum is coupled with an oscillating waveform [34].

Although the main focus of this work was to optimize
the speed of the flexible robot for swimming along a straight
line, this swimming strategy is easily implementable for open
loop or closed loop path following (see Ref. [20] for an
example) by applying the static component of the magnetic
field in the direction tangent to the curve, and the time-varying
components in the normal and binormal directions.

VII. CONCLUSION

We have investigated the design of optimal actuation pat-
terns for a flexible low-Reynold-number swimmer actuated by
magnetic fields using a simple computationally inexpensive
model that predicts the horizontal displacement of the swim-
mer. This provides an automated procedure for the optimal
control design of flexible magnetic low-Reynolds-number
swimmers. Using this approach, we simulate magnetic fields
that maximize the horizontal propulsion speed of the swim-
mer. From this, we are able to propose a novel magnetic
actuation pattern that allows the swimmer to swim signifi-
cantly faster compared to the usual sinusoidal actuation. This
actuation pattern is experimentally validated on a flexible low-
Reynolds-number swimmer. The dynamic model used accu-
rately predicts the horizontal displacement of the experimental
swimmer under both the optimal and sinusoidal actuation. The
simulation and experimental results show that it is necessary
to go out of plane in order to maximize the propulsion speed of
flexible magnetic low-Reynolds-number swimmers. Although
the dynamic model used is limited in its accuracy, since it is
based on an approximation of the fluid-structure interaction
of the swimmer, this study showcases the usefulness of such
a simplified model for computationally inexpensive control
design for the actuation of flagellar magnetic swimmers.
Current research is focused on finding a solution to allow
propulsion of flagellated swimmers in confined environments
[35,36] or in the presence of obstacles, such as the human
vasculature [14]. For this purpose, the technique presented in
this paper could be generalized to find magnetic fields that
allows the propulsion of the robot in a confined environnement
by adapting the model.
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APPENDIX A: FORMULATION OF THE
HYDRODYNAMICS OF THE SWIMMER

1. Parametrization of the rotation matrices
and angular velocities

The rotation matrix Rhead represents the coordinates trans-
form between the world frame and Rhead. It is parametrized
by three angles (θx, θy, θz ) resulting from a Z-Y -X rotation
sequence:

Rhead = Rx(θx )Ry(θy)Rz(θx ), (A1)

where Rx, Ry, and Rz are the elementary rotation matrices
around the x, y, and z axes.

Similarly, for each link i, the rotation matrix Ri represents
the coordinates transform between the head’s frame Rhead and
the frame associated with link i Ri. It is parametrized by two
angles (φi

y, φ
i
z ) resulting from a Z-Y rotation sequence:

Ri = RheadR̃iR
T
head for i ∈ (1, . . . , N ). (A2)

where R̃i = Ry(φi
y)Rz(φi

z ).
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For all skew-symmetric matrix A ∈ R3×3, we can define a
vector � verifying:

∀V ∈ R3 AV = � × V . (A3)

Using this property, we define the following angular veloc-
ity vectors:

(i) �head is the vector defining the cross product associated
with the skew-symmetric matrix ṘheadRT

head. �head depends
linearly on (θ̇x, θ̇y, θ̇z ) as follows:

�head = Lhead

⎛
⎝θ̇x

θ̇y

θ̇z

⎞
⎠ , (A4)

where

Lhead =
⎡
⎣1 0 sin(θy)

0 cos(θx ) − cos(θy) sin(θx )
0 sin(θx ) cos(θx ) cos(θy)

⎤
⎦, (A5)

(ii) �i is the vector defining the cross product associated
with the skew-symmetric matrix ˙̃RiR̃i

T
for i ∈ (1 · · · N ). �i

depends linearly on (φ̇i
y, φ̇

i
z ) as follows:

�i = Li

(
φ̇i

y

φ̇i
z

)
, (A6)

where

Li =

⎡
⎢⎣

sin(φi
y) 0

cos(φi
y) 0

0 1

⎤
⎥⎦. (A7)

2. Hydrodynamical force and torque on the
head of the swimmer

We consider a drag force acting on the head of the swimmer
that is proportional to its velocity in each direction of the
head frame’s Rhead and a resistive torque proportional to the
angular velocity of the head:

Fh
head = −Rhead

⎛
⎝kH,‖ 0 0

0 kH,⊥ 0
0 0 kH,⊥

⎞
⎠RT

headẊ ,

T h
head = −kR�head = −kRLhead�̇,

(A8)

where kH,‖ and kH,⊥ are the parallel and perpendicular hydro-
dynamic coefficients of the head and kR is a rotationnal drag
coefficient.

