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Gamma-band correlations in the primary visual cortex
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This paper generalizes and extends previous work on using neural field theory to quantitatively analyze the
two-dimensional (2D) spatiotemporal correlation properties of gamma-band (30–70 Hz) oscillations evoked by
stimuli arriving at the primary visual cortex, and modulated by patchy connectivities that depend on orientation
preference (OP). Correlation functions are derived analytically for general stimulus and measurement conditions.
The theoretical results reproduce a range of published experimental results. These include (i) the existence of
two-point oscillatory temporal cross correlations with zero time lag between neurons with similar OP; (ii) the
influence of spatial separation of neurons on the strength of the correlations; and (iii) the effects of differing
stimulus orientations. They go beyond prior work by incorporating experimentally observed patchy projection
patterns to predict the 2D correlation structure including both OP and ocular dominance effects, thereby relaxing
assumptions of translational invariance implicit in prior one-dimensional analysis.
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I. INTRODUCTION

The primary visual cortex (V1) is the first cortical area to
process visual inputs that arrive from the retina via the lateral
geniculate nucleus (LGN) of the thalamus, and it feeds the
processed signals forward to higher visual areas, and back to
the LGN. The feed-forward visual pathway from the eyes to
V1 is such that the neighboring cells in V1 respond to neigh-
boring regions of the retina [1]. V1 can be approximated as
a two-dimensional (2D) layered sheet [2]. Neurons that span
vertically through multiple layers of V1 form a functional
cortical column, and these neurons respond most strongly to
a preferred stimulus orientation, right or left eye, direction of
motion, and other feature preferences. Thus, various features
of the visual inputs are mapped to V1 in different ways, and
these maps are overlaid such that a single neural cell responds
to several features. All feature preferences within a small
subarea of the whole visual field are mapped to a fundamental
region of V1, which is often termed as a hypercolumn [3–5].

A prominent feature of V1 is the presence of ocular
dominance (OD) stripes, which reflect the fact that left- and
right-eye inputs are mapped to alternating stripes ≈1-mm
wide, with each hypercolumn including left- and right-eye
OD regions. Orientation preference (OP) of neurons for par-
ticular edge orientations in a visual field is determined by its
receptive field properties, and it is mapped to regions within
each hypercolumn such that neuron patches with particular
OP are located adjacent to one another and OP spans the
range from 0◦ to 180◦. Typically, OP varies with azimuth
relative to a center, or singularity, in the hypercolumn in an
arrangement called a pinwheel. The OP angle in each pin-
wheel rotates either clockwise (negative pinwheel) or coun-
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terclockwise (positive pinwheel), and neighboring pinwheels
have opposite signs [6–11]. Hence, a hypercolumn must have
left and right OD stripes with positive and negative pinwheels
in each to cover the full set of the OP and OD preference, as
suggested by Refs. [12,13]. In Figs. 1(a) and 1(b) we illustrate
a negative pinwheel and a positive pinwheel, respectively,
while Figs. 1(c) and 1(d) show a hypercolumn containing four
pinwheels and a lattice of such hypercolumns, respectively.
In such a lattice, the schematic resembles maps reconstructed
from in vivo experiments, although the stripes have been
approximated as straight here [6,14–16].

An additional feature of V1 is that groups of neurons
with similar OP are preferentially linked within and between
hypercolumns by patchy lateral connections [17,18]. Further-
more, patchy connections into and out of a given OP region
are concentrated along an axis that points in the direction
of the OP. This means that neurons that are sensitive to a
contour of given orientation preferentially project to (and
receive projections from) neurons of similar OP located along
the continuation of that contour, which has been argued to
be important to the completion of occluded contours and
the binding problem [5,19–21]. Most notably, the projections
from a given hypercolumn depend strongly on the OP at the
source neurons within that hypercolumn and are thus strongly
anisotropic [22].

When one considers neural activities in V1, numerous
experiments and studies on multiunit activities (MUAs) and
local field potentials (LFPs) in area 17 of cats [23–28] have
shown that neurons with similar feature preference in V1
exhibit synchronized gamma-band (30–70-Hz) oscillations
when the stimulus is optimal. They also showed that the
corresponding two-point correlation functions of MUAs or
LFPs commonly have peaks at zero time lag. Moreover, these
synchronized gamma oscillations in V1 arise from the spatial
structure of V1, modulated by the specific feature preferences
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FIG. 1. Schematics of visual feature preference maps in V1
with color bars indicating OP in degrees. (a) Negative pinwheel.
(b) Positive pinwheel. (c) Hypercolumn. The vertical line divides
the hypercolumn into left and right OD columns of equal width,
while the horizontal and vertical lines split the hypercolumn into
four squares, each containing one OP pinwheel. The short bars
highlight the OP at various locations. (d) Periodic spatial structure
of OP and OD columns across a small piece of V1 comprising
25 hypercolumns. Dashed lines bound left (L) and right (R) OD
columns. One pinwheel is outlined in white and one hypercolumn
is outlined in black. Frames (a) and (b) are adapted from [29].

involved. It also has been argued that such synchronized
oscillation in the gamma band may be involved in visual per-
ception, the binding of related features into unified percepts,
and the occurrence of visual hallucinations [30–34].

Several existing models have demonstrated nonlinear
mechanisms for zero-lag synchronization in the brain, in terms
of (i) signal relay via interrelated cortical areas for supporting
the synchronization [35] and (ii) brain network modeling
of entrainment, and how network properties such as recur-
rent inhibition, mutual inhibition, and gap junction coupling
can affect the the zero-lag synchrony [36,37]. In addition,
computational methods have been proposed to quantify the
experimental data on zero-lag neuronal synchronization in
the gamma band [38,39]. However, few studies have been
conducted to quantitatively model the effects of the spatial
structure and patchy connections of cortical neurons in the
sensory cortices (we mainly focus on V1 in this paper) and
to integrate them into a neural model of interacting neu-
ral populations to produce the spatiotemporal synchronized
neural activities in the gamma frequency range. One excep-
tion is that Refs. [40–42] used neural field theory (NFT)
with translationally invariant patchy propagation to show that
patchy connectivity could support gamma oscillations with
correlation properties the features of which resembled those
of some of the above experiments. However, the effect of
OP on the patchy propagators was not incorporated and the
correlations were only explored as functions of one spatial
dimension.

