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Universal behaviors in the wrinkling transition of disordered membranes
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The wrinkling transition experimentally identified by Mutz et al. [Phys. Rev. Lett. 67, 923 (1991)] and
then thoroughly studied by Chaieb et al. [Phys. Rev. Lett. 96, 078101 (2006)] in partially polymerized
lipid membranes is reconsidered. One shows that the features associated with this transition, notably the
various scaling behaviors of the height-height correlation functions that have been observed, are qualitatively
and quantitatively well described by a recent nonperturbative renormalization group approach to quenched
disordered membranes by Coquand et al. [Phys. Rev E 97, 030102(R) (2018)]. As these behaviors are associated
with fixed points of renormalization group transformations they are universal and should also be observed in,

e.g., defective graphene and graphene-like materials.

DOI: 10.1103/PhysRevE.101.042602

I. INTRODUCTION

A considerable activity has been devoted these last years
to understanding both experimentally and theoretically the
effects of disorder in membranes, mainly within the contexts
of the current study of graphene and graphene-like materials
on the one hand and, in a more distant past, of partially
polymerized lipid membranes on the other hand. Indeed, the
synthesis of graphene [1,2] followed by the discovery of
its outstanding mechanical, electronic, optical, and thermal
properties [3—6] has stimulated intensive researches aiming
at understanding how the unavoidable presence of defects,
vacancies, or adatoms would alter the physical properties
of pristine compounds. Also, beyond the mere presence of
native imperfections, the introduction of artificial defects, e.g.,
foreign adatoms or substitutional impurities, with the help
of various processes—particle (electrons or ions) irradiation,
chemical methods like oxidation or crystal growth—has given
rise to the emergence of a whole defect engineering industry
aiming at achieving new functionalities for these fopologi-
cally designed graphene and graphene-like materials [7-10].
Among the numerous effects observed one finds: variation
(increase or decrease) of electronic conductivity according
to the size of the defects, increase of elasticity for moderate
density of vacancies and decrease at higher density, decrease
of thermal conductance, of fracture strength, enhancement of
reactivity, appearance of ferromagnetism, and so on [8-12].
As part of this defect engineering activity, a specific effort in-
volving various experimental or numerical techniques—(low
pressure) chemical vapor deposition [13], ion/electron irra-
diation [14-19], or molecular dynamic simulation [20-22]—
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has been made toward the design of defect-induced
two-dimensional (2D) amorphous counterparts of graphene
and graphene-like materials. A highlight of this activity is the
achievement by electron irradiation of a step-by-step, atom-
by-atom, crystal-to-glass transition giving rise to a vacancy-
amorphized graphene structure [13—15] similar to the contin-
uous random network proposed by Zachariasen [23]. Many
characteristics of this transition have been determined: the
onset of the defect-induced amorphization process, its temper-
ature dependence, the structural response to vacancy insertion,
the nature of the electronic density of states of the defective
configurations [20], a transition in the fracture response from
brittle to ductile when increasing vacancy concentration [24];
finally a careful analysis of the glassy-graphene structure in
terms of a proliferation of nonhexagonal carbon rings has
been performed [15,22]. However we emphasize that the very
nature of this glass transition is still unclear. Moreover there
has been, up to now, neither within this last context nor
within the more general one of the investigation of defective
graphene and graphene-like materials, no characterization of
a quantitative change between—still putative—ordered and
disordered phases and a fortiori no indication of universal
behaviors associated with them.

In marked contrast with this situation, in a very different
context, recent investigations of partially polymerized lipid
membranes by Chaieb ez al. [25], following the pioneering
work of Mutz et al. [26], have led to identify a remarkable
folding-transition while varying the degree of polymerization.
More precisely these authors have shown that, upon cooling
below the chain melting temperature, partially polymerized
phospholipid vesicles undergo a transition from a relatively
smooth structure, at high polymerization, to a wrinkled struc-
ture, at low polymerization, characterized by randomly frozen
normals. This has led them to suggest that this transition
would be the counterpart of the spin-glass transition occur-
ring in disordered spin systems [26,27]. Chaieb et al., by
considering the height-height correlation functions, have been
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able to characterize quantitatively the various phases as well
as the wrinkling transition separating them. However, despite
the large amount of theoretical work oriented towards under-
standing the physics of disordered membranes, no theoretical
explanation has been given so far on the grounds of these
results [27-38].

