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Evolutionary dynamics of the delayed replicator-mutator equation: Limit cycle and cooperation
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Game theory deals with strategic interactions among players and evolutionary game dynamics tracks the fate
of the players’ populations under selection. In this paper, we consider the replicator equation for two-player–two-
strategy games involving cooperators and defectors. We modify the equation to include the effect of mutation
and also delay that corresponds either to the delayed information about the population state or in realizing the
effect of interaction among players. By focusing on the four exhaustive classes of symmetrical games—the
Stag Hunt game, the Snowdrift game, the Prisoners’ Dilemma game, and the Harmony game—we analytically
and numerically analyze the delayed replicator-mutator equation to find the explicit condition for the Hopf
bifurcation bringing forth stable limit cycle. The existence of the asymptotically stable limit cycle imply the
coexistence of the cooperators and the defectors; and in the games, where defection is a stable Nash strategy, a
stable limit cycle does provide a mechanism for evolution of cooperation. We find that while mutation alone can
never lead to oscillatory cooperation state in two-player–two-strategy games, the delay can change the scenario.
On the other hand, there are situations when delay alone cannot lead to the Hopf bifurcation in the absence of
mutation in the selection dynamics.
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I. INTRODUCTION

It is perplexing that cooperation [1–3] should be ubiqui-
tously present in social, ecological, and biological systems
in spite of the fact that selfish actions by an agent fetch
it relatively more benefit. While a lot of progress has been
reported in understanding this phenomenon, a unanimous con-
sensus is still to be reached. One reason simply is that in the
complex systems under consideration, comprehending every
aspect of the phenomenon and trying to give one sweeping
reason behind it is extremely challenging if not impossible.
This is where analyzing simple stylized strategic games like
the famous Prisoner’s Dilemma game becomes useful. Such
games allow for a drastically simplified version of the problem
of the evolution of cooperation and present a transparent
abstraction of the problem. Based on these games, the theory
of evolutionary games [4,5] has been providing insights into
the dilemma of the evolution of cooperation.

In its most simple form [6], the classical game theory
assumes that two rational players—each equipped with two
strategies (actions)—play against each other by using one
strategy each simultaneously to get some consistently quan-
tifiable payoff (profit or loss). The information about the
profit or the loss for a player corresponding to every strategic
interaction is written down as an element in a 2 × 2 matrix
called the payoff matrix. Here, rationality means consistency
in decision-making: Each decision-making player chooses the
best action in accordance with his/her set of preferences that
is complete and transitive. One also assumes that the players
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have common knowledge of the rules of the game. The most
celebrated prediction of the game theory is that in such one-
shot games, theoretically, a potential outcome corresponds to
the Nash equilibrium [7] that is a pair of strategies (one from
each player’s strategy set) such that no player can benefit by
unilateral deviating from his/her equilibrium strategy.

The evolutionary game theory does away with the re-
quirements of the rationality and the common knowledge
since the biological entities it is concerned with need not
be rational. The organisms become players and the strategies
become synonymous with the phenotypes of the organisms.
The elements of the payoff matrices denote—within the Dar-
winian paradigm—the fitnesses that are most conveniently
interpreted as the numbers of offsprings. The fitness of a
phenotype, thus, is defined as the average payoff that one in-
dividual of that phenotype gets in the population of organisms
of different phenotypes. In the absence of rationality, while
the concept of the Nash equilibrium becomes redundant in the
evolutionary game theory, it turns out that the evolutionary
stable strategy (ESS) must be a Nash equilibrium. ESS is a
strategy that when adopted by the whole population, the host
population becomes resilient against an infinitesimal fraction
of mutants playing some alternative strategy. Since the evolu-
tion is essentially a dynamical process, many dynamical equa-
tions modeling the evolution are in vogue [8]. One of the most
investigated evolutionary dynamical equation is the replicator
equation [9]. It is remarkable that its asymptotic dynamical
outcomes are related to the underlying one-shot game’s Nash
equilibrium or ESS [10] so that one may predict the dynamical
outcome of the evolutionary dynamics by analyzing the game-
theoretic equilibrium concepts of the corresponding game.

Analysis of nonlinear dynamical equations modeling vari-
ous aspects [11–22] of evolutionary games is an exciting mod-
ern interdisciplinary research area that encompasses problems
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from biophysics, mathematics, economics, and sociology. In
its simplest form, a strategic interaction in a game is supposed
to lead to realization of payoff/fitness instantaneously. While
most well-investigated game dynamics assume such strategic
interactions, there are some systems where the effect of an
interaction may take some time to set in [23,24]. The presence
of delay affecting the course of dynamics essentially means
that the underlying decision-making process has a memory
associated with it and is not Markovian in nature. It is well
known that the effect of memory is capable of inducing
cooperation in dynamical games [25–27].

There are quite a few studies on the effect of delay in
selection dynamics in evolutionary game theory, specifically,
replicator dynamics. Inclusion of delay due to information
lag in the evaluation of fitness for simple two-player–two-
strategy games in the continuous replicator dynamics [28]
reveal that the conditions for ESS are independent of delay
and stability of the interior fixed point corresponding to mixed
ESS depends on delay. Actually, two different types of delay
can be envisaged [29]: One corresponds to the information
lag (delayed information about the population state) and the
other to the delay in realizing the effect of interaction among
players. The former one is called social delay and the latter
one biological delay. It has been shown that the mixed ESS
is asymptotically stable for a small social delay but loses
stability (unlike the case of biological delay) when the delay
increases beyond a threshold value.

