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Biological processes that execute complex multiple functions, such as the cell cycle, must ensure the
order of sequential events and maintain dynamic robustness against various fluctuations. Here, we examine
the mechanisms and fundamental structure that achieve these properties in the cell cycle of the budding
yeast Saccharomyces cerevisiae. We show that this process behaves like an excitable system containing three
well-decoupled saddle-node bifurcations to execute DNA replication and mitosis events. The yeast cell-cycle
regulatory network can be divided into three modules—the G1/S phase, early M phase, and late M phase—
wherein both positive feedback loops in each module and interactions among modules play important roles.
Specifically, when the cell-cycle process operates near the critical points of the saddle-node bifurcations, a
critical slowing down effect takes place. Such interregnum then allows for an attractive manifold and sufficient
duration for cell-cycle events, within which to assess the completion of DNA replication and mitosis, e.g., spindle
assembly. Moreover, such arrangement ensures that any fluctuation in an early module or event will not transmit
to a later module or event. Thus, our results suggest a possible dynamical mechanism of the cell-cycle process to
ensure event order and dynamic robustness and give insight into the evolution of eukaryotic cell-cycle processes.
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I. INTRODUCTION

The following summary will establish both a predicate for
the present work and a context for better understanding. The
fundamental cell-cycle network is composed by the complex
interactions among cyclins, CDK (cyclin-dependent kinase),
TFs (Transcription factors), and repressors or inhibitors; and
the network can be separated into three modules, the G1/S
phase and both early M and late M phases, wherein each mod-
ule contains a positive feedback loop. In a well-programmed
sequence of events, DNA synthesis occurs in the S phase,
chromosome separation in mitosis phase (M phase), and fi-
nally, cytokinesis, or cell division. The G1 phase is defined
as the gap after cell division and before the next DNA repli-
cation, while the G2 phase is defined as the gap after DNA
replication and before nuclear division [1]. In the beginning of
the cell cycle, the repressor is usually in a highly active state to
inhibit the activity in M phase events. After the execution of an
S phase event, the repressor degrades, triggering the M phase
event. Thus, the previous event activates the next one through
checkpoints, but the next successive module can also inhibit
the previous module. Finally, the late M phase module turns
on the G1 repressors or inhibitors to ensure the switch-off of
all modules.
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To ensure the inheritance of genetic information, the
cell-cycle regulatory network should control these cell-cycle
processes toward stability and robustness to various environ-
mental conditions and noise inside the cells [2]. In addi-
tion, eukaryotic cell-cycle processes are armed with a series
of biochemical switches that control DNA replication and
mitotic events so that they occur in sequential order [3].
Checkpoints along the molecular pathway help to ensure the
orderly progression of the cell cycle and the completion of
early events before the start of later events—operations that
are indispensable for a normal cell cycle during such pro-
cesses as DNA replication and chromosome alignment [4–6].
The checkpoint pathway typically consists of sensor proteins,
which detect problems with DNA, signal transduction kinases,
and effector proteins that regulate cell-cycle function.

In recent years, quantitative biology investigating the cell-
cycle process, especially the single-cell model organism bud-
ding yeast Saccharomyces cerevisiae, has increased our under-
standing of the mechanisms regulating the cell-cycle process
[7]. At a slightly different perspective from that presented
above, the cell-cycle process can be considered as a series of
switches, including entrance of S phase [8–10], entrance of
M phase [11], and the metaphase-anaphase (M/A) transition
[12]. Modeling cell-cycle processes, especially positive feed-
back and nonlinear interactions in the cell-cycle regulatory
network, together with quantitative experimental results, has
highlighted the mechanisms and structural architecture in the
cell-cycle process from a more quantitative and systematic
perspective [13].
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In this paper we utilize quantitative modeling and nonlinear
dynamic analysis to study the global dynamic properties in
the cell-cycle process of budding yeast. We propose to reveal
the dynamic mechanisms and the fundamental structures of
regulatory networks that ensure the robustness of the cell-
cycle process against microenvironmental fluctuations and
noise. Our results show that the yeast cell-cycle process and
G1 state are dynamically and structurally stable and robust
against changes in initial states and kinetic parameters. The
nonlinear and parameter sensitivity analyses suggest that the
yeast cell-cycle regulatory network can be separated into three
modules: G1/S phase, early M phase, and late M phase,
wherein both positive feedback loops in each module and
interactions among modules play important roles in govern-
ing the yeast cell-cycle process. Positive feedback loops in
each module constitute the impetus that triggers saddle-node
bifurcations, which, in turn, provide genetic switches for key
transitions in the cell-cycle process, while balance among
modules ensures the orderly sequence of DNA replication
and mitosis events. Imbalance would result in new attractors
in the S phase or early M phase, or limit cycles altogether.
Specifically, when the cell-cycle process operates near-critical
points of saddle-node bifurcations, a critical slowing down or
ghost effect takes place, and the cell-cycle process behaves as
a robust dynamical trajectory.

II. RESULTS

In this work, we first constructed a self-evolving simplified
cell-cycle model to simulate the cell-cycle process in the wild-
type (WT) and mutant stains in budding yeast. We compared
and modified the simulation results with yeast experimental
data to obtain a set of kinetic parameters with which to
depict the wild-type cell-cycle process. Then, we analyzed
the dynamic stability and robustness of the cell-cycle model
in both state and parameter space. We developed a density
map method in the state space to show that the cell-cycle
process, or trajectory, is a global attracting trajectory. Re-
sults of bifurcation analysis in the parameter space revealed
important interactions among the modules of our model and
suggested the fundamental structure governing the yeast cell-
cycle process. Finally, we analyzed an “if-then” cell-cycle
model to depict checkpoint pathways along the cell-cycle
process and discussed the possible evolution of the checkpoint
pathways in eukaryotic cell-cycle processes.

A. Modeling the yeast cell-cycle process: The regulatory
network and ordinary differential equations (ODEs)

Based on the recent experimental studies on budding yeast
[14–18], a global picture of the regulatory network governing
the key events of the cell-cycle process has emerged (Fig. 1),
and it is marked according to G1/S phase, early M and late M
phase modules that control the DNA replication, and mitosis
and cytokinesis events, respectively. Positive feedback loops
can be found in each module, such as Cln2 and SBF, Clb5
and MBF in the G1/S phase module, Clb2 and Mcm1 in the
early M phase module, and phosphatase Cdc14 in the late M
module. These positive feedback loops, together with negative
feedback loops and other interactions, comprise the regulatory

network governing the yeast cell-cycle process and set the
stage for an analysis of the global dynamic property in the
yeast cell-cycle process.

A brief introduction to the cell-cycle process in budding
yeast can be qualitatively characterized as follows. Once a
yeast cell grows large enough, it passes the Start point. As a re-
sult, the accumulated Cln3-Cdc28 kinase protein activates two
transcription factors, SBF (a complex of Swi4 and Swi6) and
MBF (a complex of Mbp1 and Swi6), through the repression
of an inhibitor Whi5. SBF and MBF stimulate about 200 late
G1 and S phase genes and Ndd1, including Cln1,2 and Clb5,6
[19]. The inhibitor Sic1 represses the activity of Clb5,6 and
Cdc28 by forming a complex. When it is phosphorylated by
Cln1,2 and degraded through SCF ubiquitin-mediated path-
way, the active Clb5,6-Cdc28 will start DNA replication and
trigger the cell into S phase.

After the success of DNA replication, the transcription
factor Mcm1, together with Fkh1 or Fkh2, recruits Ndd1
to form Mcm1-SFF complex, which binds to and directly
activates 25–35 genes in the “CLB2” cluster, and may bind
to and activate another 25–35 genes in the “MCM” cluster.
There is a positive feedback loop for Clb1,2 activity. It
promotes cell-cycle events involved in mitotic entry [20]. The
activated and stabilized Clb1,2-Cdc28 complex inactivates
SBF and MBF, shutting off G1/S events [21]. The cells are
now in G2/M phase.

The anaphase-promoting complex, APC, is phosphorylated
and thereby activated by Clb1,2-Cdc28 [22]. The APC drives
the cycle by ubiquitinating key proteins to proteolysis [23].
Two specificity factors, Cdc20 and Cdh1, can bind to APC and
direct it to different proteins. The entry into anaphase is re-
strained by the spindle assembly checkpoint. The unattached
kinetochore can inhibit Cdc20-APCP by both inhibiting APCP

and preventing Cdc20 from interacting with APCP [24,25].
When all the chromosomes are in the metaphase plate and
are attached to the spindle, Cdc20-APCP becomes active and
enables the dissociation of cohesion [26]. In addition, Cdc20-
APCP can also degrade B-type cyclins, including Clb1,2 [27]
and Clb5,6 [28]. Consequently, anaphase starts along with
sister chromatids separation. One pole of the spindle then
enters the bud. Cdc14, a phosphatase, will release from the
nucleolus as long as one set of chromosomes is correctly
located in the bud [29]. This process is demonstrated to be reg-
ulated by a positive feedback loop [30]. By dephosphorylating
Cdh1, Cdc14 activates Cdh1-APC, which targets Clb2 for
proteolysis. After success of spindle assembly and separation,
Swi5 and Ace2 regulate genes in late M and early G1 phase
[31]. So the cell recovers to the rest G1 state with a high level
of inhibitors Sic1 and Cdh1, waiting for the signal of another
round of division.

Based on the schematic cell-cycle regulatory network
shown in Fig. 1, we constructed a set of simplified self-
evolving ODEs to describe the cell-cycle process in bud-
ding yeast. The equations and parameters are based on
previous studies [32–36]. The concentrations of key regulators
and their complexes in Fig. 1 are treated as variables. Our
cell-cycle model has 22 independent variables of cyclins,
inhibitors, degraders, and transcription factors, with 94 kinetic
parameters. ODEs and details can be found in Appendix A.
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FIG. 1. The key cell-cycle events and the schematic regulatory network in the budding yeast cell-cycle process, highlighting the main
regulatory modules. The yeast cell-cycle process consists of several key events, including DNA replication in S phase, mitosis in M phase, and
cytokinesis. These sequential multiple events are governed by the relevant G1/S phase module, early M module, and late M phase module, and
each module contains a positive feedback loop. The DNA checkpoint is represented by the interaction between the “DNA replication” node
and Mcm1-SFF, while the spindle checkpoint is represented by the interaction between “spindle” node and Cdc20-APCP complexes.

In our simplified self-evolving ODEs model, we make
some assumptions:

First, only G1 cyclin Cln3 is triggered by cell mass,
while other cyclins, namely Cln2, Clb5, and Clb2, are driven
by interdependent transcriptions. Consequently, cell mass is
decoupled from [Cln2], [Clb5]T and [Clb2]T in our model.
Moreover, as the mechanism of the Start checkpoint is still
unclear ([10,37–39]), we simplified the G1/S phase module by
ignoring protein Whi5, an inhibitor of SBF and MBF, and let-
ting Cln3 activate SBF and MBF directly. In this way, we can
focus on the global dynamics of the budding yeast cell cycle.

