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Collective behaviors by self-organization are ubiquitous in nature and human society and extensive efforts
have been made to explore the mechanisms behind them. Artificial intelligence (AI) as a rapidly developing field
is of great potential for these tasks. By combining reinforcement learning with evolutionary game (RLEG), we
numerically discover a rich spectrum of collective behaviors—explosive events, oscillation, and stable states,
etc., that are also often observed in the human society. In this work, we aim to provide a theoretical framework to
investigate the RLEGs systematically. Specifically, we formalize AI-agents’ learning processes in terms of belief
switches and behavior modes defined as a series of actions following beliefs. Based on the preliminary results
in the time-independent environment, we investigate the stability at the mixed equilibrium points in RLEGs
generally, in which agents reside in one of the optimal behavior modes. Moreover, we adopt the maximum
entropy principle to infer the composition of agents residing in each mode at a strictly stable point. When the
theoretical analysis is applied to the 2 × 2 game setting, we can explain the uncovered collective behaviors
and are able to construct equivalent systems intuitively. Also, the inferred composition of different modes
is consistent with simulations. Our work may be helpful to understand the related collective emergence in
human society as well as behavioral patterns at the individual level and potentially facilitate human-computer
interactions in the future.
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I. INTRODUCTION

Emergence at the global scale from local interactions is
widespread in biological systems and human society [1–6],
which has attracted many researchers to comprehend from
various perspectives. Many theories are developed to clas-
sify these collective behaviors, to make predictions [7–9],
or to infer the local interaction rules based on the available
data [10–12]. An outstanding one—the evolutionary game
(EG) theory introduced in 1973 studies the destination of
a given population in the ecosystem by incorporating the
concept of evolution into the classic game theory [13–15].
Within this framework, various collective phenomena such
as oscillating coexistence of species [16–18], rich patterns in
structured population with different topologies [19–22], and
so on, are well understood. One topic of particular interest
is to explore the cooperation mechanism among unrelated
individuals, where the population structures, self-adaption,
and social factors could all play a role [23–25].

*zhangjq13@lzu.edu.cn
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In recent years, machine learning is becoming one of the
most exciting fields [26–31] and is applicable to various tasks,
like pattern recognition [28,32,33], disease prediction [34,35],
decision-making, as well as human-level control [36,37], for
instance. Not surprisingly, its boom has also permeated to
the studies of collective behaviors—like the inference of
statistical properties [38–40] and trend prediction [41–43].
While machine learning provides some statistical insights,
it contributes little to the understanding of the collective
behaviors from the individual level [44]. As a particularly
suitable candidate, reinforcement learning (RL) is rooted in
the psychological and neuroscience and is widely used for it
is highly adaptable to quite different environments [29,45,46].
The marriage between RL and evolutionary game may be
a proper choice to study complex behaviors. Yet there is a
vacancy in between.

Inspired by this thought, we investigate the collective
behaviors in the evolutionary games with the reinforcement
learning (RLEGs) manner in terms of states, actions, rewards,
and decision-making through exploratory trials. Specifically,
our AI-agents play games with other agents and maximize
their payoffs through Q-learning algorithm [47–49]. Our sim-
ulations together with our previous work [50] show that the
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reward gap between actions propels the action preferences
in the population toward equilibrium points, in which agents
get identical rewards. In addition, the cooperation preferences
present various collective behaviors around the mixed equi-
librium point, such as explosive events, oscillating or stable
coexistence, etc.

A series of questions are naturally following: Can we
construct a theoretical framework for the RLEGs to explore
the mechanism behind the phenomena? What is the essential
difference between the RLEGs and traditional evolutionary
game at the individual-level even though the collective behav-
iors are similar? Addressing these questions is of paramount
significance because establishing a proper framework is a
critical step for a deep understanding of the systems of this
sort and is the foundation for any possible application in the
future, such as designing human-machine systems.