In this article, we show that a recent nonperturbative renor-
malization group (NPRG) study, performed by the present
authors [39], of the effective theory used to study both curva-
ture and metric disorders perfectly accounts for this situation.
In a first part, we recall the experimental status of wrinkled
partially polymerized membranes. In a second part, we lay
out the unusually unsettled state of the theoretical situation.
Finally, in a third part, performing an analysis of the long-
distance morphology of membranes at and in the vicinity of
the wrinkling transition, we show how the NPRG approach
reproduces the experimental outputs. Finally we conclude,
stressing the consequences of our analysis for the physics of
graphene and graphene-like materials and claiming, in partic-
ular, that the behaviors observed in partially polymerized lipid
membranes should also be observed in these materials.

II. WRINKLING TRANSITION IN PARTIALLY
POLYMERIZED MEMBRANES

The identification of a wrinkling transition in partially
polymerized membranes goes back to the work of Sackman
et al. [40] on mixture of diacetylenic phospholipids and
dimyristoylphosphatidylcholine, followed by those of [26]
and [25] on diacetylenic phospholipids [1,2-bis(10,12-
tricosadiynoyl)-sn-glycero-3-phosphocholine], who have
taken advantage of the fact that, upon a chemical or
photochemical process, notably ultraviolet (UV) irradiation,
these compounds polymerize. In the case considered in [26]
the polymerizable phospholipids are first prepared as giant
vesicles and then cooled below the chain melting temperature
T,, = 40°C where they form tubular structures that are then
partially polymerized by UV irradiation. The membranes are
then reheated above 7,,, where they reform spherical vesicles
provided the degree of polymerization does not exceed the
percolation threshold located around 40%. These vesicles,
of typical size ranging from 0.3 to 40 um, are then cooled
down to T,, &~ 18-22°C, where they undergo a spontaneous,
reversible, phase transition from a relatively smooth structure
to a wrinkled, highly convoluted, rigid one displaying locally
high spontaneous curvature. This observation has led Mutz
et al. [26] to conjecture that this state of affairs should
be well described by a theory of polymerized membranes
submitted to quenched curvature disorder. The outcomes
of this experiment have been made more quantitative by
Chaieb et al. [25,41-43] who have studied the transition
by various techniques. Small angle neutron scattering has
been used to investigate the local structure, giving access
to the fractal dimension while environmental scanning
electron microscopy has been employed for the study of the
surface topography at mesoscopic scale [25,41-43]. Finally
a tapping-mode atomic force microscope has provided
information on the mean-square fluctuations of the surface
height A(x) at a point x = (x], xp), relative to the mean
surface height, ((h(x) — h(0))?), and its Fourier transform,
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FIG. 1. The three scaling behaviors of the power spectrum P (k)
as function of k for various degrees of polymerization ¢ of the
membrane. From top to bottom: ¢ = 40%, ¢ = 30%, and ¢ = 9%
and the corresponding membrane configurations. From Chaieb et al.
[25] with permission.

the power spectrum P(k) [25]. This last quantity has been
found to display a remarkable power-law behavior in the
range 0.1-100 um~': P(k) ~ k=7, where the power exponent
y ! is directly related to the roughness exponent ¢ by
y = 1 4 2¢. Three clear distinct regimes have been observed
[25] as the degree of polymerization ¢ is varied, see Fig. 1.
At low polymerization, typically for ¢ < 30%, the surface of
the vesicles presents—at large scales—large deformations,
creases, of order of the vesicle size (500 nm) typical of a
wrinkled state. In this case one finds [25] y =2.9+0.1
corresponding to ¢ = 0.95 £ 0.05. At high polymerization,
typically between 32 and 40 % the vesicles are regular at large
scales and the creases are less pronounced (of order 20 nm)
and one has [25] y =2 £0.06 and { = 0.5 &£ 0.03. Finally,
for ¢ in the intermediary region 30% < ¢ < 32% a transition
occurs and the vesicles display the morphology of a crumpled
elastic sheet with y = 2.51 £ 0.03 and ¢ = 0.75 £+ 0.02 [25].