In this paper, we generalize and explore the spatiotemporal
correlation functions of Refs. [41,42] to two spatial dimen-
sions, and account for the effect of OP on the patchy propaga-
tors, which involves relaxing previous assumptions of trans-
lational invariance and incorporating the anisotropy of the
overall envelope of patchy connectivity. We then compare the
resulting spatiotemporal correlations with MUA experiments.
In Sec. II, we briefly describe the relevant aspects of NFT
including patchy propagators. In Sec. III, we derive the gen-
eral 2D correlation function in V1 via the linear NFT transfer
function of V1. Section IV describes a spatial propagator,
which modulates the connection strength between cortical
locations that have similar feature preference, and the Fourier
coefficients of this propagator are applied to the numerical
calculation of the correlation properties. The properties of
these correlation functions are explored in Sec. V, including
their predictions for oscillation frequency, time decay, effects
of the spatial separation between the measurement points,
and the modulation by the OP in V1. The predictions are
compared with specific experimental outcomes in Sec. VI, and
the results are summarized and discussed in Sec. VII.

II. THEORY

In order to analyze correlations in the patchily connected
cortex, we first briefly review an established neural field
model of the relevant corticothalamic system in Sec. II A,
and calculation of its approximate transfer function in the
gamma frequency range of several tens of hertz, with further
details of the derivations available in prior papers [41,42].
In Secs. III and IV we generalize the patchy connectivity to
two dimensions, including overall anisotropy of the envelope
of patchy connections, due to OP effects, and calculate the
resulting 2D correlation functions in order to treat the effects
of both OD and OP together. Although this procedure is more
involved than proposing an ad hoc theory that is restricted
to gamma correlations, it links the analysis directly to the
wider body of NFT results and the many constraints they have
already placed on the parameters [40,41,43–49].

A. Neural field theory

NFT averages neural properties and activity over a linear
scale of a few tenths of a millimeter to treat the dynamics
on larger scales, which is appropriate for the present ap-
plications [43,46]. The previously developed corticothalamic
NFT model [40] treats five neural populations, which are the
long-range excitatory pyramidal neurons (e), midrange patchy
excitatory neurons (m), short-range inhibitory interneurons
(i), thalamic reticular neurons (r), and thalamic relay neurons
(s); hence, it is termed the EMIRS model. Figure 2(a) shows
the full EMIRS model and its connectivities between neural
populations, including the axonal fields (described further
below) φab of spike rates arriving at neurons of population
a from those of population b, where a, b = e, m, i, r, s, n. The
external input signal φsn is incident on the relay nuclei.

In this paper, we are mainly concerned with cortical neural
activities in the gamma band (30–70 Hz), which are higher
than the resonant frequency (≈10 Hz) of the corticothalamic
loops. This enables us to neglect the corticothalamic feedback
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FIG. 2. Schematics of the corticothalamic system. (a) The full
EMIRS model with the thalamus shown in the gray rectangle; each
φab quantifies the connection to population a from population b.
(b) The simplified EMIRS model with the thalamic part approxi-
mated as a cortical input.

loops of the full EMIRS model, leading to the reduced model
in Fig. 2(b). This model only includes the cortical excitatory,
midrange, and short-range inhibitory populations, and the
signals from the thalamus are treated as the input to the cortex.
Thus, rather than having feedback inputs from the thalamus,
we approximate these inputs as a common external input φan

to the cortex. The subscript a denotes the three cortical neural
populations (e, m, i).

Normal brain activity has been widely modeled as ap-
proximately corresponding to linear perturbations from a
fixed point, with successful applications to experiments
such as electroencephalographic (EEG) spectra, evoked re-
sponse potentials, visual hallucinations, and other phenomena
[33,44,45,50]. Hence, in the present paper, we restrict atten-
tion to the linear regime, which is justified so long as stimuli
are not too strong.

Cells with voltage-gated ion channels produce action po-
tentials when the soma potential exceeds a threshold θa. In the
linear regime, changes Qa in the mean population firing rate
are related to the mean soma potential Va by

Qa(k, ω) = ρaVa(k, ω), (1)

where ρa is a constant. The mean linear perturbation Va to
the soma potential of neurons a is approximated by summing
contributions Vab resulting from activities of all types of
synapses on neurons in the spatially extended population a
from those of type b. Thus,

Va(r, t ) =
∑

b

Vab(r, t ), (2)

where r is the spatial location on the cortex, approximated as
a 2D sheet, and t is the time. In the Fourier domain, Eq. (2)

can be written as

Va(k, ω) =
∑

b

Vab(k, ω), (3)

where we define the Fourier transform and its inverse via

g(k, ω) =
∫

d2r
∫

dt g(r, t )eiωt−ik·r, (4)

g(r, t ) =
∫

d2k
(2π )2

∫
dω

(2π )
g(k, ω)eik·r−iωt . (5)

Due to the dependence of Vab on the synaptic dynamics,
signal dispersion in the dendrites, and soma charging, the
soma potential corresponding to a delta function input can be
approximated by

Vab(k, ω) = Lab(ω)Pab(k, ω), (6)

where Pab is the arrival rate of incoming spikes, and Lab is the
synapse-to-soma transfer function, with

Lab(ω) = (1 − iω/αab)−1(1 − iω/βab)−1, (7)

where αab and βab are the decay and rise rates of the soma
response, respectively.

In Eq. (6), Pab depends on Qb at various source locations
and earlier times [42], which influences φab to propagate to a
from b via axons, with

Pab(k, ω) = ν̂ab(k, ω)φab(k, ω), (8)

φab(k, ω) = eiωτab�ab(k, ω)Qb(k, ω), (9)

where �ab describes axonal propagation. In Eq. (9), τab is
the time delay between spatially discrete neuron populations
(i.e., not between different r values on the cortex) and ν̂ab

represents the coupling of φab to population a. In the simplest
case of proportional coupling,

ν̂ab(k, ω) = Nabsab, (10)

where Nab is the mean number of synaptic connections to each
neuron of type a from neurons of type b and sab is their mean
strength. More generally, ν̂ can describe couplings that are
sensitive to other features of φab, such as spatial or temporal
derivatives, which can increase sensitivity to features such as
edges in the visual stimulus [40–42].