Second, the DNA replication and spindle checkpoints are
taken into account, while the DNA damage checkpoint and its
role are ignored. Variable [DNA] is introduced to represent the
DNA replication process, which is activated by a continuous
Hill function of [Clb5] with the kinetic coefficient nDNA.
Then, activated [DNA] triggers the activtion of Mcm1-SFF
(M phase transcription factor) through the kinetic coefficient
εmcm,dna, while we set εmcm,dna = 0 to represent the active

state of the DNA replication checkpoint. This is a simplified
checkpoint mechanism and different from the “if-then” rules,
which hold, for example, that the early M phase transcription
factor Mcm1-SFF is activated but only if the DNA replication
event that precedes it is finished. Similarly, [SP], activated
by [Clb2], is introduced to represent the spindle assembly
and separation process. A high level of [SP] will trigger the
formation of a Cdc20-APCP complex through kinetic coeffi-
cient ka,20 in our model, resulting in a metaphase-anaphase
transition. If we set ka,20 = 0, this case represents the active
state of the spindle checkpoint.

Third, the regulatory pathway between Cdc20-APCP and
Cdc14 is simplified, and the positive feedback loop of Cdc14
is added in accordance with recent experimental results [30].

Our model is a self-evolving ODE model that is available
to analyze. Our model is different from the previous models
of Tyson’s group [32,35] in that in their models the cell mass
or size drove the cyclins and then triggered the key events of
the cell-cycle process, and the DNA replication and spindle
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TABLE I. The wild-type values of parameters in the yeast WT cell-cycle model.
There are 62 k parameters that are rate constant with the unit of min−1, and 16
dimensionless ϵ parameters that denote the action strength from cyclins to SBF, MBF,
Sic1, and Cdh1, and the activation of Mcm1 by DNA replication. The 14 J parameters
are also dimensionless reaction constants, and dimensionless ndna and nsp in the DNA
replication and spindle checkpoint equations perform a switchlike function.

Parameters

1. Equations governing cyclin-dependent kinases:
kd,n3 = 0.1, ks,n2 = 0.0001, k′

s,n2 = 0.06, kd,n2 = 0.18, ks,b5 = 0.0001,

k′
s,b5 = 0.007, kd,b5 = 0.07, k′

d,b5 = 5.0, ks,b2 = 0.0001, k′
s,b2 = 0.035,

kd,b2 = 0.006, k′
d,b2 = 0.005, k′′

d,b2 = 0.7, k′′′
d,b2 = 2.5

2. Equations governing the inhibitors of cyclin-dependent kinases:
k′

i,c1 = 0.72, εc1,n3 = 0.2, εc1,n2 = 2, εc1,b5 = 1, εc1,b2 = 2
k′

s,c1 = 0.036,ka,c1p,14 = 0.4, ks,c1 = 0.004, kd,c1 = 0.02, kd,c1p = 1.2
kas,b5 = 50, kdi,b5 = 0.05, kas,b5 = 50, kdi,b5 = 0.05,

kas,b2 = 50, kdi,b2 = 0.05, kas,b2 = 50, kdi,b2 = 0.05,

ka,h1 = 0.08, k′
a,h1 = 1.2, ki,h1 = 10−5, k′

i,h1 = 4.8, Ja,h1 = 0.01,

Ji,h1 = 0.005, εh1,n3 = 0.2, εh1,n2 = 1, εh1,b5 = 1, εh1,b2 = 0.5
ks,20 = 0.001, k′

s,20 = 0.023, kd,20 = 0.2, k′
d,20 = 0.6

ka,20 = 1.5, kdi,20 = 0.05, kd,20 = 0.2, k′
d,20 = 0.6

3. Equations governing transcription factors:
Ja,sb f = 0.01, ki,sb f = 0.05, k′

i,sb f = 2.0, Ji,sb f = 0.005
ka,sb f = 1.0, εsb f ,sb f = 0.001, εsb f ,n2 = 0.5, εsb f ,n3 = 5, εsb f ,b5 = 0.25
Ja,mb f = 0.01, ki,mb f = 0.05, k′

m,sb f = 2.0, Jm,sb f = 0.005
ka,mb f = 1.0, εmb f ,n2 = 0.5, εmb f ,n3 = 5, εmb f ,b5 = 0.25
ka,mcm = 2.3, Ja,mcm = 0.01, εmcm,dna = 0.4, ki,mcm = 0.28, Ji,mcm = 0.0005
ks,swi = 0.002, k′

s,swi = 0.04, ka,swip = 0.02, k′
a,swip = 4, kd,swi = 0.14,

k′
i,swi = 4.0, k′′

i,swi = 4.0, kd,swip = 0.023, ka,swip = 0.04, k′
a,swip = 0.5,

4. Other:
ks,dna = 0.32, Ja,dna = 0.05, ndna = 4, kd,dna = 0.8
ks,sp = 0.1, Ja,sp = 0.1, nsp = 4, kd,sp = 0.24
ka,14 = 0.001, k′

a,14 = 13.2, k′′
a,14 = 1.0, Ja,14 = 0.01,

Ji,14 = 0.01, ki,14 = 1.0, ka,apc = 0.0001, k′
a,acp = 1,

ki,apc = 0.025, k′
i,apc = 0.6, Ja,apc = 0.01, Ji,apc = 0.01

assembly and separation events are simulated as the “if-then”
condition judgment.

B. Simulations of the yeast cell-cycle process in the wild-type
and mutant yeast strains

Based on previous models [32,35] and our knowledge
about the yeast cell cycle, as well as the durations in G1, S,
G2, and M phases, we obtained a set of parameters (Table I)
to depict the wild-type yeast cell-cycle process, denoted
as wild-type cell-cycle parameters. Utilizing the ODEs in

Appendix A [Eqs. (A1)–(A22)], together with these parame-
ters, we simulated the yeast cell-cycle process in the wild-type
yeast strains. The concentrations of each protein are in an
arbitrary unit (au), which is different for each protein except
the Clb5, Clb2, Sic1, APCP, and Cdc20 that are involved
in a stoichiometric interaction. Starting from the excited G1
state (initial condition), as listed in Table II, we obtained
the temporal evolution of key regulator concentrations in
the wild-type cell-cycle process, which are shown in Fig. 2.
Because the Cln3 signal decays gradually, we simulated only
one “cycle” of the cell-cycle process; the system evolves from

TABLE II. The protein abundances in the resting G1 state (G1 attractor) and excited G1 state. The difference between two states is
[Cln3] = 0.05 au in excited G1 state.

[Cln3] = 0.0000 (resting) [Clb5-Sic1] = 0.0014 [Mcm1] = 0.0000
[Cln3] = 0.0500 (excited) [Clb2-Sic1] = 0.0001 [Swi5P] = 0.0143
[Cln2] = 0.0006 [Clb5-Sic1P] = 0.0000 [Swi5] = 0.0000
[Clb2]T = 0.0001 [Cdc20]T = 0.0000 [APCP] = 0.0000
[Clb5]T = 0.0014 [Cdc20] = 0.0013 [Cdc14] = 0.0000
[Sic1]T = 0.2166 [Cdh1] = 0.9996 [DNA] = 0.0000
[Sic1P]T = 0.0002 [SBF] = 0.0000 [SP] = 0.0000
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FIG. 2. The simulation results of the wild-type yeast cell-cycle
model (Appendix A 1) from the excited G1 state (Table II) as the
initial state. The system evolves from the excited G1 state, to the
S phase and M phase, and finally stays at the G1 state, waiting for
another cell growth signal. [X ]T represents the total concentration
of the X variable, while [Sic1]T represents the total concentration
of unphosphorylated Sic1. [Cdc20] denotes Cdc20-APCP complex
concentration, and [Cdh1] denotes the concentration of Cdh1-APC.
The blue line in each panel ([SBF] and [MBF], [Mcm1], [Cdc14],
and [Cdh1]) has a vertical scale from 0 to 1 (right y axis), while
others range from 0 to 0.4 (left y axis). The concentrations of each
protein are in an arbitrary unit (au), which is different for each protein
except the Clb5, Clb2, Sic1, APCP, and Cdc20 that are involved in a
stoichiometric interaction.

an excited G1 state to S phase and M phase, and finally stays
at the G1 state, waiting for another cell growth signal. In
Fig. 3, the wild-type cell-cycle trajectory is plotted in the
[Clb5]T-[Clb2]T-[Sic1]T state space.

The results were carefully compared with the microarray
data of Mat-alpha budding yeast cells [18] to ensure the right
time order of cell-cycle events, and the abundance of cyclins

FIG. 3. The dynamic trajectory of wild-type yeast cell cy-
cle in Fig. 2 is plotted in the three-dimensional state space,
[Clb5]T-[Clb2]T-[Sic1]T space. [Clb5]T, [Clb2]T, and [Sic1]T corre-
spond to the key regulator in S phase, early M phase, and late M
phase, respectively.

and Sic1 was compared with the measurement of Cross’s
group [33] to ensure the right concentration range.

A few cell-cycle processes in the key regulator genes
of knock-out (KO) mutants were simulated with our ODEs
using the wild-type parameters, except for setting relative
parameters to zero, such as the cln1�cln2�cln3� mutant
(ks,n2 = k′

s,n2 = 0), clb1�clb2� mutant (ks,b2 = k′
s,b2 = 0),

clb5�clb6� mutant (ks,b5 = k′
s,b5 = 0), cln1�cln2�clb5�

clb6� mutant (ks,b2 = k′
s,b2 = ks,b5 = k′

s,b5 = 0), and cdc20�

mutant (ks,20 = k′
s,20 = 0). Our simulation results are con-

sistent with experimental observations on these mutants
(Appendix A).

The above simulation results of cell-cycle processes in
wild-type and mutant yeast strains supported the above as-
sumptions in our model, i.e., that G1 cyclin Cln3 is triggered
by cell mass or cell size and that other cyclins, such as Cln2,
Clb5, and Clb2, are driven by interdependent transcriptions,
not by cell mass. Thus, our yeast cell-cycle model is a self-
evolving event transmission model rather than a cell-mass-
centered control model. We noted the above ODEs with the
WT parameters as the WT yeast cell-cycle model.

C. The global attractor G1 and the global attractive cell-cycle
trajectory in the WT cell-cycle model

Having shown that our WT model reflects the general
features of the cell-cycle process, we next turned to a study
of its global dynamic properties. In a budding yeast cell, it
is thought that the resting G1 state (G1 attractor) and the
cell-cycle process should both be stable and robust against

FIG. 4. Density maps of cell-cycle trajectories of the wild-type
model from 106 random initial states. The phase space is divided into
100 × 100 meshes, and in each mesh, the number of trajectories
(left panel), or mean transition time (unit: min; right panel), is
calculated. The color bar has been set to a logarithmic scale. The
black dotted line represents the wild-type cell-cycle trajectory.
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FIG. 5. (a) Distribution of fold change when bifurcation of bio-pathway happens. (b) New attractor types found within [1/10, 10] fold
change. G1/S: G1/S arrest; S: S arrest; M1: early M arrest; M2: late M arrest; FP: fixed point; LC: limit cycle. (c) Cluster of 26 new fixed points
from single-parameter perturbation. The new fixed points are clustered to different cell-cycle phases, where each row is the corresponding vari-
able and each column is related to the corresponding changed parameter (details about the new attractors and the clustering are in Appendix B).

state and kinetic parameter fluctuations. This requires that
the resting G1 state be a global attractor and that the cell-
cycle trajectory be a converging trajectory in state space.
We demonstrated these dynamic properties with a discrete
Boolean network model [36]; here, we investigate these prop-
erties using the continuous ODEs model.