III. THEORETICAL CONTEXT

Early investigations of the wrinkling transition by Mutz
et al. have triggered an impressive series of theoretical works
aiming to understand the effects of quenched disorder con-
tributions in the seminal model of Nelson and Peliti [44]
used to describe the flat phase of disorder-free polymerized
membranes [45-55]. This series has been initiated by Nelson
and Radzihovsky [28,29] who have mainly investigated the
effects of impurity-induced disorder in the preferred metric
tensor. They have in particular shown that, below the dimen-
sion D = 4 of the membrane, the flat phase of disorder-free
membranes remains stable at any finite temperature 7' but
should be destabilized at vanishing 7' for any amount of
disorder due to a softening of the bending rigidity, making

'The notation 7 is employed in [25] in place of y while 7 is used
here to indicate the anomalous dimension.
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possible the emergence of a spin-glass behavior. This sce-
nario has been strengthened by the work of Radzihovsky and
Le Doussal [30] who, studying the limit of large embedding
dimension d of the model, have identified an instability of the
flat phase toward a spin-glass-like phase characterized by a
nonvanishing Edwards-Anderson order parameter [56]. At the
same time Morse et al. [57,58], extending the work done in
[28,29], have considered the role of both curvature and metric
quenched disorders. Using a perturbative, weak-coupling, € =
4 — D expansion, they have shown that the curvature disorder
gives rise to a new fixed point at T = 0, stable with respect
to randomness but unstable with respect to the temperature.
These works have been followed by an intensive search for
various kinds, i.e. flat or crumpled, of glassy phases by means
of mean-field approximations involving either short-range
[27,30-35] or long-range disorders [36,37] (see also [38] for
a review) that have led to predict that, at sufficiently strong
disorder, the flat phase could be even unstable at any finite
temperature toward a glassy phase that would correspond
to the experimentally observed wrinkled phase. However,
we would like here to emphasize several facts. The first
one is that these last approaches, based on mean-field, large
d, computations, should be considered with great caution
when their conclusions are extended in the finite d case,
particularly when they involve a breakdown of the symmetry
between replica used to perform the average over disorder.
Second, none of the approaches—involving 1/d ore =4 — D
expansions—has been carried out at next-to-leading order,
where new physics could emerge. Finally, none of them has
produced quantitative predictions or explanations as for the
results of Chaieb et al.

IV. NPRG ANALYSIS

Recently however, following previous works on disorder-
free polymerized membranes [50,52,55,59-61] the present
authors [39] have performed a NPRG approach of the model
considered within a perturbative framework by Morse et al.
[57,58] and whose action is given by

SIR] = / de{ngmx)f + %uﬁ(x)z + ()’

—¢c(x).97R(x) — 07;(x) Mij(x)}- (1)

In this action R(x) is a d-dimensional vector field parametriz-
ing, in the embedding space, the points x = x;, i = 1...D of
D-dimensional membrane while u;; is the strain tensor that
represents the fluctuations around a flat reference configura-
tion R%: u;; = 1(8;R.9;R — 9;R°.9;R) with >

R’ = [(R(x))] = xe;, )

where (---) and [- - - ] denote thermal and disorder averages,
respectively. In Eq. (2) the e; form an orthonormal set of D
vectors. The coupling constants « and (A, i) represent, re-
spectively, the bending rigidity and the Lamé coefficients. The

2With a stretching factor (noted ¢ in [39] that should not be
confused with the roughness exponent) taken equal to one.

action (1) includes curvature and metric disorder contributions
induced by two random fields ¢(x) and o;;(x) that couple
to the curvature and strain tensor, respectively. They are
considered here as short-range, gaussian fields with [57,58]

[ei(x) ¢;(x)] = A, 8ij 8P (x = x'),
[0 (%) 01 (X)) = (A8 + 28, L) 8P (x = x'),  (3)

where [;j; = %(S;kBj, +8ydj) withi, j,k,I =1...D, where
A, and (A, A +(2/D)A,,) are positive coupling constants
associated with curvature and metric disorders. Note finally
that the ansatz (1), albeit reduced to four powers of the fields
and field derivatives, is expected to lead to predictions not
altered by higher orders, as this happens quite remarkably
in the disorder-free case [52,55,60] and as this is strongly
suggested by the very weak sensitivity of our results with the
changes of renormalization group (RG) process—see below.