The paper is organized as follows. In Sec. II, we introduce
the RLEG model by combining a reinforcement learning
algorithm with the evolutionary game and provide numerical
results in 2 × 2 game setting. The theoretical framework is
developed in Sec. III. First, the case of static environment
is analyzed as the preliminary in Sec. III A; then we take
a series of analyses on stability of the mixed equilibrium
points and composition of AI agents at the stable points in
Sec. III B. We apply the framework to 2 × 2 game setting
in Sec. III C and expound the various collective behaviors in
simulations, and we also classify 2 × 2 RLEGs according to
the spectrum of collective behaviors. Furthermore, we provide
the composition of agents and reveal that agents’ actions
are time-correlated and form various robust behavior modes.
Finally, we provide a discussion and conclusion in Sec. IV.

II. RESULTS

A. The model for evolutionary game of reinforcement learning

In our model, the system consists of N agents empowered
by the Q-learning algorithm and each is in one of the available
states S = {s1, · · · , sns}. For an arbitrary round τ , a random
agent i is chosen as the initiator to play a battery of pairwise
games with the rest (participants). All players will take one
action chosen from the action set A = {a1, · · · , ana}. The
payoff of the initiator i is determined by actions of its oppo-
nents and its own following the payoff matrix

� =

⎛
⎜⎝

�a1a1 · · · �a1ana

...
. . .

...
�ana a1 · · · �ana ana

⎞
⎟⎠,

in which subscripts denote the initiator’s and its opponent’s
actions in games. For instance, i gets a payoff �akal when i and
its opponent take action ak and al , respectively. The average
payoff for the initiator is �̄(τ ) = ∑

j∈�\i �aia j (τ )/(N − 1),
where �\i refers to all agents but excluding itself.

In the classical Q-learning algorithm, each agent is
equipped with a time-dependent Q table based on the state
(rows) and actions (columns):

Q(τ ) =

⎡
⎢⎣

Qs1a1 (τ ) · · · Qs1ana
(τ )

...
. . .

...
Qsns a1 (τ ) · · · Qsns ana

(τ )

⎤
⎥⎦.

In our model, agents seek the optimal action in the sense that
it maximizes the expected reward by updating the Q table. In
our setting, only the initiator updates both Q table and state
at the end of each round. This setup considers the fact that
initiators are actively engaged in their state and improve their
wisdom (via Q table), while participants are only passively
involved the games proposed without the expectation. Note
that this setting is just equivalent to asynchronous updating of
Monte Carlo (MC) simulations [51,52].

During action decision stage in round τ , if i’s current state
is s, then it takes action following its Q table,

a(τ ) → h[Q(τ ), s(τ )] = arg max
a′

{Qsa′ (τ )}, a′ ∈ A ,

with probability 1 − ε, or chooses one random action with ε.
Here, arg maxa′[Qsa′ (τ )] is the action with the maximum Q
value given the current state s. For participants, they follow
the same procedure by selecting actions with the largest value
in the row of its current states.

In the learning process, the element Qsa in i’s Q table is
updated as follows:

Qsa(τ + 1) = Qsa(τ )(1 − α) + α
[
r(τ ) + γ Qmax

s′a′ (τ )
]
, (1)

where α ∈ (0, 1] is the learning rate reflecting the strength of
memory effect and r(τ ) = �̄(τ ) is the reward received for its
action. The parameter γ ∈ [0, 1) is the discount factor deter-
mining the importance of future rewards according to current
Q table and Qmax

s′a′ = maxa′ (Qs′a′ ) is the maximum element in
the row of future state s′. The evolving Q-function is Q(τ +
1) = g[Q(τ ), r(τ )], i.e., Qsa(τ ) is replaced by Qsa(τ + 1) at
the end of the round. Besides, i’s state is now replaced by
its current action, s(τ + 1) = a(τ ). Given this fact, the round
could also be called as i’s learning round.

In sum, the protocol of Q-learning in our RLEG is as Fig. 1
shows:

(1) Initialize all agents’ matrix Q and state s.
(2) For each round, a randomly chosen initiator proposes a

battery of games with the rest and takes the action a following
h function with the largest value of Qsa′ (τ ) in the row of
current state s with probability 1 − ε, or chooses a random
action with probability ε. The initiator then gets a reward
according to its action and its opponents’ actions. Meanwhile,
each participant takes the action a with the largest value of
Qsa′ (τ ) in the row of its current state s as the response.