To illustrate the cell-cycle trajectory by our ODEs with
different initial states and various parameter sets, we chose
three key variables in different cell-cycle phases, including
[Clb5]T in S phase, [Clb2]T in early M phase, and [Sic1]T

in late M phase. First, the wild-type cell-cycle trajectory in
Fig. 2 is plotted in the [Clb5]T-[Clb2]T-[Sic1]T state space
(Fig. 3). Then, we utilize our wild-type model but starting
from random initial states (106). The initial states are selected
from 0 to 1.2 times the maxima of each protein concentration
in Fig. 2 by Latin hypercube sampling with constraints that the
total concentration of a certain protein should be larger than
part of it, such as the Sic1, Clb5-Sic1, Clb2-Sic1, Clb5-Sic1P,
and Clb2-Sic1P. We trace each trajectory and project it
in the two-dimensional state space, using [Clb5]T-[Sic1]T,
[Clb5]T-[Clb2]T, and [Clb2]T-[Sic1]T as variables such that
the two-dimensional state space is divided into 100 × 100
meshes, and we calculate in each mesh the number of trajecto-
ries (left panel of Fig. 4) or mean transition time (right panel of
Fig. 4). Figure 4 shows that a single stable fixed point (resting
G1 state) is found and that no limit cycle, or oscillation, is
observed. This result suggests that the resting G1 state is the
only global attractor of the system, which is consistent with
our previous findings [36]. Furthermore, in the left panel of
Fig. 4, most trajectories converge to the wild-type cell-cycle
trajectory (black dotted line) and form a ridge, the density of

which is 2–3 orders of magnitude higher than non-WT cell-
cycle trajectories. In the right panel of Fig. 4, apart from the
resting G1 attractor, we find that most trajectories spend more
time in the area of S phase and M phase, and the wild-type
cell-cycle trajectory attracts random trajectories at the S phase
state and early M phase state (see Appendix D). Collectively,
these results show that the cell-cycle trajectory is a globally
robust attractive trajectory in the state space.

D. The new fixed points of ODEs with changing parameters
and the relationship with DNA or spindle checkpoints

Structural robustness is an essential feature for an appro-
priate cellular model [40]. This means that the qualitative

FIG. 6. The two fixed points and one limit cycle as attractors:
(a) the new attractors which have biological meaning and (b, c) the
density maps when the S phase attractor or early M phase attractor
appears (circles represent the attractor).
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TABLE III. Biochemical switches and bifurcations in G1/S, early M, and late M module. The variables [Clb5]T, [Clb2]T, and [Sic1]T are
chosen to represent the cell-cycle trajectory. All the attractors are listed in TABLE II and IV.

Module Bifurcation Control signal or parameter Key variables

G1/S G1 attractor [Cln3] [Clb5]T

→S attractor
Early M S attractor [DNA] or εmcm,dna [Clb2]T

→Early M attractor
Late M Early M attractor [SP] or ka,20 [Sic1]T

→Late M attractor

behaviors of a system are insensitive to parameter perturba-
tions and that the system can act as a “buffer” against vari-
ations of microenvironmental conditions. To obtain a global
picture of structural stability, we apply single-parameter sen-
sitivity analysis to the G1 attractor and the biological pathway
starting from excited G1 (see more details in Appendix B).

We find that the G1 attractor is only sensitive to seven
parameters in the range of 1/50 ∼ 50-fold. This result shows
that the global attractor of the resting G1 state is stable against
large-scale changes of major parameters.

For the biological pathway, one observes that 31 out of 94
parameters can induce bifurcations within the range [1/10, 10]
[distribution in Fig. 5(a)]. We also find that the attracting
trajectory can still exist, even if a new attractor appears
in Figs. 6(b) and 6(c). Although some trajectories will be
attracted by the S phase attractor or early M phase attractor,
those out of the capture zone can still follow the attracting
trajectory.

We then classify the new attractors, 26 fixed points and
6 limit cycles/oscillations, from bio-pathway bifurcations
within a 1/10 ∼ 10-fold change in Fig. 5(b). The 26 new fixed
points are clustered mainly into two regions corresponding to
the S phase and early M phase in Fig. 5(c), out of which 20
correspond to a cell state with the turning on of DNA or spin-
dle checkpoints [see Fig. 6(a)]. Thus, even when bifurcation
happens, this means that the system still prefers to remain at
biologically functional states.

Another biologically meaningful attractor is a limit cycle
(LC1) [see Figs. 5(b) and 6(a)]. It emerges from overactivation
of the Cln2 and SBF loop in the G1 phase, triggering the sys-
tem to pass the Start point threshold without Cln3 signaling.

E. The saddle-node bifurcations caused by positive feedback
and the balance among the S, early M, and late

M phase modules

We have now demonstrated that the G1 attractor is robust
to the changes of major parameters and can be excited by a
high level of Cln3. Additionally, the attracting WT trajectory
will evolve into two checkpoint-related fixed points, S arrest
and early M arrest, with high probability when the parameters
are changed, corresponding to the checkpoint turn-on. These
findings motivated us to study the limit or the critical case
of when a bifurcation was about to happen in this complex
system.

Here, we analyze the interactions among the G1/S phase
module, early M, and late M phase modules. In the G1/S
phase module, positive feedback of Cln2 and SBF and Clb5

and MBF can trigger the genetic switch with a saddle-node
bifurcation in the G1/S phase. The concentration of G1 cyclin
Cln3, which is triggered by the cell mass ([Cln3]), works as
the key control parameter for the G1/S phase switch. If the
DNA replication checkpoint is turned on and [Cln3] is near the
bifurcation point, the G1/S phase module can be decoupled
from other modules (see details in Appendix C). We set

[Clb2] = [Clb2]T − [Clb2-Sic1] − [Clb5-Sic1P] ≈ 0

[Clb5] = [Clb5]T − [Clb5-Sic1] − [Clb5-Sic1P] ≈ 0, (1)

and the dynamics of SBF and Cln2 forms an independent
subsystem as

d[Cln2]

dt
= ks,n2 + k′

s,n2[SBF] − kd,n2[Cln2],

d[SBF]

dt
= Va,sb f ([SBF]T − [SBF])

Ja,sb f + ([SBF]T − [SBF])

− (ki,sb f + k′
i,sb f [Clb2])[SBF]

Ji,sb f + [SBF]
,

TABLE IV. The protein abundances in the S, early M, and late M
attractor. S attractor: εmcm,dna = 0, early M attractor: ka,20 = 0, and
late M attractor: k′

a,h1 = 0, k′
s,c1 = 0.

Variable S attractor Early M attractor Late M attractor

[Cln3] 0.0000 0.0000 0.0000
[Cln2] 0.3321 0.0006 0.0006
[Clb2]T 0.0091 3.1791 0.1711
[Clb5]T 0.1009 0.0014 0.0002
[Sic1]T 0.0073 0.0009 0.0222
[SicP]T 0.0034 0.0035 0.0030
[Clb2-Sic1] 0.0006 0.0009 0.0210
[Clb5-Sic1] 0.0058 0.0000 0.0000
[Clb2-Sic1P] 0.0003 0.0035 0.0029
[Clb5-Sic1P] 0.0029 0.0000 0.0000
[Cdc20]T 0.0050 0.1199 0.1141
[Cdc20] 0.0000 0.0000 0.0734
[Cdh1] 0.0002 0.0001 0.0014
[SBF] 0.9947 0.0000 0.0000
[MBF] 0.9946 0.0000 0.0000
[Mcm1] 0.0000 0.9996 0.9525
[Swi5P] 0.0527 1.7885 0.2662
[Swi5] 0.0056 0.0061 0.2427
[APCP] 0.0049 0.9999 0.8773
[Cdc14] 0.0000 0.0000 0.9898
[DNA] 0.3680 0.0000 0.0000
[SP] 0.0000 0.4167 0.3437
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Va,sb f = ka,sb f (εsb f ,sb f [SBF] + εsb f ,n2[Cln2]

+ εsb f ,n3[Cln3] + εsb f ,b5[Clb5]). (2)

We define K1 = ka,sb f (εsb f ,sb f + εsb f ,n2
k′

s,n2

kd,n2
), K2 = ka,sb f

(εsb f ,n2
ks,n2

kd,n2
+ εsb f ,n3[Cln3] + εsb f ,b5[Clb5]), S = [SBF],

Ki = ki,sb f + k′
i,sb f [Clb2]. Considering the steady states of

both [Cln2] and [SBF], we can obtain three possible fixed
points of [SBF], S1 > S2 > S3. For the two smaller fixed
points, we assume Ja,sb f � 1 − S, and obtain

K1S2 + (K2 + K1Ji,sb f − Ki )S + K2Ji,sb f = 0, (3)

S2,3 = (Ki − K2 − K1Ji,sb f ±
√

�)/2K1

� = [K2 + K1Ji,sb f − Ki]
2 − 4K1K2Ji,sb f . (4)

Setting � = 0, we define the critical value of K2 as K2c =
(
√

Ki − √
Ji,sb f K1)2. When [Cln3] is increasing and causes

K2 > K2c, G1 transcription factor [SBF] should have only
S1 ≈ 1 stable root, this is the turning-on state of the G1/S
module. The analytical results provide quantitatively the role
of key parameters that control the SBF and MBF activation in
the G1/S phase.

Similar results can be obtained in the positive feedback of
Mcm1-SFF and Clb2 (early M module) and the autoactivation
of Cdc14 (late M module), which are shown in Appendix C
(Fig. 12). Since positive feedbacks play a controlling role in
the G1/S module, early M module, and the late M module,
respectively, [Cln3] is chosen as a control signal in the G1/S
module, [DNA] (or parameter εmcm,dna) can be chosen as a
control signal (or parameter) in the early M module, and
[SP] (or parameter ka,20) can be chosen as a control signal
(or parameter) in the late M module. Together, we consider
separately [Cln3], εmcm,dna, and ka,20 as the control signal or
parameters to find three saddle-node bifurcations in different
modules (Table III); then we chose the three key variables—
[Clb5]T in the G1/S phase module, [Clb2]T in the early M
phase module, and [Sic1]T in the late M phase module to
represent the cell-cycle trajectory in Figs. 3 and 4.

Analysis of sensitivity and bifurcation sensitivity suggests
that the balance among G1/S, early M, and late M phase
modules ensures global dynamic robustness in the yeast cell-
cycle process. Otherwise, the cell-cycle process would arrest
at the S phase, early or late M phases, or other attractors in
Fig. 6 (Table IV).

F. The ideal yeast cell-cycle model with critical
slowing down effect

The cell-cycle manifold in the state space is composed of
a group of cell-cycle trajectories from different initial states.
When the cell-cycle model utilizes the parameters near the
critical points of the above three saddle-node bifurcations,
where the critical values are [Cln3]c = 0.0076, (εmcm,dna)c =
0.24, and (ka,20)c = 0.77, the evolving manifold behaves in a
manner that forces a critical slowing down, or ghost effect.
This involves local bifurcations in which two fixed points of a
dynamic system collide and annihilate each other [41]. This,
in turn, creates an interregnum that allows enough duration for
each event and an attractive manifold within which to assess
the completion of DNA replication and mitosis.

FIG. 7. The mean transition time map and trajectory density map
of cell-cycle trajectories from 106 random initial states. (a) Ideal or
perfect cell-cycle model with εmcm,dna = 0.32, ka,20 = 0.84. (b) Im-
perfect cell-cycle model with εmcm,dna = 2.0, ka,20 = 4.0. The phase
space is divided into 100 × 100 meshes, and the mean transition
time, or the number of trajectories, is calculated in each mesh. The
upper two maps record the mean transition time of these trajectories
in two-dimensional space, while the lower two maps record their
density. The black dotted lines represent the standard cell-cycle
trajectory.