The RG equations corresponding to action (1) have been
derived first perturbatively in [57,58] and then within a NPRG
approach in [39]. Within this latter approach the RG equa-
tions have revealed that there exist, in the space of coupling
constants, not only two, as found by Morse et al. [57,58],
but actually three nontrivial fixed points: the usual finite-7,
vanishing-disorder fixed point Py associated with disorder-free
membranes [47]; a vanishing-T, finite-disorder fixed point Ps
identified for the first time in [57,58]; finally a finite-T, finite-
disorder fixed point P, found in [39], missed within previous
approaches, unstable with respect to T, thus associated with
a second-order phase transition and making the 7 = 0 fixed
point fully attractive provided T < T.. The consequences of
these facts are twofold: 1) a whole “glassy phase” associated
with the T = 0 fixed point is predicted in agreement with
the wrinkled phase observed in [25,26] and 2) three distinct
universal scaling behaviors are expected, in agreement with
the observations of Chaieb ez al. [25]. The subsequent analysis
shows, moreover, the quantitative agreement between the
scaling behaviors predicted and those observed. The quantity
to consider is the roughness exponent ¢. Let us recall how
this quantity is defined in a field-theoretical context. Let us
decompose R(x) around the flat phase configuration R°(x)
according to R(x) = R°(x) + u(x) + h(x), where u(x) and
h(x) are, respectively, the in-plane (phonon) and out-of-plane
(flexuron) degrees of freedom parametrizing the fluctuations
around R°(x). Writing h(x) = h(x) — (h(x)) one defines the
connected and disconnected correlation functions of the h
field by

[{(h(x) — k(0))*)] = T x(x) + C(x),

where T x (x) = [((8h(x) — 8h(0))*)] and C(x) = [(h(x) —
h(0))?] that, as usual, respectively, measure the thermal and
disorder fluctuations. The long-distance behavior of these
correlation functions is typically given by T x (x) ~ |x|** and
C(x) ~ |x|%' that define two roughness exponents ¢ and ¢’. In
the same way correlation functions are defined for the phonon
field with two roughness exponents ¢, and ¢,. They are related
to the previous ones by ¢, = 2¢ — 1 and ¢, = 2¢’ — 1. Sim-
ilarly, in momentum space, writing Sh(q) = h(q) — (h(q)),
one defines

Gin(q) = [(h(@h(—¢))] =T x(q) + C(q), “4)
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FIG. 2. Power exponent y as a function of the polymerization
rate ¢. Adapted from Chaieb e al. [25]. Horizontal lines correspond
to the data extracted from our NPRG computations: ys = 2.725(2),
¥, = 2.510(2), and y4, = 2.151(3).

where Tx(q) = [(6h(q)dh(—¢))] and C(q) = [(h(q))
(h(—q))] that behave, at low momenta, as x(q) ~ g~ “"
and C(q) ~ ¢~ “"), where n and 5’ are the anomalous di-
mensions evaluated at the fixed points of the RG equations.
As a consequence of expression (4) the scaling behavior
expected for the height-height correlation function Gy, (q) is
determined by the relative value of 1 and n’ together with
the position of the fixed point: at finite or at vanishing 7 3.
These exponents are related to the roughness exponents by
{=31(@4—-D—n)and ¢’ = (4 — D —1n') and to the power
exponent y =5—D—n or y =5— D — 1 depending on
the exponent—rn or n’—that controls the long-distance behav-
ior.