(3) In the learning process, the initiator updates the value
of Qsa following Eq. (1), and the state is also updated as s(τ +
1) = a(τ ).

(4) Repeat the processes (2) and (3) until the system
becomes statistically stable or evolves into the desired stage.

By default, we initialize the Q table and state for each agent
to a null matrix and a random state, respectively.

Different from our previous work [50], we use a vector
f (τ ) = [ fa1 (τ ), fa2 (τ ), · · · , fana

(τ )]T to character the com-
position of agents at a given round τ . Here, fai (τ ) is the
preference for action a ∈ A and is defined as

fai (τ ) =
∑N

k=1 δ(ak (τ ) − ai )

N
, (2)

where δ = 1 if agent k’s expected action ak (τ ) is ai following
h-function at τ , and δ = 0 otherwise.
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FIG. 1. The flow chart of protocol for reinforcement learning
evolutionary games (RLEGs). The logic diagram for the initiator and
participants are indicated by blue and red arrows, respectively.

B. Simulation results in 2 × 2 RLEGs

In our simulations, we focus on the simplest RLEGs setting
by adopting the 2 × 2 games. For these RLEGs, each agent is
equipped with a suite of state and action sets that are A =
{C, D} and S = {C, D}, and a time-dependent Q table,

Q(τ ) =
[

Qcc(τ ) Qcd (τ )
Qdc(τ ) Qdd (τ )

]
, (3)

which is a matrix on the Cartesian product for state
(columns)–actions (rows). The reward is based on the follow-
ing 2 × 2 payoff matrix:

� =
(

�cc �cd

�dc �dd )

)
. (4)

Hereafter, � = (6, b; 6 + b, 2) with a tunable parameter b.
With this form, the game can be classified into four different
classic categories by varying the value of b: (1) stag hunt (SH)
for b ∈ (−∞, 0); (2) prisoner’s dilemma (PD) for b ∈ [0, 2];
(3) snowdrift (SD) for b ∈ [2, 6]; and (4) mixed stable (MS)
for b ∈ (6,∞).

In the simulation, the systems evolves many Monte Carlo
(MC) steps (denoted as t = 1, 2, 3, · · · ), and each MC step
consists of N rounds. Bear in mind, for a single round, an
randomly chosen initiator plays 2 × 2 games with the rest, its
state as well as Q table are updated. As fc(t ) denotes time
series of the cooperation preference, 〈 fc〉 is then the expected
cooperation preference, which is computed after the transient
and is the key quantity in previous works [14,16,20].

The simulations together with our previous work [50]
show that features of the payoff matrix play a significant
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FIG. 2. The time series of fc over MC steps in RLEGs for
different game settings. Panels (a), (b) show the time series in the SH
RLEGs from two different initial conditions. The time series in an
MS RLEG is exhibited in panel (c), while those for SD RLEGs are
provided in panels (d)–(f). The mixed and weak equilibrium point
for cooperation is shown by a red dash line for each game setting.
The learning parameters α = γ = 0.9, ε = 0.02 and the system size
N = 10 000.

role in the resulting cooperation preference (Fig. 2 and
Appendix). Similar to the paradigmatic evolutionary game
(EG), the signs of column differences 	�:c = �cc − �dc

and 	�:d = �dd − �dc determine the final cooperation pref-
erence in RLEGs for most cases. For PD settings with
sgn(	�:d ) = −sgn(	�:c) = 1, defection are dominating in
the system. By contrast, cooperators prevails for the Harmony
game (HM) setting with sgn(	�:c) = −sgn(	�:d ) = 1
(see Fig. 10 in Appendix). For SH game settings with
sgn(	�:c) = sgn(	�:d ) = 1, the cooperation preference is
bistable and is thus sensitive to the initial conditions as shown
in Figs. 2(a) and 2(b). Interestingly, entirely different collec-
tive behaviors emerge for the MS and SD settings in RLEGs,
although sgn(	�:c) = sgn(	�:d ) = −1 in both settings. For
the former, cooperators and defectors coexist stably as in EGs
[Fig. 2(c)]. For the latter, the cooperation preference fc could
present in the form of periodic oscillations. In each period,
there is an explosive growth followed by a long quiescent
stage [Fig. 2(d)]. But, the oscillation fades away and aperiodic
oscillation appears with the increase of 	�:d/	�:c [see
Figs. 2(e) and 2(f)].