Axonal propagation can be approximately described by the
damped wave equation [51–53][

1

γ 2
ab

∂2

∂t2
+ 2

γab

∂

∂t
+ 1 − r2

ab�2

]
φab(r, t ) = Qb(r, t ), (11)

where γab = vab/rab is the temporal damping coefficient, vab

is the wave velocity, and rab is the characteristic range of
axons that project to population a from b. In Fourier space,
in the absence of patchy connections, one has [40]

�
(0)
ab (k, ω) = 1(

k2 + q2
0ab

)
r2

ab

, (12)

q2
0abr2

ab = (1 − iω/γab)2, (13)

where k2 denotes the scalar of k · k. To incorporate the patchy
propagation, we approximate the OP-OD structure of V1 as
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being periodic, which results in periodic spatial modulation
of the propagator in Eq. (9), giving [42]

�ab(k, ω) =
∑

K

cK�
(0)
ab (k − K, ω), (14)

where the cK are the Fourier coefficients of the function that
describes the spatial feature preference (i.e., OP and/or OD),
and K ranges over the reciprocal lattice vectors of the periodic
structure [42]. We analyze the cK in Sec. IV below. It is
worthwhile to note that �

(0)
ab (k, ω) is translationally invariant;

however, after including the spatial Fourier coefficients cK,
�ab(k, ω) is only periodic but not translationally invariant
because the orientation of the patchy projections changes
with OP. We could think of Eq. (14) as the spatial Fourier
transform of the product of �

(0)
ab (r, ω) and a function F (r) =∑

K′ cK′eiK′ ·r that describes the variation of the orientation of
the projections with OP.

In order to perform further linear analysis of the system, we
write Qa(k, ω) and Qb(k, ω) via Eqs. (2)–(8), which yields the
set of linear equations

Qa(k, ω) =
∑

b

Xab(k, ω)Qb(k, ω), (15)

with

Xab(K, ω) = Jab(k, ω)�ab(k, ω), (16)

Jab(k, ω) = ρaLab(ω)νab(k, ω)eiωτab . (17)

B. System transfer function and resonances

Turning to the system in Fig. 2, Eqs. (15)–(17) can be used
to write the activity changes Qe in the pyramidal neurons in
terms of changes in the firing rate Qn that implicitly drives the
input signal φsn. At gamma frequencies, where corticothala-
mic feedback is too slow to respond effectively, this was found
to yield [41,42]

Ten(k, ω) = Qe(k, ω)

Qn(k, ω)
= Xen

1 − Xee − Xem − Xei
. (18)

Resonances of the system that determine spatiotemporal
properties of the gamma oscillations arise from the poles
of the transfer function, which correspond to zeros of the
denominator of Eq. (18). At millimeter scales, k � 1/ree and
|Xee| � |Xei|, so the resonance condition becomes

1 − Xem − Xei = 0. (19)

Substituting Eqs. (7), (12), (16), and (17) into Eq. (19) gives

∑
K

Ĝ(k, ω)

(k − K)2r2
em + (1 − iω/γem)2

=
(

1 − iω

αem

)(
1 − iω

βem

)
− Gei

k2r2
ei + 1

, (20)

where

Ĝ(k, ω) = cKρeν̂em(k, ω). (21)

When k ≈ K, the denominator on the left hand side of
Eq. (20) is small, and the corresponding term dominates the
sum over the lattice vectors K for the physiologically realistic

TABLE I. Nominal EMIRS model parameters from the literature
[42,45].

Parameter Variable Value Unit

Synaptodendritic rates αem, αes, αei 80 s−1

βem, βes, βei 800 s−1

Projection range rem 2 mm
rei 0.2 mm
res 0.3 mm

Damping rates γem 500 s−1

γei 1500 s−1

Gains Ges 1.7
Gem 6.9
Gei −15.0

dQe/dVe ρe 4200 V−1 s−1

values of rem and γem in Table I and ω. Although the sum
formally does not converge, the smallest spatial scale of rel-
evance (i.e., ≈0.1 mm) determines the maximum value of K,
which approximately equals to ten times the lowest reciprocal
lattice vector, and it cuts off the sum at this maximum K.
Assuming Ĝ(k, ω) is purely spatial, Ĝ(k, ω) can be written
as Ĝ(K), so Eq. (20) becomes [41,42]

Ĝ(K)

(k − K)2r2
em + (1 − iω/γem)2

=
(

1 − iω

αem

)(
1 − iω

βem

)
− Gei

K2r2
ei + 1

, (22)

Ĝ(K) =
[(

1 − iω

αem

)(
1 − iω

βem

)
− Gei

K2r2
ei + 1

]

×
[

(k − K)2r2
em +

(
1 − iω

γ 2
em

)]
. (23)

Robinson [42] showed that if Ĝ is sufficiently large and
negative each value of K can yield a resonance with frequency

�2 = γ [2αβ(1 − Ĝei ) + γ (p2 + 1)(α + β )]

2γ + α + β
, (24)

where the subscripts em on α, β, and γ are omitted, p2 =
|k − K|2, and Ĝei = Gei/(K2r2

ei + 1). Each pair of K and �

gives a system resonance.

C. Transfer function due to resonances

The correlation analysis of [42] approximated the transfer
function using only the lowest reciprocal lattice vector K. We
generalize that result to include higher order lattice vectors
K j that describe finer spatial structure of the OP map, and
denote the corresponding frequencies as � j . Then, the transfer
function is

Ten(k, ω) ≈
∑

K j ,� j

T0(K j,� j )

(k − K j )2r2
em + q2r2

em

, (25)

T0(k, ω) = JenĴemcK

(1 − Jei )2
, (26)

q2r2
em = (1 − iω/γem)2 + ĴemcK/(1 − Jei ), (27)
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FIG. 3. Schematic for deriving the correlation functions, where
s1 and s2 denote the stimulus or source points and m1 and m2 are the
measurement points. The ellipses in solid green (red) lines indicate
the overall shape of the orientation-modulated propagation from s1

(s2), as given by Eq. (43). The ellipsoids outlined in dotted green
(red) lines indicate the patchiness of the propagation along the OP
of s1 (s2), with period k = 2π/a. The solid and dash-dotted arrows
denote propagation from s1 and s2, respectively, to m1 and m2.

where Ĵem is defined in Eq. (17). Spatially Fourier transform-
ing Eq. (25) then gives

Ten(r, ω) ≈
∑

K j ,� j

[(
2πr2

em

)−1
eiK j ·rT0(K j,� j )K0(q|r|)],

(28)

where K0 is a modified Bessel function of the second kind
[54].

III. CORRELATION FUNCTIONS

This section summarizes the use of transfer functions to
derive the two-point correlation function between the cortical
firing rates measured at two different locations when the
cortex is stimulated at two locations, and generalizing the
analysis of [42] and improving its notation.