3. Expression of the hydrodynamical force density
on a point of the tail of the swimmer

For i = (1 · · · N ), we consider a point xi(s) on the ith link
of the tail parametrized by its arclength s such as

xi(s) = Oi − sei
x. (A9)

Using the rotation matrices defined in the previous paragraph,
xi(s) is written as:

xi(s) = OH − rRheadex − l
i−1∑
k=1

RheadR̃kex − sRheadR̃iex , (A10)

where r is the distance between OH and Oi. We differentiate
the previous equation to obtain the expression of the velocity
of xi(s):

ẋi(s) = Ẋ − rṘheadex − l
i−1∑
k=1

ṘheadR̃kex

− l
i−1∑
k=1

Rhead
˙̃Rkex − sṘheadR̃iex − sRhead

˙̃Riex. (A11)

Following resistive force theory, the density of hydrody-
namic force fi is linear with respect to the components of
ẋi(s):

f i(s) = −k‖
(
ẋi(s).ei

x

)
ei

x − k⊥
(
ẋi(s).ei

y

)
ei

y

− k⊥
(
ẋi(s).ei

z

)
ei

z

= Siẋi(s), (A12)

where k‖ and k⊥ are respectively the parallel and prependicu-
lar drag coefficients of the swimmer’s tail and, for each link i:

Si = (RheadR̃i )D(RheadR̃i )
T , (A13)

where

D = −
⎛
⎝k‖ 0 0

0 k⊥ 0
0 0 k⊥

⎞
⎠. (A14)

Using the expression of ẋi(s) [Eq. (A11)] in Eq. (A12), the
hydrodynamic force density reads:

fi(s) = SiẊ − r
(
RheadR̃iDR̃T

i

)
RT

headṘheadex

− l
(
RheadR̃iDR̃T

i

) i−1∑
k=1

RT
headṘheadR̃kex

− l
(
RheadR̃iDR̃T

i

) i−1∑
k=1

R̃kR̃T
k

˙̃Rkex

− s
(
RheadR̃iDR̃T

i

)
RT

headṘheadR̃iex

− s
(
RheadR̃iDR̃T

i

) ˙̃Riex. (A15)

Using the definition of the angular velocity vectors
[Eqs. (A4) and (A6)], we rewrite the expression above as:

fi(s) =SiẊ − r
(
RheadR̃iDR̃T

i

)
�head × ex

− l
(
RheadR̃iDR̃T

i

) i−1∑
k=1

�head × (R̃kex)

− l
(
RheadR̃iDR̃T

i

) i−1∑
k=1

R̃k�k × ex

− s
(
RheadR̃iDR̃T

i

)
�head × (R̃iex)

− s(RheadR̃iD)�i × ex. (A16)
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In order to write cross products in matricial form, we
introduce the following notation:

∀V = (
V1 V2 V3

)T ∈ R3 [V ]× =
⎛
⎝ 0 −V3 V2

V3 0 −V1

−V2 V1 0

⎞
⎠.

(A17)
Using this notation and the linear dependency of �head

and �i on the angular velocities [Eqs. (A4) and (A6)], the
hydrodynamical drag force density on link i is written as a
linear function of Ẋ , �̇, and �̇ :

fi(s) = Ai(s)

⎛
⎝Ẋ

�̇

�̇

⎞
⎠ , (A18)

where Ai(s) ∈ R3,2N+6 is defined blockwise as:

Ai(s) =

⎛
⎜⎜⎜⎜⎝

Ai
X ∈ R3×3

Ai
θ ∈ R3×3

Ai
1 ∈ R2×3

...
Ai

N ∈ R2×3

⎞
⎟⎟⎟⎟⎠ , (A19)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai
X (s) = Si

Ai
θ (s) = (

RheadR̃iDR̃T
i

)[
rex + l

i−1∑
k=1

R̃kex

]×

Lhead

+ (
RheadR̃iDR̃T

i

)
[sR̃iex]×Lhead

Ai
1(s) = l

(
RheadR̃iDR̃t

i

)
R̃1[ex]×L1

...

Ai
i−1(s) = l

(
RheadR̃iDR̃t

i

)
R̃i−1[ex]×Li−1

Ai
i(s) = s(RheadR̃iD)[ex]×Li

Ai
j = 03 ∀ j > i

. (A20)

4. Hydrodynamical forces and torques on each link

We define the two 3 × 2N + 6 matrices Bi and Ci as
follows: ⎧⎪⎪⎨

⎪⎪⎩
Bi =

∫ l

0
Ai(s)ds

Ci =
∫ l

0
sAi(s)ds

. (A21)

Using this notation, the hydrodynamical force on link i de-
pends linearly on the position and shape velocities as follows:

Fh
i = Bi

⎛
⎝Ẋ

�̇

�̇

⎞
⎠. (A22)

The hydrodynamic torque on link i calculated about the
point OH is computed from the hydrodynamical force density
as follows:

T h
i,H =

∫ l

0
(xi(s) − OH ) × fi(s)ds. (A23)

We rewrite (xi(s) − OH ) as:

(xi(s) − OH ) = −rRheadex −
i−1∑
k=1

lRheadR̃kex − sRheadR̃iex.