Further research shows that the low learning rate α and
high discounting factor γ promotes the increase of A and T .
In addition, a high exploration rate ε accelerates the increase
of fc in the explosive stage and contributes to the increase
of amplitude A. Some more simulations are also conducted
to study their impact of on amplitude A and period T in
the periodic oscillation (see Fig. 11). For the default form in
the SD area, the increase of b decreases both the amplitude
and the period and makes the oscillation fade away. It shows
the collective behavior is divided into oscillation and stable
regions by a transition point b′ (Figs. 3 and 12).

In sum, a rich spectrum of collective behaviors emerges
in the RLEG by tuning the game parameters. The collective
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FIG. 3. 〈 fc〉 as a function of game parameter b with different
learning parameters. The transition points between periodically os-
cillating and stable areas are marked with a red dot for each subplot.
The insets in subplots further manifest effects of parameters on the
amplitude and transition point b′ by zooming in. The learning param-
eters in each panel are as follows: (a) γ = 0.9 and ε = 0.02; (b) α =
0.9 and ε = 0.02; (c) α = γ = 0.9; (d) α = γ = 0.9 and ε = 0.02.
In panel (d), a bias initialization replaces the standard initialization
(orange dots). The system size N = 10 000 in all simulations.

behaviors are quite different for the SD and MS settings
in RLEGs although that are similar for the traditional EGs.
For the SD RLEGs, a series of behaviors appear, such as
explosive events, periodic or aperiodic oscillation and stable
coexistence. Moreover, those learning parameters that are
uniquely present in RLEG seemly also influence the outcome
considerably, which remain to be elucidated in the following.

III. ANALYSIS

A. The formalization of learning dynamics
in the static environment

To understand the dynamical process in RLEGs, we first
focus on a simpler case where an agent lives in a static envi-
ronment and formalize the corresponding learning dynamics
as a preliminary step. As with agents in RLEGs, in this case
each agent’s state is within the state set S = {s1, · · · , sns} and
takes an action from the action set A = {a1, · · · , ana}. The
agent also maximizes its reward via reinforcement learning:
updates both its Q table and its state in the process. But unlike
RLEGs, the rewards for all actions are time-independent and
are denoted as R = (ra1 , · · · , rana

).
As the protocol of RLEGs shows, the agent takes action

either by following h function with probability 1 − ε or by
choosing a random one with probability ε. In our work, we
term the update events if the agent adopts the action by
following the former process as “freezing events” ( f events),
and as “melting events” (m events) if otherwise. Physically,
m events can be regarded as perturbations to f events be-
cause (na − 1)ε/na � 1. This probability is because there is a
chance ε/na for the latter scheme still taking the same actions
as the former one and needs to be subtracted. Actually, the
update evolution of Q table in f events and m events could be
described by a double-layered directed graph, i.e., each layer
of the directed graph in the case of two states and two actions
is shown in Figs. 4(a) and 4(b)

FIG. 4. The evolution scheme of Q-table update (a), (b) and the
switching of visible beliefs (c), (d). These two types of schemes can
be mutually derived by the interchange of their edges and vertices. In
f events only, paths at the frozen point of each mode are connected
with solid arrows, while paths between these modes are blocked and
marked with unfilled arrows in panels (a) and (c). But these modes
could be potentially melted and interchangeable in m events as panels
(b) and (d) show.

In our formalization, the agent’s Q table is regarded as its
belief for optimal actions. The decision-making for actions
indicates the robustness of the belief at a certain state s is
increased with the gap between the largest and the second
largest element in the row of s. Here, we formalize the
agent’s Q table with a time-dependent belief set B(τ ) =
{s|a′(τ ) : s ∈ S } through a coarse method [see Fig. 5(a)].
Within the set, the element s|a′(τ ) means the agent’s optimal
action at state s is a′ at τ , i.e., Qsa′ is the maximal element in
the row of state s. However, only one belief in B is visible in
an f event and the rest are hidden since the agent can put itself
in only one state in S at any time. Thus, we denote the visible
belief by s̃|a(τ ), which refers to the agent’s state is s and the
corresponding belief is s|a at τ .