For example, when εmcm,dna < (εmcm,dna)c, the cell-cycle
manifold will be attracted and stay in the S phase attractor,
as shown in Fig. 6. However, if εmcm,dna is slightly larger than
(εmcm,dna)c, the node point (S phase attractor) and the saddle
point collide, and the S phase attractor becomes unstable. Fol-
lowing this event, the saddle-node remnant will lead a slowly
evolving and converging manifold near the previous S phase
attractor. Similarly, when ka,20 is slightly larger than (ka,20)c,
the cell-cycle manifold also converges near the former early
M phase attractor, as shown Fig. 6.

We noted the model with εmcm,dna = 0.32, ka,20 = 0.84 as
the ideal or perfect yeast cell-cycle model (Appendix A 2),
and the model with εmcm,dna = 2.0, ka,20 = 4.0 as imperfect
cell-cycle model. The WT model and the ideal cell-cycle
model have the same equations and parameter values except
for parameters εmcm,dna and ka,20. Then a comparison of the
perfect model with the WT model and an imperfect cell-cycle
model can be used to further reveal the benefit of such a
special dynamic structure.

We illustrate in Fig. 7(a) the critical slowing down effect
of a perfect yeast cell-cycle model, where the trajectories
evolve slowly in the S phase (DNA checkpoint) and early M
phase (spindle checkpoint) and seem to bend toward these
two regions. However, in the imperfect cell-cycle model
with εmcm,dna = 2.0, ka,20 = 4.0, the trajectories will dis-
perse with no obvious critical slowing down [Fig. 7(b)].

The ideal cell-cycle model with a critical slowing down
effect provides an interesting and unique dynamic perspective
for the yeast cell-cycle process. More specifically, this model
allows the whole cell-cycle process to be simplified and
abstracted to an excitable system composed of three well-
decoupled saddle-node bifurcations. The cell-cycle trajectory
becomes an attractive trajectory to execute sequential DNA
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replication and mitosis events in the correct order. Moreover,
in contrast to WT, the critical slowing down decouples se-
quential events, the cell-cycle trajectory is robust against the
fluctuations in both the state and parameter spaces, and the
critical slowing down effect offers enough time to execute
each event and check for the completeness of DNA replica-
tion and mitosis [42,43]. That is, the attractive manifold is
the simplest mechanism for state checking, and it provides
suitable state positions for checking the completions of both
DNA replication and spindle assembly and separation.

G. Modeling the cell-cycle checkpoint mechanism:
An “if-then” conditional judgment model

Based on the ideal cell-cycle model, both DNA and spin-
dle checkpoints are assumed to be satisfied automatically,
meaning that they are actually turned off during the whole
cell-cycle process. Here, we discuss the biological mechanism
of a cell-cycle checkpoint in budding yeast using a counterpart
dynamic model: the “if-then” conditional judgment model.
In the real biological yeast cell-cycle process, when DNA
replication is incomplete, the DNA replication checkpoint
will block mitosis; if the spindle does not assemble or the
chromosomes do not properly orient or attach to the spindle,
then the spindle checkpoint arrests the mitotic progression. To
simulate DNA replication and the spindle checkpoint mech-
anism, we build an “if-then” conditional judgment model.
For example, we set the DNA checkpoint as the following
“if-then” conditional judgment: if [Clb5]T maintains a high
level (>0.05 au) for TDNA = 15 min, then turn off the DNA
checkpoint by setting [DNA] = 0.4. See details in Appendix
A 3. The comparison results of the “if-then” model in Ap-
pendix A 3 and our continuous ODEs model (Fig. 2) show
that both cell-cycle models can capture the time sequence
and event order of the wild-type cell-cycle process in budding
yeast.

H. Discussions about the fundamental structure, including
repressors, that ensure the orderly sequence of multiple events

In this section, we discuss the fundamental network struc-
ture and the essential dynamics of the cell-cycle process and
similar multitask processes. To investigate the global dynamic
robustness and the mechanism of sequential events of the
cell-cycle process in budding yeast, we have constructed three
different models: the wild-type model, the ideal model with
critical slowing down effects, and the “if-then” conditional
judgment model. Based on the wild-type model, the analysis
of state fluctuation and parameter sensitivity shows that the
G1/S phase, early M and late M modules in the regulatory
network, as well as the interactions among the modules play
an important role in governing the yeast cell-cycle process.
The saddle-node bifurcations caused by positive feedback in
each module provide the genetic switches for the state tran-
sitions. In the ideal model, the system is set near the critical
points of the saddle-node bifurcations, and the ideal cell-cycle
trajectory exhibits a unique dynamic property for execution
of sequential DNA replication and mitosis events, such as
global dynamic robustness and fine-tuned event durations.
In the “if-then” checkpoint model, the regulations are more

FIG. 8. Discussions about the fundamental structure of yeast
cell-cycle network (a) and the essential dynamics of the yeast cell-
cycle process (b). The yeast cell-cycle process is proposed as an
excitable system driven by a sequence of bifurcations with critical
slowing down effects. This ensures a globally attractive cell-cycle
trajectory that provides a suitable control mechanism for the cell-
cycle checkpoints.

accurate and reliable with a checkpoint pathway to measure
the completion of an early event; however, it is also more
complex than the above models.

We then obtain the fundamental structure of the yeast
cell-cycle regulatory network [Fig. 8(a)] and the essential
dynamics of yeast cell-cycle process [Fig. 8(b)]. The fun-
damental cell-cycle structure in Fig. 8(a) consists of three
modules, the G1/S phase, early M phase, and late M phase,
wherein each module contains a positive feedback loop, i.e.,
repressors, such as cyclins. The repressor protein is utilized
to ensure that events will take place sequentially in a certain
order. The essential dynamics of the cell-cycle process is
shown in Fig. 8(b). In the beginning of the cell cycle, the
repressor is usually in a highly active state to inhibit any event
from taking place in the M phase. After execution of the S
phase event the repressor degrades, triggering the M phase
event. Thus, the previous event activates the next one through
the checkpoints, while the next module can also inhibit the
previous module. Finally, the last late M phase module turns
on the G1 inhibitors to ensure the switch-off of all modules.
This is the G1 state of the cell-cycle process.

A more abstract, or coarse-grained, picture of this series of
events can be captured by simply assuming a multitask pro-
cess whereby event E1 activates event E2, and E2 is activated
only when E1 is fully activated and finished. In this scheme,
the regulators P1 and P2 respectively control E1 and E2. In
Fig. 9, we illustrate the fundamental regulatory networks and
their essential dynamic processes through logical analysis.
In the simplest structure, the activation of P1 triggers the
activation of P2 in the structure P1 → P2 [Fig. 9(a)] and
P1 → P2, containing a critical slowing down effect [Fig. 9(b)].
However, in this situation, the fluctuation of P2 may cause its
activation without the activation of P1. Notwithstanding this,
the structure still includes the repressor R in Fig. 9(c), and
in the beginning of the process, R is active at high levels.
This precludes the activation of P2 without the activation of
P1. In Fig. 9(d), the checkpoint mechanism with repressor
R again provides double insurance that events will unfold in
the order of E1 and E2. The network with the repressor and
critical slowing down effect in Fig. 9(c) is similar to the ideal
cell-cycle model, providing perfectly sequential processing of
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FIG. 9. The possible fundamental networks execute sequential
events. Regulators P1 and P2 respectively control the sequential
events E1 and E2. Both the ideal model containing critical slowing
down effects (c) and the “if-then” checkpoint model (d) provide
dynamic robustness and sufficient duration for the sequential events
to proceed and, at the same time, forbid the initiation of event E2

when event E1 has not been executed.

E1 and E2 events with dynamic robustness. The discussion can
also be generalized to N events [Fig. 9(e)].

We have utilized the Boolean network model to search for
possible three-node network structures that will keep the order
of sequential events, and we find structures similar to those in
Fig. 9(c) [42]. Thus, the results in Fig. 9 can be applied to
other multitask processes, such as meiosis, cell differentiation
[44], and the formation of flagella in E. coli [45]. Repressor
proteins are also found in the flagella formation of E. coli
[45,46].

To provide further context for our three cell-cycle mod-
els, we take a moment to speculate about the evolution of
the checkpoint mechanism in eukaryotic cell-cycle control.
Murray put forth a hypothesis that the evolution of cell-cycle
control derives from cell mass to cyclin and, thereafter, cyclin
destruction. He further pointed out that cell-cycle events in
the early stage should be separated by time, rather than by

checkpoints [47]. Following this hypothesis, in the early evo-
lutionary stage of the cell-cycle process, we suppose that no
checkpoint pathway existed with checkpoint sensor, kinase,
and transduction proteins. This is most reflective of our ideal
cell-cycle model with critical slowing down effects whereby
sequential events proceed in the right order with a sufficient
duration and attractive manifold for state checking. Such a
state checking mechanism would have evolved earlier than
the molecular checkpoint pathway. However, as time passed,
in the later stages of cell-cycle evolution, a more reliable
and complex checkpoint pathway with sensor, kinase, and
regulator proteins appeared, and this is the analog of our
“if-then” conditional judgment model.

III. CONCLUSION

Dynamic robustness and modularity are important char-
acteristics of the cellular regulatory network for fulfilling
complex biological processes. In the eukaryotic cell cycle,
cells successively carry out DNA replication and mitosis in
sequential order using a checkpoint mechanism. The dynamic
regulatory mechanism in cell-cycle processes was first re-
vealed in the pioneering work of Tyson, Novak, and Ferrell
et al. [5,13,35,48–50]. The irreversible transitions in the mul-
titasking cell-cycle process are proposed to be regulated by
systems-level feedback [51]. The minimal, or skeletal, models
of cell cycles in budding yeast [52] and mammalian cells
[53] have already been established to investigate the temporal
order and sequential activation of different phases of cell-
cycle processes. Furthermore, the divergence and convergence
manifold along the budding yeast cell-cycle trajectory has
already been observed and discussed in the ODE model [54],
as well as the Boolean network model [36].

In this paper, we aimed to reveal the global dynamic robust-
ness of cell-cycle processes in budding yeast. Based on the
previous cell-cycle models and experiments, we constructed a
simplified self-evolving cell-cycle model, assuming automatic
execution of DNA replication and spindle assembly processes.
We found that the G1 state is a global stable attractor, and
that the wild-type cell-cycle trajectory is a global attractive
trajectory containing several slowly evolving parts, an idea
which extends, but remains consistent with, our previously
developed Boolean network model [36]. In the cell-cycle
regulatory network, the G1/S phase, early M, and late phase
modules, as well as interactions among the modules, play
an important role in governing the yeast cell-cycle process.
The saddle-node bifurcations with bistability and hysteresis
caused by the flow of positive feedback in each module
provide genetic switches for the key state transitions in the
cell-cycle process. Thus, the entire cell-cycle process may
be considered an excitable system with three well-decoupled
saddle-node bifurcations.