We assume the visual cortex receives two temporally un-
correlated and spatially localized inputs at locations s1 and s2.
The spatial localization of inputs corresponds to the fact that
the inputs are retinotopically mapped to V1 (i.e., the stimulus
falls within the receptive fields of the V1 neurons at these
two locations), while the lack of correlation is due to the
facts that the input spike trains from LGN are uncorrelated
with any features having the 25-ms periodicity of gamma
and also that most experiments average over multiple trials,
which is equivalent to random phase inputs (as opposed to
the coherent-phase gamma response, which would only be
strengthened by correlations in the inputs). Further, cortical
activity is measured at m1 and m2. Figure 3 shows a schematic
of typical spatial locations and OPs involved in deriving
the correlation function. The two ellipses in solid green and
red centered at s1 and s2 represent anisotropic propagators

G(r − r′) for OPs φ(s1) = 45◦ and φ(s2) = 0◦. The arrows
indicate propagation of neural activity from sources s j to
measurement points ml .

We first derive equations for the neural activities at m1 and
m2 due to inputs at s1 and s2. The activity � at ml can be
written as

�(ml , t ) =
∑
j=1,2

∫
d2s j

∫
dt jTen(ml , s j, t − t j )�(s j, t j ),

(29)

where Ten(ml , s j, t − t j ) is the transfer function that relates
the activities at ml and time t to the stimulus � at s j and
time t j .

Robinson [42] approximated a spatially localized input
�(s j, ω) as

�(s j, ω) = Aj (ω)δ(r − s j )e
iψ (r,ω), (30)

from which we obtain

�(k, ω) = Aj (ω)e−ik·s j eiψ (s j ,ω), (31)

where the real quantities Aj (ω) and ψ (s j, t j ) are the amplitude
and the phase of the input at s j . We then find

�(k, ω) = Ten(k, ω)
∑
j=1,2

Aj (ω)e−ik·s j eiψ (s j ,ω). (32)

The two-point correlation function between m1 and m2 is
[42]

C(m1, m2, τ ) = 〈�1(m1, t ′ + τ )�2(m2, t ′)〉, (33)

where τ = t − t ′, and the angle brackets refer to the averages
over t ′ and over the phase of the inputs. A Fourier transform
and integration over t ′ achieves the averaging [42] to yield

C(m1, m2, τ ) =
∫

dt ′
∫

dω

2π

∫
dω′

2π

∫
d2k

(2π )2

∫
d2k′

(2π )2

× e−iω(t ′+τ )+iω′t ′+ik·m1−ik′ ·m2

×〈�1(k, ω)�∗
2(k′, ω′)〉 (34)

=
∫

dω

2π

∫
d2k

(2π )2

∫
d2k′

(2π )2

× e−iωτ+ik·m1−ik′ ·m2〈�1(k, ω)�∗
2(k′, ω)〉.

(35)

Substituting Eq. (32) into Eq. (35) and taking the inverse
Fourier transform then gives

C(m1, m2, τ ) =
〈∫

dω

2π
e−iωτ [Ten(m1 − s1, ω)A1(ω)eiψ (s1,ω)

+ Ten(m1 − s2, ω)A2(ω)eiψ (s2,ω)]

× [T ∗
en(m2 − s1, ω)A1(ω)e−iψ (s1,ω)

+ T ∗
en(m2 − s2, ω)A2(ω)e−iψ (s2,ω)]

〉
, (36)

where the angle brackets now denote the average over the
phases at s1 and s2. If the phases of the inputs are random
and uncorrelated,

〈eiψ (s1,ω)eiψ (s2,ω)〉 = δ2(s1 − s2), (37)
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so the cross terms between s1 and s2 in Eq. (36) are zero and

C(m1, m2, τ )

=
∫

dω

2π
e−iωτ {Ten(m1−s1, ω)T ∗

en(m2 − s1, ω)|A1(ω)|2

+ Ten(m1−s2, ω)T ∗
en(m2 − s2, ω)|A2(ω)|2}, (38)

which is the sum of the correlations due to the two stimuli
taken separately.

Finally, substituting Eq. (28) into Eq. (38), assuming in-
puts at different K j are uncorrelated, and letting |A1(ω)| =
|A2(ω)| = 1 for simplicity gives

C(m1, m2, τ )

= (
2πr2

em

)−1
∫

dω

2π
e−iωτ

×
∑

K j ,� j

{[eiK j ·(m1−s1 )T0(K j,� j )K0(q|m1 − s1|)]

× [eiK j ·(m2−s1 )T0(K j,� j )K0(q|m2 − s1|)]∗}
+ {[eiK j ·(m1−s2 )T0(K j,� j )K0(q|m1 − s2|)]
× [eiK j ·(m2−s2 )T0(K j,� j )K0(q|m2 − s2|)]∗}. (39)

Some general aspects of Eq. (39) are that (i) the correlations
depend on the separation of the measurement points and
source points; (ii) the correlations fall off on a characteristic
spatial scale of (Req)−1 because K0(z) ∼ exp(−z) at large z
in the right half of the complex plane; and (iii) for the same
reason there is an oscillation with spatial frequency Imq, while
resonances in T0 select dominant temporal frequencies in the
correlations.

Having been derived systematically from corticothalamic
NFT in the previous sections, Eq. (39) provides a systematic
2D generalization of the prior one-dimensional (1D) analysis
[42]. Moreover, it links directly back to the wider applications
of NFT, mentioned in the Introduction and Sec. II, many
of which have constrained the model parameters, such as
axonal ranges, neural time constants, and gains [40,41,44–
49]. Equation (39) can also provide the starting point for
approximation in terms of simpler mathematical functions,
although we do not do so in the present paper.

IV. SPATIAL PATCHY PROPAGATOR
IN TWO DIMENSIONS

Robinson [42] showed that the gamma response can be
approximated as a sum of resonant responses at various K j .
He further analyzed a spatially 1D system by approximating
the contributions of these poles as Gaussians in k − ω space.
This yielded patchy propagation with a Gaussian envelope as
a function of distance, which explained a number of gamma
correlation properties.