It is, thus, not surprising that a particular model of delay
(that includes the social delay as one specific case) has been
shown to induce limit cycle behavior in two-player–two-
strategy replicator dynamics [30]. Also, the Hopf bifurcation
leading to the emergence of limit cycle has been observed
in the replicator dynamics of an N-person Stag Hunt game
[31]. It is further known [32] that the condition, at which
the stability of equilibrium points of replicator dynamics
corresponding to two-player–two-strategy symmetric games
changes, does not depend on the distribution of delay. The
consequences of delay, in general, are quite nontrivial and
complex. For discrete dynamics, the relationship between the
information lag about the phenotypic distribution and stability
of the interior fixed point is not monotonic [33]. The same
study also shows that for smoothed best response dynamics in
anti-coordination games, the interior fixed point is stable for
low probability of delay and unstable for the large probability
of delay. In another work [34] involving a population of finite
agents with a specific memory length of past interactions
and playing snowdrift game, one notes that the fixed points
may become unstable and give way to limit cycles for large
memory length.

What is surprising is that almost all the investigations
(including the aforementioned works) on the effect of delay
on the selection dynamics ignore the complications due to
the omnipresent phenomenon of mutation. While the conven-
tional mutation can be of biological origin, any shift in the
strategy of an agent—assumed to play only pure strategies—
can be interpreted as mutation. We feel that it is of immediate
pragmatic interest to study selection-mutation dynamics with
delay. The mutations can be categorized into two types [35]:
multiplicative mutation that stands for the error in replica-
tion mechanism during the birth of offspring and additive

mutation that models mutation in adults. Replicator dynamics
containing the multiplicative mutation has been studied in the
context of the problem of grammar acquisition [36] among
other problems. The effect of the additive mutation in the
replicator dynamics for rock-paper-scissor game [35,37] and
the repeated Prisoner’s Dilemma game [38] has been studied
to find the Hopf bifurcation and limit cycles therein. It should
be realized that the existence of a limit cycle is equivalent to
the presence of cooperation in the systems as is elaborated
throughout this paper.

The combined effect of delay and mutation on the evo-
lutionary dynamics being a relatively unaddressed problem,
we address this issue using the delayed replicator-mutator
dynamics for the two-player–two-strategy game. We consider
both the multiplicative and the additive mutations and so in
the two-dimensional mutation parameter space, we find the
region where a stable limit cycle emerges following the Hopf
bifurcation. Our specific attention is on the four classes of
games, viz., the Snowdrift (SD), the Stag Hunt (SH), the
Prisoner’s Dilemma (PD), and the Harmony (HG) which are
traditionally studied to understand the evolution of coopera-
tion. Specifically, the flow of the paper is as follows: First we
discuss the games that model cooperation in Sec. II. Then,
we propose the models of delay in Sec. III, followed by a
discussion on the linear stability analysis and what happens
to the evolution of cooperation in the presence of delay and
mutation. We conclude our paper in Sec. IV.

II. REPLICATOR-MUTATOR EQUATION

The replicator equation is one of the most widely used
models of selection dynamics in evolutionary games. For an
unstructured infinite population consisting of n (pheno-)types
(pure strategies), we denote the frequency of ith type by
xi; of course,

∑n
j=1 x j = 1. Let the fitness or the expected

payoff of ith type be fi. The average fitness of the popula-
tion thus is φ = ∑n

j=1 x j f j . The probability of multiplicative
mutation, i.e., the probability that some of the jth type off-
springs are born from the ith type individual is given by Qi j

(
∑n

j=1 Qi j = 1). Furthermore, we assume a constant rate μ of
additive mutation, i.e., adults of certain type changing their
strategy to another corresponding to some other type. The
resulting replicator-mutator equation mathematically can be
expressed as

ẋi =
n∑

j=1

x j f jQ ji − φxi − μ(nxi − 1). (1)

Here all the terms are evaluated at the same instant of time
as there is no delay in the system and hence, we do not show
time t explicitly as the argument of the variables.

As mentioned in Sec. I, we are interested in comprehending
the effect of delay and mutation on the evolution of coopera-
tion. The evolution of cooperation has long been intriguing
researchers [1,2,39,40]. Interesting dilemmas result in simple
one-shot two-player–two-strategy games (like the PD) when
individuals defect to play non-Pareto-optimal Nash equilib-
rium when mutual cooperation could have fetched them more
payoff. If “cooperate” and “defect” are the only two strategies
under consideration, one may divide all the games into four
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FIG. 1. Presented are the typical payoff matrices of (a) the Stag Hunt game, (b) the Snowdrift game, (c) the Prisoners’ dilemma game, and
(d) the Harmony game, that have been explicitly used for the calculations in this paper. P1 and P2 refer to the two players playing the games.

classes [40–45], viz., the SH, the SD, the PD, and the HG
based on the fact how the symmetric Nash equilibria are
related to cooperate strategy.

In other words, consider that the normal bimatrix form of
one-shot symmetric two-player–two-strategy game is repre-
sented as follows:

Player 2

Cooperate Defect
Cooperate a, a b, c

Player 1
Defect c, b d, d

where the first element in each cell is the payoff of player 1
and the second element is that of player 2. Payoff elements a,
b, c, and d are real numbers. The ordinal relationship between
the payoff elements define the aforementioned four classes of
games:

SH: c < a and a > d > b. This one-shot game corre-
sponds to two symmetric Nash equilibria—cooperate and de-
fect, and one mixed symmetric Nash equilibrium. The essence
of the SH (coordination) game is conveniently exemplified
[46] as follows: given that hunting down a stag (largest payoff)
requires cooperation between two players, a noncooperating
player can only catch a hare (smaller payoff) while the other
player, being alone in the chase of the stag, returns empty-
handed (least payoff).