If the system is set proximal to critical points of the
saddle-node bifurcations (ideal cell-cycle model), the ideal
cell-cycle trajectory exhibits a uniquely dynamic property.
The cell-cycle process with critical slowing down effects is an
attractive trajectory to execute DNA replication and mitosis
events in a prescribed order. Because critical slowing down
decouples sequential events, the cell-cycle trajectory is robust
against fluctuations in both state and parameter spaces, and
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the critical slowing down effect offers sufficient duration
for the completion of each event. Furthermore, the attractive
manifold is the simplest mechanism for state checking, and it
provides a suitable state or position for DNA replication and
spindle checkpoints. In our future work we plan to perform
molecular experiments to test our prediction, especially the
critical slowing down effect in the single yeast cells observa-
tion by the microfluidic device [8–10].

In brief, our results highlight the dynamical regulatory
mechanism for complex cellular processes to execute sequen-
tial events; it can be applied to the design of synthetic genetic
circuits and other biological processes.

The C++ source code of this paper is available upon
request (lft@pku.edu.cn).
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APPENDIX A: MODELS

1. Wild-type yeast cell-cycle model

The wild-type budding yeast cell-cycle process in our
model is an excitable system (i.e., start is not overridden),
though it is called a “cycle.” Before every Start transition,
the cell still needs to decide whether or not to enter into the
cell cycle based on the current environments. Since we do not
exactly know what Cln3 dynamics look like, in order to avoid
unnecessary arguments, we chose to use Cln3 as a trigger
signal, which contains only the degradation term for the Start
transition in our model.

Our model is based on the previous model studies [32–36].
We pay more attention to the dynamical function of positive
and negative feedbacks in the transcriptional network and
ignore the specific regulation of checkpoints. The following
features have been considered in our model:

(1) In our model only “Cln3” is driven by cell mass; other
cyclins are activated by the upstream event. So, our cell-cycle
model is the cyclin-triggered and is decoupled from the cell
mass.

(2) Cln3 and Cln1,2 phosphorylate the protein Whi5, an
inhibitor of SBF and MBF, to start the transcription of SBF
and MBF [55,56]. But we ignore Whi5 in our model and just
use “Cln3” to trigger cell to pass the Start point by activating
SBF and MBF. The self-activation feedback loop of SBF is
discussed based on the chip-CHIP data [19].

(3) The activations of transcription factors (SBF, MBF,
and Mcm1) are described by the zero-order ultrasensitive

switch [57], while the activation of Swi5 is in a linear form.
The transcription and translation rate of protein is simply a
linear function of relative transcription factor concentration.

(4) The DNA replication checkpoint and spindle check-
point are considered and studied. We only introduce the
variable [DNA] to measure the DNA replication process; it is
activated by the Hill function of [Clb5] with power nDNA and
then degraded gradually. Similarly, [SP] represents the spindle
assembly and separation process activated by Clb2 in the M
phase.

(5) The activation of Cdc14 is also described by the zero-
order ultrasensitive switch. A self-positive activation of Cdc14
is added [30].

(6) APC need not be phosphorylated to function in con-
junction with Cdh1 [22]. So we use [Cdh1] to denote the
complex of Cdh1 and APC and treat it as independent variable
of APC in the assumption that APC is abundant compared to
Cdh1.

(7) We use the Michaelis-Menten equation to describe
the phosphorylation/de-phosphorylation of APC and Cdh1,
while other regulations simply use the linear interaction forms
such as the phosphorylation of Sic1 and Swi5 by cyclins, the
activation of Swi5 by Cdc14, and the degradation of Clb1,2
and Cdc20 by Cdh1-APC complexes.

Many other small modifications are also made to capture
the fundamental information of regulatory network and dy-
namical processes obtained from the experimental results.

a. Equations

Equations governing cyclin-dependent kinases:

d[Cln3]

dt
= −kd,n3[Cln3] (A1)

d[Cln2]

dt
= ks,n2 + k′

s,n2[SBF] − kd,n2[Cln2] (A2)

d[Clb5]T

dt
= ks,b5 + k′

s,b5[MBF] − Vd,b5[Clb5]T (A3)

Vd,b5 = kd,b5 + k′
d,b5[Cdc20]

d[Clb2]T

dt
= ks,b2 + k′

s,b2[Mcm1] − Vd,b2[Clb2]T

Vd,b2 = kd,b2 + k′
d,b2([Cdh1]T − [Cdh1])

+ k′′
d,b2[Cdh1] + k′′′

d,b2[Cdc20] (A4)

Condition:

[Clb5]T = [Clb5] + [Clb5-Sic1] + [Clb5-Sic1P]

[Clb2]T = [Clb2] + [Clb2-Sic1] + [Clb2-Sic1P]

[Sic1]T = [Sic1]T + [Sic1P]T

[Sic1]T = [Sic1] + [Clb5-Sic1] + [Clb2-Sic1]

[Sic1P]T = [Sic1P] + [Clb5-Sic1P] + [Clb2-Sic1P]
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Equations governing the inhibitors of cyclin-dependent kinases:

d[Sic1]T

dt
= ks,c1 + k′

s,c1[Swi5] − kd,c1[Sic1]T − Vi,c1[Sic1]T + Va,c1p[Sic1P]T (A5)

d[Sic1P]T

dt
= −kd,c1p[Sic1P]T +Vi,c1[Sic1]T −Va,c1p[Sic1P]T (A6)

Vi,c1 = k′
i,c1(εc1,n3[Cln3] + εc1,n2[Cln2] + εc1,b5[Clb5] + εc1,b2[Clb2])

Va,c1p = ka,c1p,14[Cdc14]

d[Clb5-Sic1]

dt
= kas,b5[Clb5][Sic1] − (kdi,b5 + Vd,b5 + kd,c1 + Vi,c1)[Clb5-Sic1] + Va,c1p[Clb5-Sic1P] (A7)

d[Clb5-Sic1P]

dt
= kas,b5[Clb5][Sic1P] − (kdi,b5 + Vd,b5 + kd,c1p + Va,c1p)[Clb5-Sic1P] + Vi,c1[Clb5-Sic1] (A8)

d[Clb2-Sic1]

dt
= kas,b2[Clb2][Sic1] − (kdi,b2 + Vd,b2 + kd,c1 + Vi,c1)[Clb2-Sic1] + Va,c1p[Clb2-Sic1P] (A9)

d[Clb2-Sic1P]

dt
= kas,b2[Clb2][Sic1P] − (kdi,b2 +Vd,b2 +kd,c1p + Va,c1p)[Clb2-Sic1P] + Vi,c1[Clb2-Sic1] (A10)

d[Cdh1]

dt
= (ka,h1 + k′

a,h1[Cdc14])([Cdh1]T − [Cdh1])

Ja,h1 + [Cdh1]T − [Cdh1]
− Vi,h1[Cdh1]

Ji,h1 + [Cdh1]
(A11)

Vi,h1 = ki,h1 + k′
i,h1(εh1,n3[Cln3] + εh1,n2[Cln2] + εh1,b5[Clb5] + εh1,b2[Clb2])

d[Cdc20]T

dt
= ks,20 + k′

s,20[Mcm1] − (kd,20 + k′
d,20[Cdh1])[Cdc20]T (A12)

d[Cdc20]

dt
= ka,20[APCP]([Cdc20]T − [Cdc20])[SP] − (kdi,20 + kd,20 + k′

d,20[Cdh1])[Cdc20] (A13)

Condition: kd,c1p � kd,c1

[Cdh1]T = 1

Equations governing transcription factors:
d[SBF]

dt
= Va,sb f ([SBF]T − [SBF])

Ja,sb f + ([SBF]T − [SBF])
− (ki,sb f + k′

i,sb f [Clb2])[SBF]

Ji,sb f + [SBF]
(A14)

Va,sb f = ka,sb f (εsb f ,sb f [SBF] + εsb f ,n2[Cln2] + εsb f ,n3[Cln3] + εsb f ,b5[Clb5])

d[MBF]

dt
= Va,mb f ([MBF]T − [MBF])

Ja,mb f + ([MBF]T − [MBF])
− (ki,mb f + k′

i,mb f [Clb2])[MBF]

Ji,mb f + [MBF]
(A15)

Va,mb f = ka,mb f (εmb f ,n2[Cln2] + εmb f ,n3[Cln3] + εmb f ,b5[Clb5])

d[Mcm1]

dt
= ka,mcm([Clb2] + εmcm,dna[DNA])([Mcm1]T − [Mcm1])

Ja,mcm + ([Mcm1]T − [Mcm1])
− ki,mcm[Mcm1]

Ji,mcm + [Mcm1]
(A16)

d[Swi5]

dt
= ks,swi + k′

s,swi[Mcm1] + (ka,swip + k′
a,swip[Cdc14])[Swi5P] − kd,swi[Swi5]

− (k′
i,swip[Clb5] + k′′

i,swip[Clb2])[Swi5] (A17)

d[Swi5P]

dt
= (k′

i,swip[Clb5] + k′′
i,swip[Clb2])[Swi5] − kd,swi[Swi5P] − (ka,swip + k′

a,swip[Cdc14])[Swi5P] (A18)

Condition:
[SBF]T = [MBF]T = 1

[Mcm1]T = 1

Other equations:
d[DNA]

dt
= ks,dna[Clb5]ndna

Jndna
a,dna + [Clb5]ndna

− kd,dna[DNA] (A19)

d[SP]

dt
= ks,sp[Clb2]nsp

J
nsp
a,sp + [Clb2]nsp

− kd,sp[SP] (A20)
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TABLE V. The degradation rates of key regulators in cell-cycle model.

Half-life time (min) Range of kd (min−1) kd (min−1) in model References

Cln3 ∼10 ∼0.07 0.1 [68]

Cln2 5 ∼ 10 0.07 ∼ 0.14 0.18 [58]

Clb5 3 ∼ 5 in G1 phase 0.14 ∼ 0.23 k
′
d,b5 = 5.0 [69,70]

∼10 in S/G2 phase ∼0.07 ([Cdc20]max ≈ 0.1)
kd,b5 = 0.07

Clb2 <1 in G1 phase 0.69 k′′ ′
d,b2 = 2.5 [62,63]

>120 in S/M phase 0.006 ([Cdc20]max ≈ 0.1)
k′ ′

d,b2 = 0.7
([Cdh1]max = 1)

kd,b2 = 0.006

Cdc20 <1 in G1 phase 0.69 k
′
d,20 = 0.6 [65]

<3 in S/G2/M phase 0.23 ([Cdh1]max = 1)
kd,20 = 0.2

Sic1 0.5 for Sic1P 1.39 kd,c1p = 1.2 [66,67]
30 for Sic1 0.023 kd,c1 = 0.02

Swi5 ∼5 in nucleus 0.14 kd,swi = 0.14 [71]
∼30 in cytoplasm 0.023 kd,swip = 0.023

d[Cdc14]

dt
= (ka,14 + k′

a,14[Cdc20] + k′′
a,14[Cdc14])([Cdc14]T − [Cdc14])

Ja,14 + [Cdc14]T − [Cdc14]
− ki,14[Cdc14]

Ji,14 + [Cdc14]
(A21)

d[APCP]

dt
= (ka,apc + k′

a,acp[Clb2])([APC]T − [APCP] − [Cdc20])

Ja,apc + [APC]T − [APCP] − [Cdc20]
− (ki,apc + k′

i,acp[Cdc14])[APCP]

Ji,apc + [APCP]

− ka,20[APCP]([Cdc20]T − [Cdc20])[SP] + (kdi,20 + kd,20 + k′
d,20[Cdh1])[Cdc20] (A22)

Condition:

[APC]T = [APC] + [APCP] + [Cdc20] = 1

b. Wild-type parameters

There are 94 parameters in the model. Only fewer kinetic
parameters can be estimated from experimental results, such
as half-life time of key proteins, their average translation rates,
and the relative efficiency of cyclins to SBF, Sic1, and Cdh1.
In the following, we list the parameters and their values in
Table I.