(A24)

T h
i,H is then expressed as:

T h
i,H = −

[
rRheadex +

i−1∑
k=1

lRheadR̃kex

]× ∫ l

0
fi(s)ds

− [RheadR̃i]
×

∫ l

0
s fi(s)ds. (A25)

Thus, the matricial form of T h
i,H is

T h
i,H = −

⎛
⎝

[
rRheadex +

i−1∑
k=1

lRheadR̃kex

]×

Bi

⎞
⎠

⎛
⎝Ẋ

�̇

�̇

⎞
⎠

− ([RheadR̃i]
×Ci )

⎛
⎝Ẋ

�̇

�̇

⎞
⎠. (A26)

Similarly, for k = (i, . . . , N ), the hydrodynamic torque on
link i about Ok reads:

T h
i, j = −(

i−1∑
k= j

[lRheadR̃kex]×Bi − [RheadR̃i]
×Ci )

⎛
⎝Ẋ

�̇

�̇

⎞
⎠. (A27)

5. Equations of motion

Using the expressions of the hydrodynamical forces and
torques in the previous section Eqs. (A22), (A26), and (A27)],
the left-hand side of the dynamical system (7) is written as a
linear function of the state derivatives:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑N
i=1 Fh

i + Fh
head

T h
head + ∑N

i=1 T h
i,H

(
∑N

i=1 T h
i,H ) · e1

y

(
∑N

i=1 T h
i,H ) · e1

z

...∑N
i=k T h

i,k · ek
y∑N

i=k T h
i,k · ek

z
...

T h
N,N · eN

y

T h
N,N · eN

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Mh(�,�)

⎛
⎝Ẋ

�̇

�̇

⎞
⎠, (A28)

where Mh ∈ R2N+6×2N+6 is defined by blocks as:

Mh =

⎛
⎜⎜⎜⎜⎜⎝

MX ∈ R3×2N+6

M� ∈ R3×2N+6

M1 ∈ R2×2N+6

...
MN ∈ R2×2N+6

⎞
⎟⎟⎟⎟⎟⎠ , (A29)
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FIG. 9. Fitting error in function of the number of links of the
model.

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MX = − (
RheadDH RT

head 03 O3,2×N
) +

N∑
i=1

Bi

M� = − kR
(
03 Lhead O3,3×N

)
−

N∑
i=1

[
Rhead

(
rex +

i−1∑
k=1

lR̃kex

)]×

Bi

−
N∑

i=1

[RheadR̃i]
×Ci

M1 = − R∗
1

N∑
i=1

(
i−1∑
k=1

[lRheadR̃kex]×Bi

)

− R∗
1

N∑
i=1

[RheadR̃i]
×Ci

...

MN = − R∗
N

N−1∑
k=1

([lRheadR̃kex]×BN )

− R∗
N [RheadR̃N ]×CN

, (A30)

TABLE I. Parameters used for the sperm cell simulations.

Parameter Value

Length of the tail L = 7 mm

Radius of the head r = 0.3 mm

Parallel resistive coefficient, head kH,‖ = 1.15 N s (m−1)

Perpendicular resistive coefficient, head kH,⊥ = 4.37 N s (m−1)

Rotational resistive coefficient, head kH,R = 0.6 N m s

Parallel resistive coefficient, tail kT,‖ = 0.35 N s (m−1)

Perpendicular resistive coefficient, tail kT,⊥ = 0.813 N s (m−1)

Elastic coefficient kel = 8.67810−7 N m−1

Magnetization M = 1.68510−4 A m−1

where R∗
i is the 2 × 3 matrix consisting of the second and third

line of the matrix (RheadR̃i )T which represents the projection
on the plane (ey

i, ez
i ).

APPENDIX B: SIMULATION PARAMETERS

Table I shows the numerical values of the fitted parameters
of the model.

APPENDIX C: FITTING ERROR AND NUMBER OF LINKS

Figure 9 shows the result of the parameter fitting (rela-
tive l2 norm) between the experimental velocity-frequency
response curve and the simulated velocity-frequency response
curve. As seen in the figure, the model fails to accurately
match the experimental velocity-frequency curve with N =
1 and N = 2 links. The fitting results in a small error for
N � 3.
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