Here we generalize the analysis of Ref. [42] to the spatially
2D cortex to allow for the spatial anisotropy of the envelope
of patchy connections, which extend further along a direction
corresponding to the orientation of the source OP. We quantify
the patchy propagation via the coefficients cK in Eq. (14).
Robinson [42] previously approximated the spatial propagator
in one dimension as a Gaussian function. The propagation

was assumed to be isotropic with its patchiness described as
cos(Kx), which is formed by a pair of complex conjugated
coefficients c+K and c−K, where K is the lowest reciprocal
lattice vector. However, in two dimensions, patches of neurons
with similar feature preference are preferentially connected
[17,55–57], with connections concentrated along an axis cor-
responding to their OP angle [22,58,59]. To model this overall
modulation of the anisotropic propagation, we approximate
the spatial propagator at each point and Fourier transform it to
obtain a set of coefficients cK j , where K j corresponds to the
reciprocal lattice vectors. These coefficients cK j are used to
calculate the transfer function Ten described by Eqs. (26) and
(28).

A reasonable approximation to the envelope of the patchy
connections that emerge from a particular point r′ is an elliptic
Gaussian the long axis of which is oriented at the local OP φ

at r′. If r′ = (x′, y′) and r = (x, y), we have

G(r − r′) = 1

2πσxσy
exp

[
−1

2

(
x2

g

σ 2
x

+ y2
g

σ 2
y

)]
, (40)

where

xg = (x − x′) cos[φ(x′, y′)] + (y − y′) sin[φ(x′, y′)], (41)

yg = −(x − x′) sin[φ(x′, y′)] + (y − y′) cos[φ(x′, y′)], (42)

where σx = 2.6 mm and σy = 0.7 mm are the spatial ranges
along the preferred xg and orthogonal yg directions, with
values chosen to match the experimental findings in a tree
shrew by Ref. [22]. Figures 4(a) and 4(b) show contour plots
of G(r − r′) for OPs of 0◦ and 45◦, respectively, and source
points r′ within a central hypercolumn [see Fig. 1(c)]; these
effects of anisotropy break translational symmetry and cannot
be treated in a 1D approximation.

Patchy propagation is modulated with spatial period k =
2π/a parallel and orthogonal to OD columns, where a ≈
2 mm is the width of the hypercolumn. To incorporate this
modulation, we multiply the oriented elliptic Gaussian func-
tion by a product of cosine functions that reflect this periodic-
ity. This gives an approximate propagator profile of the form

G(r − r′) = 1

2πσxσy
exp

[
−1

2

(
x2

g

σ 2
x

+ y2
g

σ 2
y

)]

× {cos[kx(x − x′)] + 1}{cos[ky(y − y′)] + 1},
(43)

where kx = ky = 2π/a. We use this functional form to gen-
eralize the 1D cosine-modulated Gaussian form of Ref. [42]
to represent the propagator of a given resonance in the
2D anisotropic case. This spatial patchy propagator is not
translationally invariant and cannot be fully represented in
one dimension due to the fact that the orientation of the
patchy projections on the cortex changes with OP within each
hypercolumn. But it is periodic with the period equals to the
width of the hypercolumn. Figures 5(a) and 5(b) show the re-
sulting propagators for φ(r′) = 0◦ and 45◦, with σx = 2.6 mm
and σy = 0.7 mm. For both cases, when r − r′ < 0.5 mm the
underlying neurons respond to the stimulus, regardless of OP.

After performing a 2D Fourier transform on the propa-
gators shown in Fig. 5, the coefficients cK j are illustrated in
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FIG. 4. Plots of Eq. (40) with the central hypercolumn outlined in red square; the color bar shows values of G(r − r′). (a) OP = 0◦. (b) OP
= 45◦.

Fig. 6. Both sets of coefficients only have finite low frequency
components. In the next section, we use a fraction of cK j with
lower K for evaluating the transfer function. The coefficients
with lower K are enough to preserve the basic spatial propa-
gation structure.

V. SPATIOTEMPORAL PROPERTIES
OF THE CORRELATION FUNCTION

Here we first explore the temporal properties of the cor-
relation function in Eq. (39); then we explore its spatial
properties with a single input; lastly, we examine the spatial
correlation in the case of two input sources. In all the cases
described below, the correlation is calculated by numerically
evaluating Eq. (39) and locating m1, m2, s1, and s2 under
different conditions. These conditions include using different
optimal OPs for the measurement points and source points,
and varying the distances between the measurement points.
The results are presented in Fig. 7. All correlations are nor-
malized such that C(m1, m2, τ ) = 1 when s1 = s2 and m1 =
m2 are placed very close to the sources. Table I summarizes
the parameters we use for the calculations. These parameters
have been previously constrained by independent EEG-related
experimental measurements, so they are not free [40,45].

A. Temporal correlation properties

In this section we explore the intrinsically 2D structure
of gamma correlations predicted by our generalized model.
In Fig. 7(a) we illustrate the temporal correlations evoked
by binocular stimulation when s1 and s2 have the same OP
φ(s) = 90◦ and s1 and s2 are located in the same hypercolumn
but different OD columns. The strength of propagation of
neural signals from two sources is indicated by contour lines
of Eq. (43); the propagations are predominantly parallel to
each other in this case. The measurement points m1 and m2

are located in a different hypercolumn to the source points
but also have OPs of 90◦; they are approximately 2 mm away
from each other and are located at approximately 2 mm from
their respective collinear source points. We have also placed
additional measurement points m′

1 and m′
2, with the same OP

as m1 and m2, but approximately 4 mm from the sources.
Figure 7(b) shows the temporal correlation functions

C(m1, m2, τ ) and C(m′
1, m′

2, τ ), where τ is the time lag
between the measurement point and the source. Both oscillate
at around 64 Hz, in the gamma range. Furthermore, each has a
peak centered at τ = 0, so the neural activities at m1 and m2,
m′

1 and m′
2, are synchronized. The time for their envelopes

to decrease to 1/e (∼37%) of the peak value is ≈18 ms.

FIG. 5. Patchy propagator G(r, r′) in Eq. (43) with the central hypercolumn outlined in red square containing the source point r′. The color
bar shows the values of G(r, r′). (a) φ(r′) = 0◦. (b) φ(r′) = 45◦.
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FIG. 6. Fourier coefficients of G(r, r′) in Eq. (43). Each pixel-like square represents one cK j . The color bar shows the magnitudes of the
coefficients. (a) φ(r′) = 0◦. (b) φ(r′) = 45◦.

However, when the measurement points are placed further
away from the sources, the correlation at τ = 0 becomes
weaker, as seen by comparing the two curves.