Degradation rates. The degradation rates of Cln2, Clb2,
Cdc20, and Sic1 can be obtained from their half-life time,
kd = ln 2/half − life (see Table V). The degradation of Cln2
is activated by SCF with a half-life time of 5 ∼ 10 min [58].
Clb2 degradation is activated by Cdc20-APCP [27,59,60] and
Cdh1-APC [61]. The half-life time of Clb2 is about 1 min
at G1 arrest with APC activation and larger than 2 hours at
S or M arrest [62,63]. Cdc20 degradation is APC dependent
[64,65]. The protein is unstable throughout the cell cycle,
with a half-life time of less than 3 min in S/G2/M, and it
is even less stable in G1 [65]. Sic1 is phosphorylated by
cyclin-Cdc28 complexes and then degraded by the SCF path-
way [66,67].

Efficiency of cyclins to SBF, Sic1, and Cdh1. Then we es-
timate the relative efficiency of various cyclins (Cln3, Cln1,2,
Clb5,6, Clb1,2) to SBF (through Swi5), Sic1, and Cdh1,
with the consideration of subcellular localization of cyclins

and inhibitors [72]. Cln3 is nuclear restricted [73], and Clb5
accumulates in the nucleus before budding and during DNA
replication, but during mitosis, Clb5 nuclear abundance is
strikingly reduced. In unbudded cells, small budded cells, and
most large budded cells with an undivided nucleus, Clb5 is
concentrated in the nucleus. In large budded cells with an
undivided DNA mass near or spanning the bud neck and in
large budded cells with two DNA signals, Clb5 is distributed
diffusely throughout the cell [74]. Cln1,2, Clb1,2, Sic1,
and Cdh1 distribute throughout the cell in the nucleus and
cytoplasm.

With respect to the efficiency of G1/S cyclins (Cln3,
Cln1,2, Clb5,6) to SBF and MBF through the phosphorylation
of Whi5 [55], both Cln3-Cdc28 and Cln2-Cdc28 complexes
can phosphorylate Whi5 in vitro with similar efficiency and
are more effective (4 ∼ 5 fold) than Clb5-Cdc28 (Fig. 6(b)
in Costanzo et al. 2004 [55]). Levine et al. found that Cln3
is better able to activate SBF-mediated transcription; Cln2
is better at driving bud emergence [75]. Considering the
subcellular location of Cln3, Cln2, and Clb5, the ε factors for
SBF in the model are set as 5, 0.5, and 0.25 for Cln3, Cln2,
and Clb5, respectively.

Sic1 can be phosphorylated in vitro by Cln3-Cdc28
and Cln2-Cdc28 complexes with similar efficiency, and
Clb5-Cdc28 is less effective (4 to 5-fold) than Cln2-Cdc28
(Fig. 6(b) in Costanzo et al. (2004) [55]). Verma found
Cln2-Cdc28 and Clb2-Cdc28 can phosphorylate Sic1 in
vitro with similar efficiency [66]. Considering the cyclins
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TABLE VI. Modeling yeast mutants.

Mutants Experiment results Our results The results in Chen et al. 2004 [35]

cln1� cln2� cln3� G1 arrest [79] G1 arrest G1 arrest under special role
clb5� clb6� S delay [80] S delay S delay
cln1� cln2� clb5� clb6� G1 arrest [80] G1 arrest G1 arrest
clb1� clb2� G2 arrest [20] G2 arrest G2 arrest
cdc20� M arrest [81] M arrest M arrest
cdh1� Viable [82] Viable Viable
cdc14� M arrest [83] M arrest M arrest
sic1� Viable [84,85] Viable Viable
cdh1� sic1� M arrest [82] M arrest Viable

subcellular location, the ε factors for Sic1 in the model are set
as 0.2, 2, 1, and 2 for Cln3, Cln2, Clb5, and Clb2, respectively.

Clb5-Cdc28 complexes can in vitro phosphorylate Cdh1
more efficiently than Clb2-Cdc28 [76]. Cln2-Cdc28 can in
vivo phosphorylate Cdh1 more efficiently than Clb2-Cdc28
[77]. So, we set the ε factors for Cdh1 in the model as 0.2,
1, 1, and 0.5 for Cln3, Cln2, Clb5, and Clb2, respectively.

Synthesis rate of cyclins and inhibitors. The recent results
suggested that the abundance of protein by each mRNA is
around 4980/cell [78]. Cross et al. measured the abundances
of cyclins and Sic1 quantitatively [33]. The average molecules
during a cell-cycle process in a diploid yeast cell with volume
100 fl are 3000 copies of Cln1&2, 216 copies of Cln3, 1600
copies of Clb1&2, 900 copies of Clb5&6, 214 copies of Sic1,
and 12,000 copies of Cdc28. The numbers of molecules have
about 20% fluctuation. The abundance of Clb2, Clb3, Clb5,
and Sic1 through the cell cycle with and without Cdh1 was
also measured, and the peaks of Clb2, Clb5, and Sic1 are
2400, 1800, and 960 copies, respectively, in a 100 fl diploid
yeast cell (Figs. 6 and 7 in Cross et al. (2002) [33]). 3000
copies of Cln1 and Cln2 in a 100 fl diploid cell correspond
to a concentration of 50 nM. These data are useful to help us
estimate the synthesis rate of cyclins and inhibitors.

The basic synthesis rate of cyclins and inhibitors can
be estimated from the average numbers and abundance of
molecules during cell-cycle and degradation rates. We have
also given a 90-min time period Cln3 signal to simulate
multiple “cycles” to compare with the abundance of cyclins
and Sic1 measured by Cross’s group [33]. For the Cln2, we
have d[Cln2]

dt = ks,n2 + k′
s,n2[SBF] − kd,n2[Cln2], the average

number of Cln2 can be calculated and compares with exper-
imental measured abundance. k′

s,n2
is set as 0.06 min−1, and

the peaks of Clb5, Clb2, and Sic1 in the model are estimated
based on Fig. 7(a) in Cross et al. (2002) [33]. Using the data
of the peaks and degradation, we can roughly estimate the
synthesis rates of Clb5,6, Clb1,2, and Sic1. In our model,
[Cln2] : [Clb2] : [Clb5] : [Sic1] ≈ 3 : 2 : 1 : 2. The relative
amount of Sic1 in the model is much higher than that in
experiments to satisfy those mutant constraints; this dis-
crepancy may be explained by our oversimplified regulation
network.

Besides the above parameters that can be estimated from
experimental data, other parameters follow the previous
model of Chen and Cross [32,33,35] and are modified basing
on recent experimental progress and our understanding of cell
cycles.

c. Mutants

To simulate the cell-cycle knock-out mutants of key regula-
tor genes, we use the same equations and parameter values of
wild-type cell-cycle models, except for the synthesis rates of
those deleted proteins. The initial condition in Table II is also
changed by setting the initial values of those deleted proteins
to zero. Starting from this initial state, the simulation results
are shown in Table VI.

2. Ideal cell-cycle model

To simulate the near-critical situation of our model (ideal
cell-cycle model), we also use the same equations, Eqs. (A1)–
(A22), and parameter values in Table I, except for εmcm,dna =
0.32 and ka,20 = 0.83. We also use the values in Table II as
the initial condition of the near-critical situation.

3. If-then model

To simulate the checkpoints, the control mechanisms en-
forcing the dependency in cell-cycle events, we consider
[DNA] and [SP] as control signals and discard their equations
in Eqs. (A1)–(A22). No other equations and parameters are
changed. Then we add four “if-then” rules to our continuous
ODEs model, controlling when DNA and spindle checkpoints
are turned on and off. If [Clb5]T maintains a high level (>0.05
au) for TDNA = 15 min, then turn off the DNA checkpoint
by setting [DNA] = 0.4; if [Clb2]T > 0.15, then turn on
the DNA checkpoint by resetting [DNA] = 0. Similarly, if
[Clb2]T maintains a high level (>0.12 au) for TSP = 10 min,
then turn off the DNA checkpoint by setting [SP] = 0.4; if
[Cdc14] > 0.5, then turn on the SP checkpoint by resetting
[SP] = 0. Starting from the excited G1 ([DNA] = [SP] = 0),
the temporal evolution of key regulator concentrations in the
wild-type cell-cycle process is shown in Fig. 10, which is
almost the same as the results in Fig. 2.

4. A model with inhibitor WHI5

In the main text, we ignored the protein Whi5 to simplify
the G1/S phase module. Here, we took it into account and
built a new ODE model named the WT-whi5 model. The
new schematic regulatory network of the G1/S module is
shown in Fig. 11, while the network of other modules remains
unchanged. Utilizing the WT-whi5 model, we also simulated
the yeast cell-cycle process. There is no significant difference
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FIG. 10. The simulations of wild-type yeast cell-cycle process by
the “if-then” checkpoint model. [DNA] and [SP] in the dotted lines
are controlled by if-then rules. The blue line in each panel ([SBF]
and [MBF], [Mcm1], [Cdc14], and [Cdh1]) has a vertical scale from
0 to 1 (right y axis), while others range from 0 to 0.4/0.6 (left y axis).

between the result of the WT model (Figs. 2 and 4 in the main
text) and the WT-whi5 model.

FIG. 11. The schematic network of G1/S module including the
inhibitor Whi5.

a. Equations

Compared with the WT model, one differential equation
about the new variable Whi5 (B1) is added and two related
equations [(A14) and (A15)] are revised:

d[Whi5]

dt
= (ka,i5 + k′

a,i5[Cdc14])([Whi5]T − [Whi5])

Ja,i5 + ([Whi5]T − [Whi5])
− Vi,i5[Whi5]

Ji,i5 + [Whi5]

Vi,i5 = ki,i5(εi5,n2[Cln2] + εi5,n3[Cln3] + εi5,b5[Clb5]) (B1)

d[SBF]

dt
= ka,sb f ([SBF]T − [SBF])

Ja,sb f + ([SBF]T − [SBF])
− (ki,sb f + k′

i,sb f [Clb2] + k′′
i,sb f [Whi5])[SBF]

Ji,sb f + [SBF]
(A14*)

d[MBF]

dt
= ka,mb f ([MBF]T − [MBF])

Ja,mb f + ([MBF]T − [MBF])
− (ki,mb f + k′

i,mb f [Clb2] + k′′
i,mb f [Whi5])[MBF]

Ji,mb f + [MBF]
(A15*)

Condition:

[Whi5]T = 1

b. Parameters

In the WT-Whi5 model, we use the same parameter values
of the WT model except the parameters involved in (B1,
A14*, and A15*). The changed parameters are listed in
Table VII.

APPENDIX B: PARAMETER SENSITIVITY ANALYSIS

To obtain a global picture of parameter sensitivity, we look
for the bifurcation point for each parameter. Bifurcations can
be classified as a fixed point and bifurcation from a biological
pathway. For fixed point bifurcation, we let the system stay at

the resting G1 state (Table II) and continuously decrease and
increase each of the parameters in our model. For biological
pathway bifurcation, we start the system from the excited G1
state (Table II) and let each parameter continuously deviate
from the standard value. Thus, whenever a bifurcation hap-
pens, the destination of the biological trajectory is a fixed
point or limit cycle but not the original G1 attractor. As an
exception, the Hill coefficients ndna and nsp are changed from
1 to 10, showing no bifurcation.