SD: c > a and b > d . This one-shot game corresponds
to one symmetric Nash equilibrium in which the players
randomize their strategies. The anticoordination SD game
appears in the scenario where two individuals are trapped
in a big snowdrift that blocks a road. Either individual has
the strategy to either cooperate in clearing the blockage or to
wait for the other to clear it. Of course, a free-rider (defector)
has the most advantage but there is the risk that if both keep
waiting for the other to clear the blockage, then they both incur
a maximum loss by being stuck forever.

PD: c > a > d > b. Mutual defection is the unique Nash
equilibrium in the corresponding one-shot game which prob-
ably is the most famous one in the popular literature. The
dilemma showcased in the game is that although (cooperate,
cooperate) strategy profile is Pareto-optimal, the (symmetric)
Nash equilibrium corresponds to mutual defection.

HG: c < a and b > d . Mutual cooperation is the unique
Nash equilibrium of this game.

In this context, since the folk theorems [10] connect the
point attractors of replicator equation to the corresponding
Nash equilibrium, an understanding of the selection dynamics
is paramount. Being concerned with two-player–two-strategy
games only, n = 2. Let the fraction of cooperators be x, i.e.,
x1 = x. This implies that the fraction of defectors is 1 − x, i.e.,
x2 = 1 − x. Also, the fitness of ith type is fi = ∑n

j=1 �i jx j ,
where

Π =
[

a b
c d

]
. (2)

Assuming that the fraction of accurate replication for both
the types are same, i.e., Q11 = Q22 = q � 1, Eq. (1) can be
written as

ẋ = −x3[a − b − c + d]

+ x2[q(a − b + c − d ) − 2c + 3d − b]

+ x[q(b − c + 2d ) + c − 3d − 2μ] + d (1 − q) + μ.

(3)

The mutation matrix Q, being symmetric and row stochastic,
is completely specified by the single parameter, q. On putting
q = 1 and μ = 0, we reach the case of no mutation, i.e.,
replicator dynamics. The replicator dynamics can have only
one interior fixed point (x∗ = xm) along with two boundary
fixed points (x∗ = 0 and x∗ = 1). Presence of mutation (either
q ∈ [0, 1) or μ ∈ (0, 1] or both) shifts the fixed points to, say,
Xm, X−, and X+, respectively. To have a better understanding
of the effect of the mutation parameters on the nature of
the fixed points for the mentioned four classes of game, it
is helpful to fix some appropriate numerical values for the
payoff matrix elements as they facilitate analytically tractable
calculations. The chosen payoff matrices are shown in Fig. 1.
Unless otherwise specified, we henceforth exclusively work
with these payoff matrices.

In the case of the SH game, the fixed points of the dynamics
are

Xm = 1
2 ,

X− = 1
2 (−

√
4q2 − 4μ − 3 + 2q − 1),

X+ = 1
2 (

√
4q2 − 4μ − 3 + 2q − 1),

as shown in Fig. 2(a). Fixed points X− and X+ are real if
q � q1 = (

√
3 + 4μ)/2. This means that X+ and X− can exist

only when 0 � μ � 1/4. It can also be noted that transcriti-
cal bifurcation occurs [Fig. 2(b)] at q = q2 = (7 + 4μ)/8 at
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FIG. 2. Linear stability of the fixed points of the replicator-mutator equation. In the top row depicts the variation of fixed points Xm (green),
X− (red), and X+ (blue) with the change in mutation parameter q (for two values of parameter μ) when the payoff matrix corresponds to (a) the
SH game, (c) the SD game, (e) the PD game, and (g) the HG. The corresponding eigenvalue, λ, of the Jacobian found in the course of linear
stability analysis is plotted in the bottom row (following the color conventions used for the top row) for (b) the SH game, (d) the SD game, (f)
the PD game, and (h) the HG. The solid line stands for μ = 0 while the dashed line is for a nonzero μ, specifically, 0.1 for the SH game and
0.3 for the other three games.

which X+ collides with Xm and their natures of stability get
interchanged.

The fixed points of the replicator-mutator dynamics for the
SD game are

Xm = 1
2 ,

X− = 1
2 (−

√
4q2 − 12q + 4μ + 9 − 2q + 3),

X+ = 1
2 (

√
4q2 − 12q + 4μ + 9 − 2q + 3).

In the presence of mutation, the fixed point X+ is unphysical
(i.e., X+ /∈ [0, 1]). The other fixed point X− is unphysical
whenever μ �= 0 (irrespective of the value of q). When μ = 0,
X− = 0 for all possible values of q. The fixed points and their
stabilities are depicted in Figs. 2(c) and 2(d).

On solving Eq. (3) for the PD game, following fixed
points—as illustrated in Figs. 2(e) and 2(f)—are obtained:

X−= −
√

17q2 − 12qμ − 28q + 4μ2 + 12μ + 12 + q + 2μ

2(4q − 3)
,

X+ =
√

17q2 − 12qμ − 28q + 4μ2 + 12μ + 12 + q + 2μ

2(4q − 3)
.

The fixed point X+ is unphysical when mutation of either
kind is present. In the absence of mutation X+ is physical and
attains the value X+ = 1. The fixed point X− always exists
as an interior fixed point in the presence of mutation. In the
absence of any mutation, X− = 0. One may note that mutation
makes coexistence of cooperators and defectors possible in
the PD game dynamics.