Figure 7(c) shows a case for which the OP of all sources
and measurement points is equal (at 45◦). Figure 7(d) shows
that the resulting correlation also has a central peak at zero
time lag, oscillates in the gamma band at ≈55 Hz, and its
envelope decreases by 1/e at τ ≈ 21 ms.

In order to explore the correlation properties between OD
columns, we place all the source points and measurement
points collinearly with OP = 0◦ in Fig. 7(e). Synchronized
activities at m1 and m2 are shown by the center peak at
τ = 0 in Fig. 7(f). This correlation also exhibits gamma-band
oscillation at ≈50 Hz, and the decrease by 1/e from the
peak happens at ≈21 ms. One thing worth mentioning here is
that the correlation strength due to intercolumnar connection
shown in Fig. 7(f) is stronger than the intracolumnar connec-
tions in Fig. 7(b).

To further investigate the correlation properties, Fig. 7(g)
shows a case in which the two measurement sites have or-
thogonal OPs, as do the sources: the OP at s1 and m1 is
90◦, while at s2 and m2 it is 0◦. The distance between the
two measurement points is around 5.5 mm. In this case, s1

tends to evoke strong response at m1, but not at m2, which
introduces an anticorrelation between m1 and m2. Similarly,
adding another source s2 only stimulates m2 and it again
makes the activities at two measurement sites anticorrelated.
This negative correlation is exactly shown by our predicted
result in Fig. 7(h), which has a negative peak at τ = 0.

B. Two-dimensional correlations due to a single source

To demonstrate how the correlation strength is influenced
by the location of the measurement sites in two dimensions,
their OP, and the resulting breaking of translational symmetry
relative to prior 1D NFT analysis, we fix the location of a
source s1 and a measurement point m1, as in Fig. 7(a). We
then map the correlation with the second measurement point
m2 at τ = 0 as a function of the latter’s position on V1.
The resulting 2D map is shown in Fig. 8, normalized to the
maximum value of C(m1, m2, 0).

Figure 8 shows a complex pattern the structure of which
is closely tied to the joint OD-OP structure of V1 in two
dimensions.

(i) The strongest positive correlations are located along a
vertical axis passing through the source point s1 the OP of
which is 90◦.

(ii) Patterns of the correlated regions are almost symmetric
around the vertical axis in (i).

(iii) The correlation strength falls off with distance between
the two measurement points, as expected from Eq. (43). In ad-
dition, the correlation nearly vanishes when the measurement
sites are greater than ≈7 mm apart (Fig. 8 only shows this in
the positive y direction, but a similar result can be obtained
in the negative y direction). This agrees with the experimen-
tal results, which suggested that significant oscillatory cross
correlations are not observed when the spatial separation of
neurons exceeds 7 mm.

(iv) The central peak shows that when the distance between
m2 and s1 is less than 0.5 mm the correlations are strong and
do not depend on the OPs at these locations, in accord with
experiments [11,22].

(v) The positive correlations correspond to regions of OP
approximately equal to the OP at s1, while negative correlation
regions correspond to OPs approximately perpendicular to the
source OP angle. This shows that only neurons with similar
OP to the source respond to the input stimulus.

C. Two-dimensional correlations due to two sources

Here we explore the dependence of the correlation function
C(m1, m2, 0) on the 2D position of measurement point m2

with two inputs s1 and s2. The locations of the measurement
points and source points are exactly as in the previous case
and the additional source s2 has the same OP as s1 (i.e., 90◦).

The resulting map shown in Fig. 9 exhibits similar proper-
ties to the previous case with one input, namely, the strongest
correlations between the measurements points are along a
vertical axis, which matches the OP of the sources. The
positive correlation regions along this axis have a spatial
period of 1 mm, corresponding to the minimum distance
between regions having the same OP angle as the sources.
However, the negative correlation regions now tend to align
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FIG. 7. Temporal correlations. (a) Locations of measurement points m1 and m2, and source points s1, and s2 within nine hypercolumns in
V1. All points have OP of 90◦. The left color bar shows the OP and the black circular contour lines scale at the right color bar; the strengths
of propagators given by Eq. (43) are shown with solid and dashed contour lines for propagation from s1 and s2, respectively. (b) Temporal
correlations. The blue curve shows C(m1, m2, τ ), while the orange curve shows C(m′

1, m′
2, τ ). (c) As for (a) but with all points having OP of

45◦. (d) Temporal correlation for (c). (e) As for (a) but with all points having OP of 0◦. (f) Temporal correlation for (e). (g) As for (a) but with
orthogonal OP of the sources. Furthermore, OP at s1 is optimal for m1 whereas OP at s2 is optimal for m2. (h) Temporal correlation for (g).
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FIG. 8. Normalized contour plot of C(m1, m2, 0) on V1, from
Eq. (39) with a single input at s1. The locations of s1 and mea-
surement point m1 are fixed and the location of measurement point
m2(x, y) is given by the axes. The location and OP of s1 and m1 are
the same as shown in Fig. 7(a). The color bar indicates the strength
of the correlation. Dashed lines bound hypercolumns.

horizontally, which represents the direction orthogonal to
the OP. The input source s2 is not surrounded by positive
correlation regions as s1 is; rather, the negative correlations
right above s2 correspond to a region where the OP of m2 is
≈0◦. This is consistent with Sec. V A, where we showed that

FIG. 9. Normalized contour plot of C(m1, m2, 0) on V1, from
Eq.(39) with two inputs s1 and s2. The locations of the sources and
measurement points m1 are fixed and the location of measurement
point m2(x, y) is given by the axes. The location and OP of s1,
s2, and m1 are the same as shown in Fig. 7(a). The color bar
indicates the strength of the correlation function. Dashed lines bound
hypercolumns.

measurement points with orthogonal OPs tend to be anticor-
related at τ = 0. In that case, we have predicted that when the
OPs of two measurement points are 0◦ and 90◦, respectively,
the source that is optimal for one of the measurement sites
introduces negative correlation between the two. Furthermore,
these spatiotemporal patterns of the correlation strength also
support a specific mechanism to encode the visual stimuli. For
example, the specific constellation of activated neural patches
(i.e., the red patches with positive correlation strength along
the vertical axis) in Fig. 8 encodes the vertical orientation and
collinearity of the visual object. This matches the hypothesis
proposed in previous studies [25,28,60,61], which suggested
that stimuli information is coded by the modulated neural
synchronization strength.