We find the bifurcation point (kL
i , kH

i ) at each end and de-
fine the degree of robustness (DOR) to quantify the sensitivity
[86]:

DORi = 1 − max

{
kL

i

ki
,

ki

kH
i

}
.

TABLE VII. The changed parameters in the yeast WT-whi5 model.

ka,sb f = 0.6, Ja,sb f = 0.01, ki,sb f = 0.05, k′
i,sb f = 4.0, k′′

i,sb f = 1.2, Ji,sb f = 0.01
ka,mb f = 0.6, Ja,mb f = 0.01, ki,mb f = 0.05, k′

i,mb f = 4.0, k′′
i,mb f = 1.2, Ji,mb f = 0.01

ka,i5 = 0.3, k′
a,i5 = 0.3, Ja,i5 = 0.01, ki,i5 = 4.0, Ji,i5 = 0.01

εi5,n2 = 0.5, εi5,n3 = 5, εi5,b5 = 0.25
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TABLE VIII. Parameter stability of resting G1 state with fold change [1/50,50]. T: transcription and translation, D: degradation, I:
inhibition, A: activation, FP: fixed point, LC: limit cycle, “*” stands for “out of range.”

Name Range DOR New attractor type Note

kd,n2 [1/19.6,*] 0.949 FP1 D of Cln2
ka,h1 [1/29.0,*] 0.965 FP1 A of Cdh1
k′

i,h1 [*,29.0] 0.965 FP1 I of Cdh1
εh1,n2 [*,30.4] 0.967 FP1 Efficiency of Cln2 to Cdh1
ka,sb f [*,25.0] 0.960 FP2 A of SBF
εsb f ,n2 [*,25.0] 0.960 FP2 Efficiency of Cln2 to SBF
ki,sb f [1/25.0,*] 0.960 LC1 I of SBF

Among new attractors (Table VIII) from the resting G1
state in the range [1/50,50] (DOR � 0.98), FP1 is close to
a wild-type G1 state except for a lowered Cdh1 level; FP2
and LC1 are similar to FP6 and LC1 in the bio-pathway
bifurcation (Table IX), respectively (see explanation below).

When we change the parameter values in the wild-type
model in the fold range of [1/10,10] (DOR � 0.9), we
find 26 new fixed points from bio-pathway bifurcation in
a 22-dimention variable space. Then we obtain a 22 × 26
matrix S = (ai, j )22 × 26, where each row is the corresponding
variable and each column is related to the corresponding

changed parameter. S = (ai, j )22 × 26 is transformed to S′ =
(bi, j )22 × 26 according to the following relation. Furthermore,
S′ is clustered using hierarchical clustering in Fig. 5(c) to
show which cell-cycle phases the new fixed point belongs to:

bi, j = ai, j −
∑26

j=1 ai, j

26√∑26
j=1

(
ai, j−

∑26
j=1 ai, j

26

)2

26

.

Figure 5(c) is plotted with the Heat Map with Dendrogram
application found in ORIGINPRO. The variable [Cln3] is not
shown in this heat map as [Cln3] = 0 for all fixed points.

TABLE IX. Parameter stability of pathways from excited G1 state with fold change [1/10,10]. T: transcription and translation, D:
degradation, I: inhibition, A: activation, FP: fixed point, LC: limit cycle, “*” stands for “out of range.”

Name Range DOR New attractor type Note

k′
s,n2 [*,3.2] 0.690 FP5 T of Cln2 by SBF

kd,n2 [1/2.4,*] 0.584 LC1 D of Cln2
k′

s,b5 [1/1.7,*] 0.415 S Arrest T of Clb5 by MBF
kd,b5 [*,1.7] 0.415 S Arrest D of Clb5
k′

s,b2 [*,3.9] 0.745 Late M Arrest T of Clb2 by Mcm1

k
′′
d,b2 [1/7.4,*] 0.865 LC2 D of Clb2 by Cdh1

ks,c1 [*,6.1] 0.836 G1/S Arrest T of Sic1
k′

i,c1 [1/8.6,*] 0.883 G1/S Arrest I of Sic1 by cyclins
k′

s,20 [1/1.3,*] 0.254 Early M Arrest T of Cdc20 by Mcm1
kd,20 [*,1.2] 0.177 Early M Arrest D of Cdc20
ka,20 [1/1.9,*] 0.470 Early M Arrest A of Cdc20
kdi,20 [*,5.3] 0.810 Early M Arrest Dissociation of Cdc20-APCP

ka,sb f [*,2.5] 0.604 LC1 A of SBF
ki,sb f [1/7.0,*] 0.858 LC1 I of SBF
k′

i,sb f [1/3.1,*] 0.674 LC1 I of SBF by Clb2
εsb f ,n2 [*,2.7] 0.623 LC1 Efficiency of Cln2 to SBF
ka,mb f [1/2.9,*] 0.658 S Arrest A of MBF
ki,mb f [*,3.6] 0.719 S Arrest I of MBF
ka,mcm [1/1.6,*] 0.355 S Arrest A of Mcm1
εmcm,dna [1/1.7,*] 0.415 S Arrest Efficiency of DNA to Mcm1
ki,mcm [*,1.6] 0.355 S Arrest I of Mcm1
ks,dna [1/1.7,*] 0.415 S Arrest S of DNA
kd,dna [*,1.7] 0.415 S Arrest D of DNA
Ja,dna [*,1.8] 0.443 S Arrest Dissociation constant of DNA
ks,sp [1/1.9,*] 0.470 Early M Arrest T of SP
kd,sp [*,1.9] 0.470 Early M Arrest D of SP
Ja,sp [*,2.4] 0.584 Early M Arrest A of SP
k′

a,apc [1/6.4,*] 0.843 Early M Arrest A of APC by Clb2

k
′′
a,14 [*,1.2] 0.177 FP6 Self-A of Cdc14

ki,14 [1/1.2,1.5] 0.333 FP6; Early M Arrest I of Cdc14
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TABLE X. Summary of new attractor types upon parameter change for biological pathways in the range of [1/10,10]. FP: fixed point; LC:
limit cycle.

Attractor type Character Sensitive parameters Key interactions change

G1/S arrest High levels of R inhibits P1. ks,c1 Increasing the activation of R
k′

i,c1 Decreasing the inhibition of R

S arrest High levels of P1 activates DNA replication, but ka,mb f , k′
s,b5, kd,b5 Decreasing self-activation of P1

CANNOT activate P2. ki,mb f , Increasing the inhibition of P1

ka,mcm, εmcm,dna, ki,mcm Decreasing self-activation of P2

ks,dna, kd,dna, J(a,dna) Decreasing the activation of P2

Early M arrest High levels of P1 activates DNA replication and k′
s,20, kd,20, kdi,20 Decreasing self-activation of P3

P2, but CANNOT activate P3. k′
i,14 Increasing the inhibition of P3

ka,20, ks,sp, kd,sp, Decreasing the activation of P3Ja,sp, k′
a,apc, k′

a,14

Late M arrest High levels of P2 activates P3, but CANNOT exit
from mitosis.

k′
s,b2 Increasing self-activation of P2

LC1 High levels of P1 invalidates START point, but ka,sb f , εsb f ,n2, kd,n2 Increasing self-activation of P1

can be inhibited by P2. ki,sb f , k′
i,sb f Decreasing the inhibition of P1

Based on our simplified cell-cycle network structure
[Fig. 8(a) in the main text], most new attractors in Ta-
ble IX can be interpreted by regulations between network
modules:

(1) The yeast cells stay at the G1/S or S arrest state when
the succeeding early M module (P2) fails to get activated,
either because of weak positive feedback loops or due to an
activated DNA checkpoint; the difference between the G1/S
and S arrest state is whether the level of Sic1 is high (G1/S
arrest) or low (S arrest).

(2) Early M arrest emerges when the late M module
(P3) cannot normally be activated, by reasons similar to the
previous case; when self-activation of P2 is too strong to be
inhibited by Z and I, late M arrest may appear.

(3) When the G1/S module (P1) is overactivated, the be-
havior depends on the effectiveness of P1’s inhibition. If the
G1/S module cannot be inhibited (with high synthesis rate or
low degradation rate), it will prohibit the rise of G1 inhibitors
in the late M phase, arresting the system at a fixed point (FP5).
If inhibition of P1 is still in effect, the system will show full
cell-cycle oscillation (LC1).

(4) The limit cycle II can rise from incomplete degradation
of Clb2 by its inhibitor Cdh1 in the late M phase.

(5) A “local” fixed point close to the wild-type G1 state
may rise when a positive feedback loop of Cdc4 in Z is
enhanced, leading to high level of Cdc14 (FP6).

Those meaningful attractors are also illustrated in Table X.
We also increase fold range to [1/30,30] (DOR � 0.967) for
bio-pathway perturbation, finding totally 38 sensitive param-
eters and 41 new attractors (Table XI).

APPENDIX C: LINEAR STABILITY AND BIFURCATION
ANALYSIS TO REVEAL THE UNDERLYING MECHANISM

In our model, we cut off several key regulations to arrest
the system at different attractors: S arrest (εmcm,dna = 0),
early M arrest (ka,20 = 0), and late M arrest (k′

a,h1 = 0 and
k′

s,c1 = 0). Then we chose [Cln3], εmcm,dna, and ka,20 as control
parameters and used the linear stability analysis to study
the limiting dynamic properties near these bifurcation points.
Starting from the resting G1 attractor, S attractor, and early M
attractor, respectively (Tables II and IV), we can easily find the
bifurcation points of each control parameter. The results show
only one unstable vector for each bifurcation (Table XII). The
major components (|xi| > 0.03) of each unstable vector are
shown at the bottom of Table XII.

TABLE XI. Additional sensitive parameters of pathways from excited G1 state within [ 1
30 , 1

10 ] ∪ [10, 30] fold change. T: transcription and
translation, D: degradation, I: inhibition, A: activation, FP: fixed point, LC: limit cycle, “*” stands for “out of range.”

Name Range DOR New attractor type Note

k′
i,mb f [*,27.6] 0.964 S arrest I of MBF by Clb2

kd,c1p [*,14.6] 0.932 G1/S arrest D of Sic1P

k′
s,b2 [12.6,*] 0.921 LC T of Clb2 by Mcm1

k
′′′
d,b2 [*,18.7] 0.947 LC D of Clb2 by Ccd20

ki,apc [*,12.6] 0.921 FP I of APC
k′

d,20 [*,17.8] 0.944 Early M arrest T of Cdc20 by Mcm1
Ji,14 [*,20.6] 0.951 FP6 Dissociation constant of Cdc14 inhibition
ka,h1 [27.6,*] 0.964 FP A of Cdh1
k′

i,h1 [25.0,*] 0.960 LC I of Cdh1

042405-17



YAO ZHAO et al. PHYSICAL REVIEW E 101, 042405 (2020)

TABLE XII. The unstable vectors at the bifurcation points.