Out of the four classes of games that we are considering,
the HG is the only one where the cooperate-strategy turns
out to be a dominant strategy and hence pure a Nash equilib-
rium. The fixed points of its replicator-mutator dynamics are
given as

X− = −
√

(2 − q − 2μ)2 − 4μ(4q − 5) + q + 2μ − 2

2(4q − 5)
,

X+ =
√

(2 − q − 2μ)2 − 4μ(4q − 5) + q + 2μ − 2

2(4q − 5)
.

The fixed point X− is unphysical in the presence of μ-
mutation. When μ = 0, for any possible q, the fixed point
X− = 0. So, only X+ is the fixed point of practical importance.
We exhibit all the possible fixed points and their linear stabil-
ities in Figs. 2(g) and 2(h).

In all the four classes of games, as expected, there is no
limit cycle behavior as the phase space is one-dimensional for
the corresponding autonomous replicator-mutator equation.
While an interior stable fixed point (like in the PD game) does
imply the emergence of cooperation, the existence of a stable
limit cycle provides another mechanism for the establishment
of cooperation. In general, the inclusion of delay in the
replicator-mutator equation makes the phase space effectively
infinite-dimensional and hence there is a possibility of limit
cycles. So, does delay induce cooperation in the games in
the presence of mutation? How does the interplay between
mutation and delay affect the dynamics? These are the main
questions that we now seek to address in the rest of this paper.

042410-4



EVOLUTIONARY DYNAMICS OF THE DELAYED … PHYSICAL REVIEW E 101, 042410 (2020)

III. DELAYED REPLICATOR-MUTATOR EQUATION

A glance at the replicator-mutator equation for two-player–
two-strategy games involving cooperators and defectors sug-
gests that—whether delay corresponds to the delayed infor-
mation about the population state or in realizing the effect
of interaction among players—mathematically, delay has to
appear in either the state, x, or the expected fitnesses, fi (i ∈
{1, 2}). Thus, to be very general, we speak of a doublet
(τ1, τ2), where τ1 and τ2 are, respectively, the character-
istics delays corresponding to the cooperators and the de-
fectors. How the delays are incorporated in the dynamics
is a different issue that we describe in what immediately
follows.

A. Two types of delay: Social and biological

Consider the rather general case of an infinite unstructured
population consisting of n types of individuals. If the informa-
tion regarding the fitnesses in the population is delayed by τi

(social delay) for each type, or in other words, if individuals
use past information about the population to evaluate their fit-
nesses, then the replicator-mutator dynamics given by Eq. (1)
can be written as

ẋi(t ) =
n∑

j=1

x j (t ) f j (t − τ j )Qji − φxi(t ) − μ[nxi(t ) − 1], (4)

where φ = ∑n
j=1 x j (t ) f j (t − τ j ). If we use the payoff matrix

form given by Eq. (2), then the replicator-mutator dynamics
with social delay takes the explicit form given below:

ẋ = − x2xτ1 [a − b] − x2xτ2 [d − c] + xxτ1 [q(a − b)]

+ xxτ2 [q(c − d ) − 2c + 2d] + x2[d − b]

+ xτ2 [c − d + q(d − c)] + x[q(b + d ) − 2d − 2μ]

+ d (1 − q) + μ, (5)

where the subscripts denote the respective delay in the cor-
responding arguments, e.g., xτ1 means x(t − τ1). For the case
of no mutation and τ1 = τ2 (symmetric delay), this model has
been introduced [29]. The case of asymmetric delay (τ1 �= τ2)
case has also been studied [47] in the absence of mutation.

The second type of delay—biological delay—that interests
us comes into action in the systems where the effect of an
interaction is not instantaneous and consequently there is a
delay in realizing the payoff of an interaction. Thus, both the
fitness of an individual and the state of the population used in
replicator-mutator dynamics should be calculated at the past
instant when the interaction happened. Mathematically, the
delayed replicator-mutator dynamics should be cast as

ẋi(t ) =
n∑

j=1

x j (t − τ j ) f j (t − τ j )Qji − φxi − μ[nxi(t ) − 1],

(6)

where φ = ∑n
j=1 f j (t − τ j )x j (t − τ j ). Again, for payoff ma-

trix given by Eq. (2), the replicator-mutator dynamics with

biological delay has the following form:

ẋ = −xx2
τ1

[a − b] − xx2
τ2

[d − c]

+ xxτ1 [−b] + xxτ2 [−c + 2d] + x2
τ1

[q(a − b)]

+ x2
τ2

[d − c − q(d − c)] + xτ1 [bq]

+ xτ2 [(c − 2d )(1 − q)] + x[−d − 2μ] + d (1 − q) + μ.

(7)

This has also been studied [29] in the case of symmetric
delay and no mutation.

Equipped with the aforementioned governing equations,
we want to attempt to understand the combined effect of muta-
tion and delay on the evolution of cooperation. Specifically, in
what follows, we work with symmetric delay (τ1 = τ2 = τ )
and two types of asymmetric delay—(0, τ ) and (τ, 0). This
choice helps us to reduce the number of delay parameters to
work with only one, i.e., τ .

B. Linear stability analysis

The next logical step in the search of stable limit cy-
cle in Eqs. (5) and (7) is to perform linear stability anal-
yses on the equations and look out for the Hopf bifurca-
tion. The eigenvalues (λ) dictating the stability of the corre-
sponding fixed point can be obtained from the characteristic
equation [48]:

λ + αe−λτ = β, (8)

where α and β are real functions of the system parameters,
viz., payoff matrix elements and mutation parameters. The pa-
rameters α and β can be expressed in terms of the Jacobians,
J0 = (dẋ/dx)x=x∗ and Jτ = (dẋ/dxτ )x=x∗ . Explicitly, α and β

are −Jτ and J0, respectively.
The infinite possible solutions [49,50] to Eq. (8) can be

written as

λk = β + Wk (−ατe−βτ )

τ
, ∀k ∈ Z, (9)

where Wk is the kth branch of the Lambert W function. The
principal branch of the Lambert W function corresponds to
k = 0.