VI. COMPARISON BETWEEN THEORY
AND EXPERIMENT

In this section, we compare the predicted correlation func-
tions with experimental correlations obtained from Engel et al.
[24], who published temporal correlation functions of MUA
and LFP data under various conditions, using the default pa-
rameters in Table I, unless otherwise stated. Our 2D analysis
allows the joint OD-OP effects on gamma correlations to be
treated for the first time, without restricting to one dimension
with its implicit approximation of translational invariance of
the patchy propagator. This set of initial tests is designed to
demonstrate the applicability of the methods, and of Eq. (39)
in particular, prior to future applications to a wider variety of
experiments.

A. Description of the experiments

In these experiments, the MUA and LFP measurements
were recorded from an array of electrodes that were inserted
in five to seven spatially separated sites in area 17 of anes-
thetized adult cats, with neighboring recording sites spaced
400–500 μm apart. The locations of the receptive fields of
all the measurement points were within 15◦ of the central
area of the retina. Oriented light bars were used as binocular
stimulation. Each trial lasted for 10 s and one trial set was
composed of ten trials with identical stimuli. During each trial,
the light bars were projected onto a screen that was placed
1.10 m in front of the eye plane of the cat, and the light
bar was moved forward and backward across the receptive
field during each trail. The autocorrelation function (ACF)
and cross-correlation function (CCF) of the MUA data were
computed. CCFs were calculated on each individual trial first,
then averaged to get the final single CCF corresponding to a
specific input stimulus [24].

B. Mapping experimental conditions to a regular lattice

In the present paper, we calculate the temporal correlation
functions for two sets of experimental conditions, where the
only difference between the two is the OP of the stimulus.
One stimulus is oriented at 157◦ and another one oriented at
90◦, as in the original experiments. We try to match to the
experimental conditions as closely as possible by mapping the
measurement points and stimulus onto our regularized grid
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FIG. 10. Schematic of the two experimental conditions, showing
measurement points m1 to m5 and source points on V1. The first
experimental condition corresponds to a stimulus at 157◦ with cor-
responding sources denoted s1 and s2, with solid black contour lines
corresponding to the right color bar showing the propagation. The
second experimental condition corresponds to a 90◦ stimulus. Here,
s3 and s4 are the sources and dotted black contour lines corresponding
to the right color bar showing the propagation strength. Dotted
vertical and horizontal lines bound hypercolumns and the left color
bar shows OP in degrees.

of hypercolumns in the following steps, and the mapping is
shown in Fig. 10.

(i) In Engel et al.’s experiments [24], there were five fixed
measurement points labeled as m1 to m5, placed collinearly
with a separation of 400 μm between adjacent points. Neu-
rons at measurement points m1, m3, and m5 had similar
orientation preference of 157◦, while the OP of the cells at
measurement points m2 and m4 was 90◦. We first place m1 on
the hypercolumn grid, at a location with OP of 157◦. Then m3

and m5 are placed in adjacent hypercolumns with similar OPs.
Finally, m2 is placed between m1 and m3 within a 90◦ OP
region, while m4 is likewise placed between m3 and m5. The
fact that our grid of hypercolumns is regularized compared to
the real OP map introduces slight distortions (<0.5 mm) of the
original cortical surface in order to preserve the measurement
point OPs, so m1 to m5 are not exactly collinear. The OPs of
m1 to m5, computed after mapping onto our regular lattice,
match the OPs given by the experiments to within 1◦.

(ii) The experimental stimulation was binocular, so a single
moving light bar at each point in time maps to source points
on V1 (e.g., s1 and s2, or s3 and s4), both with OP equal to
the bar orientation, one located in the left OD column and
one in the right OD column. The sources s1 and s2 indicate
the 157◦ stimulus, and they have horizontal propagation of
outgoing activities. In order to include m1, m3, and m5 within
the propagation range from these sources, we choose to place
these sources in the hypercolumn to the right of m1 and
approximately in line with these measurement points; we
could place the sources to the left of m5, and produce similar
results due to the symmetry of the grid. We do not put s1 and s2

in between the measurement points (e.g., in the hypercolumn
under m3 in Fig. 10) because this would place m3 within

FIG. 11. Cross correlograms from experimental recordings cal-
culated by [24]. In each case a baseline level of activity shifts the
oscillatory part of the correlation upward and must be subtracted
for comparison with the theoretical results. (a) Cross correlograms
between measurement sites m3 and m5, m1 and m5, and m1 and m3

corresponding to an input light bar oriented at 157.5◦. (b) Autocor-
relograms of m2 and m4 in the top two rows, and cross correlograms
on the bottom row between m2 and m4, corresponding to the vertical
light bar.

0.5 mm of the source, and would result in the neurons at m3

being activated regardless of its OP [22]. This would interfere
with our aim of finding synchronized activities that are related
to OP specific horizontal connections. The sources s3 and s4

represent the 90◦ stimulus, and have vertical propagation, so
we place these sources in the hypercolumn below m2 and
m4 (they could equally well be placed above). Their greater
separation than s1 and s2 is due to the precise arrangement of
different OPs within pinwheels.

(iii) Previous studies [62–64] found that the width of OD
columns in cats is narrower than humans, and is around
0.4 mm. We use human OD column width (≈1 mm) when
modeling the hypercolumns grid, and hence we need to scale
our grid down by a factor of 2.5 in Fig. 10 to match the
experiments. We have also shortened the axon range of our
neural field model (i.e., rem, rei, and res in Table I) by the same
factor during computation.

C. Comparison of predicted and experimental
correlation functions

According to the experimental findings in Engel et al. [24],
when the input light bar was oriented at 157.5◦, measurement
sites m1, m3, and m5 had synchronized oscillatory responses,
and, when the input light bar was oriented at 90◦, m2 and m4

were stimulated simultaneously. Figure 11 shows the CCFs
and ACFs calculated from the experimental data, where the
white (unfilled) correlograms correspond to forward move-
ment of the stimulus, while the black (filled) correlograms
correspond to the backward movements. In Fig. 11(a), the
synchronized activities at m1, m3, and m5 were evoked by
a 157.5◦ oriented stimulus. All the cross correlograms peak
at zero time lag and have an average oscillation frequency
of ≈54 Hz. The envelopes of the correlograms in the top and
bottom rows of Fig. 11(a) decrease to 1/e of their central peak
value at around 45 ms, with all levels measured relative to
baseline activity; the 1-5 correlogram in the middle row is the
only exception with a longer decay time (too long to estimate
accurately from these data). The ACFs and CCF of m2 and m4

from a vertical light bar stimulus are shown in Fig. 11(b). The
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FIG. 12. Normalized temporal cross correlation with zero mean for experimental conditions with stimuli at 157.5◦ and 90◦. (a) Normalized
temporal correlation between measurement sites m3 and m5, m1 and m5, and m1 and m3 for a stimulus at 157.5◦ as illustrated in Fig. 10.
(b) Normalized temporal cross correlation between m2 and m4, and the autocorrelation function at m2 and m4, for a stimulus at 90◦.