At the fully attractive, vanishing-T, finite-disorder fixed
point Ps we find, by improving the results of [39], ns =
0.448(2) and n; = 0.275(2)*. This is in contrast with both
[57,58] and [38], where 15 = 15 so that Ps was found to
correspond to a marginal—in fact marginally unstable—fixed
point. As a consequence we find a roughness exponent ¢ =
0.862(1) that, according to Eq. (4) and the scaling laws
of x(q) and C(q), controls the long-distance behavior of
the height-height correlation function Gy;(q). This corre-
sponds to a power exponent ys = 2.725(2). This value is very
close to that found in [25] at low polymerization—for ¢ in
[10%; 30%]—and lies in the range [2.80, 2.92], see Fig. 2. As
done in [25] we exclude the data point at lowest polymeriza-

3See [38] for a careful discussion about the scaling behavior of the
correlation functions.

“Error bars have been obtained by using three families
of cut-off functions Ri(q) = aZ(q* — k))0(¢* — k?), Ri(q) =
aZq*/(exp(g*/k*) — 1), and ﬁk (q) = a Zik*exp(—q*/k*) that are
used to separate high and low momenta modes within the RG process
(see [39]). Above, « is a free parameter used to investigate the
cut-off dependence of physical quantities and allows, in particular, to
optimize each cut-off function inside its family, i.e., to find stationary
values of these quantities, see for instance [63]. Error bars follow
from the comparison between the results corresponding to different
optimized cut-off functions.

tion (corresponding to y = 3 in Fig. 2), which does not belong
to the plateau identified for ¢ in [10%; 30%]. Note that such a
value would correspond to the expected value for a fluid mem-
brane, which could be a hint that below ¢ = 10%, partially
polymerized lipid membranes do not behave as polymerized
membranes anymore. At the stable, finite-T, finite-disorder
fixed point Py, we find 14 = 1,/2 = 0.849(3) (see [39,50,60]
and also [5] for a review of other approaches) that corresponds
to &4 = 0.575(2) and y4 = 2.151(3). As seen in Fig. 2 this
is again in good agreement with the results found in [25] at
high polymerization with a value of y that saturates at 2. This
value corresponds to the case of disorder-free polymerized
membranes. It is in agreement with that obtained by Locatelli
et al. [62] who have found ¢ = 0.54 £ 0.02 by means of low
energy electron diffraction on free-standing graphene sheet.
Finally, at the finite-disorder, finite-T, critical, fixed point P,
found in [39] we get . = 1. = 0.490(2) that corresponds
to ¢ = 0.755(1) and y. =2.510(2) that is in very good
agreement with the value y = 2.51 found by Chaieb et al.
[25] at critical polymerization, see Fig. 2.

V. CONCLUSION

The conclusion of our work is fourfold. First, we have
shown that the longstanding problem of the wrinkling tran-
sition taking place in partially polymerized lipid membranes
is both qualitatively and quantitatively clarified by means
of the NPRG approach used in [39]. Second, reciprocally,
this agreement validates the NPRG approach to disordered
polymerized and, in particular, consolidates the prediction of
the existence of three nontrivial fixed points in the RG flow
of the model (1), in contradiction with all previous works. At
the formal level this situation raises the question of the origin
of the mismatch between the NPRG approach and the pre-
vious ones: the weak-coupling approach around D = 4 per-
formed by Morse et al. [57,58] and the self-consistent screen-
ing approximation used by Radzihovsky and Le Doussal
[30,38]. Third, as the three different kinds of scaling be-
haviors predicted in [39] are associated with fixed points
or RG flow, they are universal and should be observed in
a large class of defective materials able to display curva-
ture disorder °. This is in particular the case of defective
graphene, whose sp?-hybridized carbon structure can reorga-
nize into a nonhexagonal structure displaying nonvanishing
curvature. Fourth, and finally, the glassy graphene configu-
rations observed during the vacancy-amorphization process
have been shown to display a rough, static, wrinkled struc-
ture with reduced thermal fluctuations with respect to their
purely crystalline counterpart and exhibit a root mean squared
roughness increasing with vacancy concentration indicating
a change in the macroscopic morphological/shape structure
of defective graphene sheets [20,22]. It would be of consid-
erable interest to see if this transition can be moved closer
to the wrinkling transition observed in partially polymerized
membranes.

3 As observed for the first time by Morse et al. [57,58], a curvature
disorder generates metric disorder.
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