The use of the Lambert W function in the analysis of
stability of fixed points in delay differential equations is
widely discussed in standard literature [49–54]. Re(λk )—real
part of λk—is maximum for k = 0 as W0 has maximum real
part among all Wk [50,52]. Thus, one can say that the stability
of a fixed point in the presence of delay is solely determined
by the eigenvalue, λ0, corresponding to the principal branch of
the Lambert W function. We expect emergence of stable limit
cycle as a consequence of Hopf bifurcation about a fixed point
when it has purely imaginary λ0 and all other eigenvalues are
such that Re(λk ) < 0 [55–59].

Consequently, we focus on the solution for λ0. We first note
that λ0 is real if W0 is real. This implies −ατe−βτ � −1/e or
α � eβτ /eτ . Therefore, if α � [eβτ /eτ ] ∀τ > 0—or in other
words, α � minτ [eβτ /eτ ]—then λ0 is always real ∀τ > 0.
If, however, α > minτ [eβτ /eτ ], then λ0 is complex for some
τ > 0. It is easy to note that condition α > minτ [eβτ /eτ ] is
equivalent to condition α > max{0, β}.
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FIG. 3. Stable limit cycle emerges following the Hopf bifurcation in the SH game for social asymmetric delay (0, τ ): Color-filled areas
in subplot (a) marks the total region in the mutation parameter space where stable limit cycle emerges at some threshold value of delay. The
fixed points that undergo the Hopf bifurcation in the green, the yellow, the cyan, and the blue colors are Xm, Xm and X−, X− and X+, and X+,
respectively. Subplots (b), (c), and (d) showcase the phase diagram corresponding to some point belonging to the green, the cyan, and the
blue region, respectively, in q-μ space. In particular, we fix q, μ, and τ as 0.87, 0, and 9.1; 0.988, 0.196, and 6.5; and 0.924, 0.07, and 12,
respectively, in subplots (b), (c), and (d). The filled circle, unfilled circle, and cross in the phase plots, respectively, represent stable focus,
unstable focus, and saddle. The red, the blue, and the green curves are representative phase trajectories approaching attractors.

Now, consider that α > max{0, β} and assume that ∃ τ =
τH > 0 at which λ0 = iω, a purely imaginary number. By
putting this in Eq. (8), and separating the real and the imagi-
nary parts, we get

ω2 = α2 − β2, (10)

τH = 1√
α2 − β2

cos−1

(
β

α

)
. (11)

For τH to be real, ω must be real; in this case it means
that in addition to α > β (trivially satisfied because of the
condition: α > max{0, β}), α + β > 0 must also hold. These
considerations give us the recipe to find the stable limit cycle
solutions in the two-player–two-strategy replicator-mutator
equation with social and biological delays, either symmetric
or asymmetric: All one has to do is to find the system
parameters such that the corresponding α and β obey both
the inequalities—α > max{0, β} and α + β > 0.

C. Limit cycle and cooperation

Since the existence of a stable limit cycle in the dynamics
means coexistence of cooperators and defectors, the level
of cooperation in the game is closely associated with limit
cycles. This is especially important in those cases where
defect strategy corresponds to an attracting fixed point of the
dynamics in the absence of mutation and delay that when
present induce cooperation in the games through limit cycles.
Having already fixed the payoff matrix elements (see Fig. 1),
it is the set of mutation parameters, q and μ, which decide
when stable limit cycles are possible in accordance with
the recipe outlined in the immediately preceding subsection.
After investigating all the four classes of games for both the
symmetric and the asymmetric delays of both the social and
the biological types, below we report only the cases when a
stable limit cycle could be firmly established analytically and
numerically. Interested readers may refer Appendix A to find
the summary of what happens when there is no mutation but
delay is in play.

To begin with, we consider the SH game. We find that
all the three fixed points (Xm, X−, and X+) undergo the
Hopf bifurcation leading to the emergence of a stable limit
cycle for social asymmetric delay where delay is only in
the defector’s fitness (refer to Fig. 3). It is clear from the
figure that delay alone, in the absence of any mutation,
cannot lead to any limit cycle. A stable limit cycle is also
possible in the case of symmetric biological delay when the
fixed point Xm undergoes Hopf bifurcation as illustrated in
Fig. 4.

Recall that when mutation is present, Xm is the only physi-
cal fixed point of the replicator-mutator dynamics for the SD
game. This fixed point changes stability and gives way to
the Hopf bifurcation when social delay—whether symmetric
or asymmetric (delay only in defector’s fitness)—is in play.
The illustrative limit cycles and the corresponding region of
mutation parameter space are presented in Fig. 5. As an aside,
we point out that unlike the SH game, in the absence of any

0.00 0.05 0.10 0.15 0.20

q
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x
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0.1

0.2

ẋ

(b)