CCF between m2 and m4 oscillates at around 55 Hz, and it
takes more than 50 ms for the correlation strength to decrease
to 1/e of its maximum.

Moreover, in the experiments it was also found that the
correlation strength between m1 and m5 was weaker than that
between m1 and m3 and between m3 and m5 [i.e., the bar
that indicates the number of spikes, on the right of the plot in
the second row of Fig. 11(a), has a smaller number than the
other two plots]. This is due to the fact that the spatial distance
between m1 and m5 is the largest, and the correlation strength
falls off with distance.

We next explore the properties of our predicted correlation
functions using Eq. (39) with the experimental conditions.
Figure 12(a) shows the plots of our predicted temporal cor-
relation functions between m3 and m5, m1 and m5, and
m1 and m3. As for the experimental CCFs, the theoretical
CCFs (i) are oscillatory and peak at zero time lag, with the
symmetry being due to the fact that both sources excite the
same neural field of activity, so neither can lead nor lag
the other, a feature shared with the 1D case [42]; (ii) have
an oscillation frequency around 57 Hz that derives from the
local neural resonance properties [41,42]; and (iii) have their
characteristic time for the correlation envelope decrease to a
factor of e of the maximum value at approximately 40 ms.
These theoretical results agree with the experimental results,
once a nonzero mean baseline is subtracted from the latter.
Our results also capture the 2D spatial dependence of the max-
imum correlation strength and the effects of OP, which could
only previously be treated qualitatively in 1D approximations.
The plot in the middle row of Fig. 12(a) corresponds to the
correlation between m1 and m5 and has the smallest amplitude
of the three CCFs.

Figure 12(b) shows the predicted temporal correlation
function generated by the vertical input light bar. In order to be
consistent with the experimental results shown in Fig. 11(b),
the autocorrelation functions of m2 and m4 are also included
in the top two rows of Fig. 12(b). Both ACFs show oscillations
in the gamma band. The CCF between m2 and m4 shows a
center peak at τ = 0 and oscillates at 55 Hz. The time for the
envelope decay to 1/e of the center peak value is 25 ms. These

properties are also in accord with the experimental findings,
including the intrinsically 2D effects due to OP variations.

VII. SUMMARY AND CONCLUSION

We have used 2D NFT of activity in the patchily connected
primary visual cortex to generalize previously predicted spa-
tiotemporal correlation functions to two dimensions in order
to incorporate the joint 2D spatial structure of the OP map
and OD columns of V1. Our results show that the neural
activities are synchronized in the gamma band when neurons
have similar feature preference. Features of the analysis and
resulting predictions include the following.

(i) A 2D shape function has been included to modulate the
experimentally observed spatial patchy propagation of neural
signals preferentially along the OP direction. This models
the propagation such that the mean propagation direction is
aligned with the OP of the source, and the most strongly
connected neurons are patchy and periodically located, while
allowing weaker connections to nearby OPs that fall off
according to a tuning curve consistent with experiment. The
parameters of the shape function are chosen to match the
propagation ranges and tuning curves observed in experiments
[22].

(ii) The 2D two-point spatiotemporal correlation func-
tion has been systematically derived, enabling the correlation
properties of arbitrary combinations of sources and mea-
surement points to be predicted, including both OP and OD
effects.

(iii) The properties of the generalized correlation function
have been illustrated by numerical evaluation for various
combinations of stimulation and measurement sites. The re-
sults demonstrate that synchronized gamma oscillation exists
between paired groups of neurons that have similar OP to
the sources. The correlation strength is predicted to be larger
for intercolumnar connections than for intracolumnar ones,
and to decrease as the measurement points move further
away from the sources, becoming negligible for separations
�7 mm. These features are intrinsically 2D and could not be
obtained with prior 1D analyses.
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(iv) Calculated 2D correlation maps show the changes
expected in the peak correlation strength with respect to the
variation of the OP of one of the measurement sites, and its
distance to a second measurement site. Positive correlations
appear as patches on an axis oriented at the OP of the
source, and negative correlations occur where the OPs of the
measurement sites are orthogonal to the OP of the source.

(v) Predicted temporal correlations have been compared
with an initial set of experimental results from the literature.
The results demonstrate that there is a close match between
both in terms of the oscillation frequency and the character-
istic decay time of the correlation function envelope. In addi-
tion, our CCFs capture the spatial dependence of correlation
strength on distance between the measurement sites. As in one
dimension a peak of correlation is observed at zero time lag
for similar OP sources and measurement points because the
neural activity drives spatially periodic modes—it is impossi-
ble for either of such locations to lead or lag the other; points
with orthogonal OPs are found to be anticorrelated at zero
time lag for analogous reasons, but with the mode having a
peak at one point and a trough at the other. In the present pa-
per, we can get a rough estimation of the correlations with the
locations of the measurement and source points from a more
realistic irregular OP map by substituting these locations into
Eq. (39), but the results need to be validated in future works.

Overall, our generalized spatiotemporal correlation func-
tion reproduces the gamma-band oscillations observed in V1
and relates the spatially distributed neural responses to the

periodic spatial structure of OP and OD in V1. This paper lays
the foundation to further investigate other visual perception
phenomena such as the binding problem which focus on how
different features of a visual object are integrated into a unified
perception [65]. Furthermore, by following from a systematic
NFT derivation, it immediately links the results to the wider
body of successful NFT analyses of brain activity phenomena
and the parameter constraints that they impose [40–49].

Our model can be further extended to correlation anal-
ysis of more realistic OP maps (e.g., OP maps developed
from simulations or measured in experiments), and on other
functional feature maps of V1; how strabismus or interocular
rivalry affect gamma correlations; investigation of the depen-
dences of gamma synchrony on attention, and how the neural
synchronization relates to conscious perception; and study of
abnormal neural synchronization on disorders. In addition,
we could estimate model parameters and compare the model
itself with alternatives by using dynamic causal modeling to
maximize model evidence.
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