I II III

[Cln2] 0.063 0.014 0.000
[Clb2]T 0.000 −0.123 0.000
[Clb5]T 0.019 0.004 0.000
[Clb2-Sic1] 0.000 −0.006 0.002
[Clb5-Sic1] 0.017 0.007 0.000
[Cdc20]T 0.001 −0.005 0.000
[Cdc20] 0.000 0.000 0.000
[Cdh1] −0.914 0.000 0.000
[APCP] 0.000 −0.989 −0.006
[SBF] 0.188 0.043 0.000
[Cdc14] 0.000 0.000 0.803
[DNA] 0.000 −0.006 0.000
[Mcm1] 0.000 −0.039 0.000
[Swi5P] 0.001 −0.030 −0.494
[Swi5] 0.000 −0.006 0.333
[MBF] 0.185 0.044 0.000
[Sic1]T −0.302 0.001 0.002
[Sic1P]T 0.005 0.000 0.000
[Clb2-Sic1P] 0.000 −0.003 0.000
[Clb5-Sic1P] 0.001 0.003 0.000
[SP] 0.000 −0.015 0.000
Key variables [Cln2], [SBF], [SBF], [MBF], [Cdc14], [Swi5P],

[MBF], [Sic1]T, [Cdh1] [Clb2]T, [Mcm1], [APCP], [Swi5P] [Swi5]

When bifurcation happens, the system will change along
the direction of the unstable vector. Hence, we assume that all
values, except those of key variables, remain at steady state
during our analysis. This assumption helps us to simplify the
complex dynamic system and separate those key variables
from other “fast-balanced” variables. Then we obtained some
analytical results about the saddle-node bifurcation and the
key control parameters (see details in Boxes 1, 2, and 3). The
bifurcation diagrams are plotted in Fig. 12. The theoretical

bifurcation points for these transitions are [Cln3]c = 0.0076,
(εmcm,dna)c = 0.24, and (ka,20)c = 0.77, respectively, while
the results of parameter sensitivity show that the critical
points for the WT trajectory are (εmcm,dna)c = 0.24 and
(ka,20)c = 0.77. Consequently, our steady-state bifurcation
analysis can, to a certain extent, explain the continuously
moving state. Thus, the following three modules are found
through this analysis:

BOX 1. G1/S module.

d[Cln2]
dt = ks,n2 + k′

s,n2[SBF] − kd,n2[Cln2]

d[SBF]
dt = Va,sb f ([SBF]T−[SBF])

Ja,sb f +([SBF]T−[SBF]) − [SBF](ki,sb f +k′
i,sb f [Clb2])

Ji,sb f +[SBF]

Va,sb f = ka,sb f (εsb f ,sb f [SBF] + εsb f ,na[Cln2] + εsb f ,n3[Cln3] + εsb f ,b5[Clb5])

Definition [SBF]=S, K1 = ka,sb f

(
εsb f ,sb f + εsb f ,n2

k′
s,n2

kd,n2

)
K2 = ka,sb f (εsb f ,n2

ks,n2
kd,n2

+ εsb f ,n3[Cln3] + εsb f ,b5[Clb5]), Ki = ki,sb f + k′
i,sb f [Clb2]

Assumption [Clb2] ≈ [Clb2]T ≈ 0, [Clb5] = [Clb5]T − [Clb5-Sic1] − [Clb5-Sic1p] ≈ 0,
Ja � 1 − S,

d[Cln2]
dt = 0, d[SBF]

dt = 0, [Cln3] = bifurcation parameter

Equation K1S2 + (K2 + K1Ji,sb f − Ki )S + K2Ji,sb f = 0

Fixed point S1 ≈ 1, S2,3 = Ki−K2−K1Ji,sb f ±
√

�

2K1

� = [K2 + K1Ji,sb f − Ki]2 − 4K1K2Ji,sb f

Discussion When the parameters K2 (Cln3) increase larger than the critical values K2c = (
√

Ki − √
Ji,sb f K1)2, [SBF] should have

only stable root S ≈ 1, turning on the G1/S module.

042405-18



CRITICAL SLOWING DOWN AND ATTRACTIVE MANIFOLD: … PHYSICAL REVIEW E 101, 042405 (2020)

BOX 2. Early M module.

d[Clb2]T
dt = ks,b2 + k′

s,b2[Mcm1] − Vd,b2[Clb2]T

Vd,b2 = kd,b2 + k′
d,b2([Cdh1]T − [Cdh1]) + k

′′
d,b2[Cdh1] + k

′′′
d,b2[Cdc20]

d[Mcm1]
dt = ka,mcm ([Clb2]+εmcm,dna[DNA])([Mcm1]T−[Mcm1])

Ja,mcm+([Mcm1]T−[Mcm1]) − ki,mcm[Mcm1]
Ji,mcm+[Mcm1]

Definition K = ka,mcmk′
s,b2

ki,mcmVd,b2
; D = ka,mcm

ki,mcm
{ ks,b2

Vd,b2
+ εmcm,dna[DNA]}; M = [Mcm1];

Assumption [Cln3] = 0, [Cln2] = 0.4,
d[Clb2]T

dt � d[Clb5]
dt → [Clb5] = [Clb5]T − [Clb5-Sic1] − [Clb5-Sic1P] ≈ 0.09,

[Cdh1] = 0, [Cdc20] = 0
[Sic1]T = 0, [Clb2] ≈ [Clb2]T
d[Clb2]T

dt = 0, d[Mcm1]
dt = 0, [DNA] = 0.368, εmcm,dna = bifurcation parameter

Equation 1 − M ≈ 0, KM2 + (Ji,mcmK + D − 1)M + Ji,mcmD = 0

Fixed point M1 ≈ 1; M2,3 = 1−Ji,mcmK−D±√
�

2K
� = (Ji,mcmK + D − 1)2 − 4KJi,mcmD = (D − Ji,mcmK − 1)2 − 4KJi,mcm

Discussion When D (εmcm,dna) increases larger than the critical values Dc = (
√

KJi,mcm − 1)2, [Mcm1] should have only an
M = 1 stable root, turning on the early M module.

BOX 3. Late M module.

d[Cdc14]
dt = (ka,14+k′

a,14[Cdc20]+k
′′
a,14[Cdc14])([Cdc14]T−[Cdc14])

Ja,14+[Cdc14]T−[Cdc14] − ki,14[Cdc14]
Ji,14+[Cdc14]

d[Swi5]
dt = ks,swi + k′

s,swi[Mcm1] + (ka,swip + k′
a,swip[Cdc14])[Swi5P] − kd,swi[Swi5] − (k′

i,swi[Clb5] + k
′′
i,swi[Clb2])[Swi5]

d[Swi5P]
dt = (k′

i,swip[Clb5] + k
′′
i,swip[Clb2])[Swi5] − kd,swip[Swi5P] − (ka,swip + k′

a,swip[Cdc14])[Swi5P]

Assumption [Cln3] = 0, [Cln2] = 0, [Clb5]T = 0, [Clb2]T = 0.2, [Sic1]T = 0, [Cdc20]T = 0.118;
[Cdh1] = 0, [APCP] = 0.936,
d[Cdc20]

dt = 0 → [Cdc20] = ka,20[APCP][SP][Cdc20]T
ka,20[APCP][SP]+kdi,20+kd,20+k′

d,20[Cdh1]
d[Swi5]

dt = 0,
d[Swi5P]

dt = 0, d[Cdc14]
dt = 0, [SP] = 0.387, ka,20 = bifurcation parameter

Discussion When ka,20 increases larger than a critical value, [Cdc14] should have only a high stable root, turning on the late M
module.

FIG. 12. The diagrams of three saddle-node bifurcations in the
S module, early M module, and late M module, where the con-
centration of G1 cyclin [Cln3] is chosen as a control signal in
the S module, and kinetic parameters εmcm,dna and ka,20 are chosen
as control parameters in the early M module and late M module,
respectively.

FIG. 13. The local perturbation algorithm. The solid line rep-
resents the standard trajectory, while the dotted line represents the
perturbation trajectory. Plane N is perpendicular to the standard
trajectory at O and intersects the perturbation trajectory at A. r is
the distance between points O and A.
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FIG. 14. Deviation of 105 random trajectories from the WT
process. (a) A sketch of the deviation of random trajectories from the
WT process at different WT trajectory distances. The distribution
of random trajectories along profile I (b), profile II (c), and profile
III (d). The total trajectory counts are 40 442 (b), 89 013 (c), and
82 873 (d).

APPENDIX D: LOCAL PERTURBATION ANALYSIS TO
DESCRIBE THE CONVERGENCE OF TRAJECTORIES

A local perturbation analysis is applied to the cell-cycle
process. In a small hypercube around a standard initial state,

104 sample points are taken as perturbed initial states. These
perturbation points evolve along the trajectory, starting from
the standard initial state with variable deviation. In Fig. 13,
for each point O in the standard trajectory, a normal plane
N can be gotten. This plane N intersects the perturbation
trajectory at point A, and the distance ri between O and
A can be calculated. Therefore, the average radius r =
1
n

∑n
i=1 ri is used to describe the convergence of standard

trajectory.
To show a more comprehensive picture of the attracting

pathway, we plotted a sketch of the deviation of random
trajectories from the WT process at different WT trajectory
distances [Fig. 14(a)]. We synchronized all random trajecto-
ries at the end of the WT cell-cycle process (Sync point) and
calculated the Euclidean distance between the corresponding
points on two trajectories in phase space. All variables are
first normalized by their maximum concentrations in Fig. 2.
The distribution of the trajectories is shown in histograms
along three different profiles (I, II, III). This result shows that
the wild-type cell-cycle trajectory does not invariably perform
attraction; instead, it attracts random trajectories at the S phase
state and early M phase state at such point in time that S phase
state localizes with an S phase attractor with the turning on of
the DNA checkpoint, and the early M phase state localizes
with an M phase attractor with the turning on of the spindle
checkpoint. Collectively, these results show that the cell-cycle
trajectory is a globally robust attractive trajectory in the state
space.

The local perturbation analysis shows a more detailed
picture of a critical slowing down event in Fig. 15. Points
in a small hypercube around an initial state are taken as
perturbed initial states. These perturbation points evolve along
the standard trajectory, which starts from an excited G1 state,

FIG. 15. A local dynamic analysis of the ideal cell-cycle trajectories as a function of curve length. (a) The evolving trajectory (P1 : [Clb5]T,
P2 : [Clb2]T, R : [Sic1]T, left y axis; P3 : [Cdc14], right y axis). (b, c) Plot average radius r with different perturbation location (b) and different
perturbation amplitude a = 0.01, 0.02, 0.03 (c). (d) The attracting property under different εmcm,dna and ka,20 (a = 0.01), and the parameter
sensitivity analysis of the biological pathway shows that the critical values are (εmcm,dna )c = 0.24, (ka,20)c = 0.77.
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with varying deviations, leading to a change in the diameter
of this bunch of trajectories. Therefore, for each point in
the standard trajectory, an average radius r can be calculated
at the cross section. In Figs. 15(b) and 14(c), we compared
the average radius r with different perturbation locations and
the side length of the hypercube a (ideal model parameters,
εmcm,dna = 0.32, ka,20 = 0.84). These results showed more
clearly that the trajectories are quickly attracted to the DNA
and spindle checkpoints where significant slowing down oc-

curs. This means that the fluctuations are, in fact, separated by
the two checkpoints such that the fluctuations in the former
module will be significantly reduced and have little impact
on the latter module. In addition, we studied the attracting
property under different control parameters in Fig. 15(d).
Although all three sets of parameters (ideal or perfect, wild-
type, and imperfect) can lead to an attraction of trajectories,
the attraction force is much stronger as the system approaches
the critical value [(εmcm,dna)c = 0.24, (ka,20)c = 0.77].
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