FIG. 4. Stable limit cycle emerges following the Hopf bifurca-
tion in the SH game for biological symmetric delay (τ, τ ): Gray
area in subplot (a) marks the region in the mutation parameter
space where stable limit cycle emerges at some threshold value of
delay. The fixed point that undergoes the Hopf bifurcation is Xm.
Subplot (b) showcases an illustrative phase diagram corresponding
to q = 0.097, μ = 0.001, and τ = 10 picked from the gray region.
The unfilled circle represents unstable focus, Xm; and the red and
the blue curves are representative phase trajectories approaching the
limit cycle from inside and outside, respectively.
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ẋ
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FIG. 5. Stable limit cycle emerges following the Hopf bifurca-
tion in the SD game for social delay: Gray areas in subplots (a) and
(c) mark the regions in the mutation parameter space where stable
limit cycle emerges at some threshold value of asymmetric delay
(0, τ ) and symmetric delay (τ, τ ), respectively. The fixed point
that undergoes the Hopf bifurcation is Xm. Subplots (b) and (d),
respectively, showcases illustrative phase diagrams corresponding to
q = 0.9, μ = 0.1, and (τ1, τ2) = (0, τ ) = (0, 5); and q = 1, μ = 0.1
and (τ1, τ2) = (τ, τ ) = (30, 30) picked from the gray regions. The
unfilled circle represent unstable focus, Xm; and the red and the blue
curves are representative phase trajectories approaching the limit
cycles from inside and outside, respectively.

mutation, i.e., q = 1 and μ = 0, we can find stable limit cycle
[30] in the SD game.

The game of the PD is different from both the SH and the
SD games in the sense that it allows the emergence of a stable
limit cycle when symmetric biological delay is incorporated
in the replicator-mutator equation (see Fig. 6). The Harmony
game is similar to the PD game in the sense that it also requires
biological delay for exhibiting limit cycle behavior, however,
unlike the PD game, the biological delay has to be asymmetric
such that the delay is only in the cooperator’s fitness (see
Fig. 7). X− and X+ undergo the Hopf bifurcation in the PD
game and the HG respectively.

IV. DISCUSSION AND CONCLUSION

Before we conclude, let us first succinctly point out the
salient features of the aforementioned scenarios of the Hopf
bifurcation: First, it is interesting to note that while the stable
limit cycles appear at relatively low values of additive mu-
tation, it is not always so with the multiplicative mutation;
for a limit cycle to appear in the case of social delay, the
multiplicative mutation has to be relatively weak (high q-
values). Whenever a limit cycle is born in the presence of
biological delay, the multiplicative mutation is needed to be
quite high (low q-values). Second, out of all the cases studied,

0.00 0.05 0.10 0.15 0.20
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0.15

0.20

μ
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0.3 0.4 0.5 0.6 0.7 0.8

x

−0.10

−0.05
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0.10

ẋ

(b)

FIG. 6. A stable limit cycle emerges following the Hopf bifur-
cation in the PD game for biological symmetric delay (τ, τ ): Gray
area in subplot (a) marks the region in the mutation parameter space
where stable limit cycle emerges at some threshold value of delay.
The fixed point that undergo the Hopf bifurcation is X−. Subplot
(b) showcases an illustrative phase diagram corresponding to q =
0.07, μ = 0, and τ = 20 picked from the gray region. The unfilled
circle represent unstable focus, X−; and the red and the blue curves
are representative phase trajectories approaching the limit cycle from
inside and outside, respectively.

the HG is the only case where the delay has to be solely in
the fitness of the cooperators for limit cycles to exist and it
should be recalled that in the HG, cooperate-strategy is the
sole dominant Nash strategy (hence, ESS) unlike the other
three classes of games. Third, in the presence of optimal
delay, the SH game, the PD game, or the HG can possess
stable limit cycles only if there is a finite nonzero mutation
in the system. Fourth, it is worth noting that the SH is
the only game where a stable limit cycle emerges for both
social delay and biological delay, and the SD is the only
game where biological delay does not lead to a stable limit
cycle.

We remind the readers that to arrive at the results
listed above, we have modified the replicator-mutator dy-
namics corresponding to two-player–two-strategy games—in

0.00 0.02 0.04 0.06 0.08
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−0.1

−0.2

ẋ

(b)

FIG. 7. Stable limit cycle emerges following the Hopf bifurca-
tion in the HG for biological asymmetric delay (τ, 0): Gray area
in subplot (a) marks the region in the mutation parameter space
where a stable limit cycle emerges at some threshold value of delay.
The fixed point that undergoes the Hopf bifurcation is X+. Subplot
(b) showcases an illustrative phase diagram corresponding to q =
0.014, μ = 0.002, and τ = 20 picked from the gray region. The filled
circle represents unstable focus, X+; and the red and the blue curves
are representative phase trajectories approaching the limit cycle from
inside and outside, respectively.
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FIG. 8. Emergence of limit cycle in the absence of mutation: The
gray region schematically marks the region in S-T space where the
interior physical fixed point, xm, can undergo the Hopf bifurcation for
the cases of (a) social asymmetric delay (0, τ ), (b) social asymmetric
delay (τ, 0), (c) social symmetric delay (τ, τ ), and (d) biological
asymmetric delay (0, τ ). Other cases are not shown as there is no
possibility of a limit cycle in those cases. The red region emphasizes
that no interior physical fixed point and hence, a physical limit cycle
around it, is impossible.

particular, the SH, the SD, the PD, and the HG—to in-
clude the social and the biological delays. To the best of
our knowledge, the insightful interplay between the muta-
tion (both additive and multiplicative) and the delays has
never been investigated either analytically or numerically as
undertaken in this paper. It is obvious that the search for a
limit cycle in such systems is linked with the bigger question

FIG. 9. Three ordinally inequivalent SD games: The lines S =
0, T = 1, S = 1, and S = T divide the SD class of games in three
distinct games, SD-I, SD-II, and SD-III. We show a representative
payoff matrix for each of the games.
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FIG. 10. Linear stability of the fixed points of the replicator-
mutator equation corresponding to SD-II and SD-III. The top row
depicts the variation of fixed points Xm (green), X− (red) and X+
(blue) with the change in mutation parameter q (for two values
of parameter μ) when the payoff matrix corresponds to (a) SD-II
game and (c) SD-III game. The corresponding eigenvalue, λ, of the
Jacobian found in the course of linear stability analysis is plotted
in the bottom row (following the color conventions used for the top
row) for (b) SD-II game and (d) SD-III game. The solid line stands
for μ = 0 while the dashed line is for a nonzero μ, specifically, 0.5
for SD-II game and 0.2 for SD-III game.

of the evolution of cooperation through simple but instruc-
tive games. Also, seen from another perspective, the delay
and the mutation leads to coexistence of (pheno-)types in a
population.

Nevertheless, an important question may and should be
raised: Two-player–two-strategy symmetric games can be
classified into 12 ordinal classes [60] that can be collected
into four game-types—the SH, the SD, the PD, and the
HG—based on how cooperate strategy fares or, equivalently,
what the Nash equilibria are. While the PD game has only
one type of ordinal game, the SH, the SD, and the HG
has, respectively, three, three, and five ordinally inequivalent
payoff matrices and corresponding games. Moreover within
each ordinally distinct game, there can be games that are
connected by some cardinal transformation. In simpler terms,
while this paper deals with two free parameters, q and μ,
actually even the payoff matrix elements could be treated
as parameters. So, how would all the results qualitatively
and quantitatively change if even the payoff matrix elements
were varied? One immediately notes that a study spanning
the full six-dimensional parameter space would be daunting.
Nevertheless, as an indication of what to expect, we present a
detailed analysis of the three ordinally inequivalent SD games
and the cardinally related SD games in Appendices B and C,
respectively.
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FIG. 11. Stable limit cycle emerges following the Hopf bifurca-
tion in SD-II game for social delay: Gray areas in subplots (a) and
(c) mark the regions in the mutation parameter space where stable
limit cycle emerges at some threshold value of asymmetric delay
(0, τ ) and symmetric delay (τ, τ ), respectively. The fixed point
that undergoes the Hopf bifurcation is Xm. Subplots (b) and (d),
respectively, showcases illustrative phase diagrams corresponding
to q = 0.92, μ = 0.02, and (τ1, τ2) = (0, τ ) = (0, 7); and q = 0.9,
μ = 0.1 and (τ1, τ2) = (τ, τ ) = (5, 5) picked from the gray regions.
The unfilled circle represent unstable focus, Xm; and the blue and the
red curves are representative phase trajectories approaching the limit
cycles from inside and outside, respectively.

It is worth pointing out that there are many possible future
research directions that can be pursued following this paper:
We have limited our analysis only to two-player–two-strategy
games because our intention has been to bring the intricacy
of the delayed dynamics to the fore and for this purpose,
these games are the simplest yet conveniently nontrivial.
Extension of our work to the games with more strategies—
e.g., the rock-paper-scissors game [61] and the problem of
grammar acquisition [36]—would definitely be exciting. It
is known that the replicator equation with additive mutation
leads to coexistence in the game [35] but how the game
behaves under multiplicative mutations and delay remains
unexplored. Following the route of investigation delineated
herein one should be able to attack similar problems in the
discrete replicator equations [60], in the repeated games,
and also in other types of selection-dynamics [8]. Further-
more, one could start with a model of selection-replication-
mutation dynamics in a finite population and study the effect
of the delay therein with a view to contrasting the result-
ing stochastic dynamics with the corresponding deterministic
dynamics obtained in the limit of infinite populations. Last
but not the least, the simultaneous effects of the delay and
the mutations in a structured population may spring a few
surprises.
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FIG. 12. Stable limit cycle emerges following the Hopf bifurca-
tion in SD-III game for social symmetric delay (τ, τ ): Gray area
in subplot (a) marks the region in the mutation parameter space
where stable limit cycle emerges at some threshold value of delay.
The fixed point that undergoes the Hopf bifurcation is Xm. Subplot
(b) showcases an illustrative phase diagram corresponding to q =
0.9, μ = 0.1, and τ = 12 picked from the gray region. The unfilled
circle represents unstable focus, Xm; and the red and the blue curves
are representative phase trajectories approaching the limit cycle from
inside and outside, respectively.

APPENDIX A: CASE OF NO MUTATION

In this Appendix, we briefly present when stable limit
cycles can emerge in two-play–two-person symmetric games
under the replicator equation with social and biological delay,
i.e., Eqs. (5) and (7) but with q = 1 and μ = 0. It is known
that there are actually 12 ordinally distinct games [60,62,63]
whose payoff matrices, owing to positive affine transfor-
mations, can be compactly represented by a two-parameter
matrix:

Π =
[

1 S
T 0

]
; T, S ∈ R. (A1)

Since we are interested only in physical limit cycles, i.e., the
limit cycles which do not go beyond the interval [0,1], we
should consider only those games that have a physical interior
fixed point (xm) that may undergo the Hopf bifurcation. This
happens only for the SH class (T < 1 and S < 0) and the
SD class (T > 1 and S > 0), each of which consists of three
ordinally inequivalent games. Subsequently, following the
method outlined in the main text of this paper, we find when
the games within these classes undergo the Hopf bifurcation
and a stable limit cycle emerges about xm when delay is above
some threshold value. Figure 8 exhibits the conclusions for
all the kinds of delays employed in this paper. We remark
that our results regarding the emergence of stable limit cycles
for social symmetric delay [refer to Fig. 8(c)] matches with
that found in literature [30]; other results are unreported
elsewhere. Also, note that there is no limit cycle behavior
possible for the SH game in the absence of mutation.

APPENDIX B: ORDINAL INEQUIVALENT SD GAMES

Since based on what the Nash equilibria are, two-player–
two-strategy symmetric games can be classified into 12 ordi-
nal classes, we compare the delayed replicator dynamics of
the inequivalent ordinal games. To this end, the class of the
SD games that has three ordinally distinct games as shown in
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FIG. 13. Emergence of limit cycle depends on scaling and shift-
ing of the payoff matrix: We fix q = 0.9 and μ = 0.1, and gray the
region in δ-γ space [see Eq. (C2)], where Xm undergoes the Hopf
bifurcation for SD-I game with social asymmetric delay, (0, τ ).

Fig. 9. The representative payoff matrix that we have studied
earlier within the SD class (refer Fig. 1) belongs to SD-I
ordinal structure. To make our study complete, we study the
dynamics of SD-II and SD-III ordinal class of games in the
delayed replicator-mutator models.

In Fig. 10 we showcase the variation of fixed points and
their corresponding eigenvalues (on doing linear stability
analysis) for the nondelayed case as a function of multiplica-
tive mutation (q) for two given additive mutation (μ) values.
We note that qualitatively the behaviours of SD-II and SD-III
are same as that of SD-I: In the presence of mutation, the fixed
point X+ is unphysical (a value outside [0,1]). The other fixed
point X− is unphysical whenever μ �= 0 (irrespective of the
value of q). When μ = 0, X− = 0 for all possible values of q.
Xm is the only fixed point that is always existent irrespective of
how much mutation is in action. Furthermore, as done for SD-
I game earlier, we find the region in mutation parameter space
where a stable limit cycle emerges following Hopf bifurcation
(refer to Fig. 11) for SD-II and SD-III ordinal games. We also
illustrate the limit cycles using the phase plots corresponding
to one point from the corresponding mutation parameter space

in Fig. 11. It is interesting to observe that stable limit cycle
emerges in SD-II for both social asymmetric and symmetric
delay [Figs. 11(a) and 11(c), respectively], whereas SD-III
shows stable limit cycle only for social symmetric delay
[Fig. 12(a)].

APPENDIX C: CARDINAL EQUIVALENT SD GAMES

We know that positive affine transformations,

γ

[
a b
c d

]
+ δ

[
1 1
1 1

]
=

[
a′ b′
c′ d ′

]
; γ ∈ R+, δ ∈ R, (C1)

leads to cardinally equivalent games within a distinct ordinal
structure of the payoff matrix. The same ordinal structure
implies the same rational outcome for a given one-shot game.
However, it does not guarantee that the solutions of the de-
layed replicator-mutator equation based on the payoff matrix
is independent of the parameters, γ and δ, of the affine
transformation. Hence, it is important to understand what
significant change happens in the dynamics when one deals
with cardinally equivalent games. For the sake of convenience
and continuity, we yet again consider the SD class of games to
find the region in γ -δ space where a stable limit cycle emerges
following the Hopf bifurcation for a given mutation strength.

Our line of argument to find stable limit cycle is the same as
discussed in the main text. First, we consider SD-I game and
use the payoff matrix given in Fig. 1. The matrix is scaled and
shifted through the following positive affine transformation:

Π = γ

[
2 1
3 0

]
+ δ

[
1 1
1 1

]
; γ ∈ R+, δ ∈ R. (C2)

The fixed points of the replicator-mutator dynamics for this
cardinally transformed game when q = 0.9 and μ = 0.1 are

Xm = 1

2
,

X− = 1

10γ
(6γ −

√
36γ 2 + 10δγ + 10γ ),

X+ = 1

10γ
(6γ +

√
36γ 2 + 10δγ + 10γ ).

The values of the mutation parameters are so chosen because
they do give rise to stable limit cycles for social delay be-
fore any transformation is effected. On doing linear stability
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FIG. 14. The emergence of a limit cycle depends on scaling and shifting of the payoff matrix: We fix q = 0.9 and μ = 0.1, and gray the
region in δ-γ space where Xm undergoes the Hopf bifurcation for the SD games with payoff matrices given in Fig. 9. In particular, subplots
(a)–(e), respectively, correspond to the case of SD-I game with social asymmetric delay, (0, τ ); SD-I game with social symmetric delay, (τ, τ );
SD-II game with social asymmetric delay, (0, τ ); (d) SD-II game with social symmetric delay, (τ, τ ); and SD-III game with social symmetric
delay, (τ, τ ).
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analyses about the fixed points and finding the characteristic
equations having same form as in Eq. (8), e.g, about Xm, we
get α = 6γ /10 and β = (−1/10)(γ + 2δ + 2). Now, we find
the region in γ -δ space where the Hopf bifurcation leads to the
emergence of stable limit cycle (see Fig. 13) by imposing the
conditions α = max{0, β} and α + β > 0. We do similar cal-
culation using the payoff matrices for SD-II and SD-III given
in Fig. 9. We show the corresponding results in Fig. 14 where
only those cases of delay are shown where there is any possi-

bility of stable limit cycle. In conclusion, there is no denying
the fact that detailed dynamics depends on the exact values
of the payoff matrix elements although there is a qualitative
similarity in the results that the limit cycles, if at all, are still
seen only for the social delay case in the SD game irrespective
of whether it is SD-I, SD-II, or SD-III. However, it must be
kept in mind that we have not explored what happens for all
possible payoff matrices that is a daunting task but it does not
appear to us to be leading to any fundamentally new insight.
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