According to the belief set B, the switch of the agents’
visible belief forms a closed and uncontradicted path,
BE = (s′

1|a′
2, s′

2|a′
3, · · · , s′

nE |a′
1) with nE ∈ N∗. Along the

path, a sequence of circular and ordered actions—M =
(a′

2, · · · , a′
nE , a′

1) constitute a behavior mode [see Figs. 5(a)
and 5(b)]. Here, we appoint the agent is in the behavior mode
M when its current visible belief is in BE . Besides, a mode
is called an optimal mode if the reward for each action a′

k
in M is equal to the maximum rmax = max{R}, otherwise, a
nonoptimal mode.

For those f events, the agent’s belief set and Q table will be
“frozen” one after the other in such environment. The freezing
rate is dependent on the learning rate α and the discounting
factor γ : a larger α facilitates the freezing process, but γ

does the opposite. We say the agent is at the frozen point
of a mode when its Q table is frozen. These frozen points
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FIG. 5. The formalization of Q table under the four-states and
four-actions setting. In panels (a) and (b) the agent investigated stays
at state s4. After formalization, we display the belief set B, its closed
path BE , its behavior mode M for the agent’s current Q table, the
table and the hidden beliefs in B with gray shadow. In panel (a), the
agent is not in the behavior mode for its Q table because the visible
belief s̃4|a2 is not in BE . In addition, the mode is unstable because
the mode contains nonoptimal actions. In fact, there is unique stable
mode M = (a3) for rmax = ra3 . In panel (b), the agent is in the
behavior mode for its current Q table but the beliefs in BE become
fragile even at the frozen point, because the optimal mode is not
unique for rmax = ra2 = ra3 = ra4 .

are reminiscent of attractors in nonlinear dynamics, just the
convergence rate towards these frozen points is determined by
the learning parameters α, γ and R.

Different from the noise in nonlinear dynamics, however, m
events not only perturb the agent’s actions but may also “melt”
the agent’s belief and mode at its frozen point. A frozen point
is stable if all beliefs in BE and behavior modes M are robust
to any m events. However, for a given R, elements in each
action column tend to be exactly the same under the melting
effect. Moreover, the elements in different action columns also
become homogeneous over time if rewards for these actions
are identical. This means the elements in the column of action
ai only depends on rai and rmax. With these, two propositions
are proposed with proofs provided in Appendix A 2: (1) A
frozen point for a nonoptimal mode is unstable; (2) for a stable
frozen point, beliefs in BE become fragile if the optimal mode
is not unique in the environment. Here it is necessary to point
out that the switch of visible belief in f events and m events
can also be described as a double-layered directed graph
analogous to the update of Q table. The key is to make the
interchange of edges and vertices, just as the transformation
in Fig. 4

B. The analysis in the general RLEGs

1. The stability for the general RLEGs

Different from the static environment, the reward for action
in RLEGs is now time-dependent. As N → ∞, the reward
for action ai is rai = ∑

a j∈A fa j (τ )�aia j in RLEGs. For those

randomly chosen initiators, their rewards are symmetrical
because the reward only depends on the current action and
regardless of who takes it. Because of this symmetry and
the motivation for seeking the maximal reward as shown in
Sec. III A and Appendix A 2, this will narrow the rewards dif-
ference among agents gradually and push action preferences
to an equilibrium point, f∗ = ( f ∗

a1
, · · · , f ∗

ana
)T. At this point,

the rewards for all agents are identical in f events and no agent
is able to explore a better mode to replace the current one by
m events. Here, we say an equilibrium point f∗ is trend stable
if the reward gap to explore the optimal mode will push action
preference f in its neighborhood towards it.

Given the above analysis in the static environment, we
classify the equilibrium f∗ into two categories based on the
features of optimal modes: (1) pure and (2) mixed. For the
former, all agents are in the unique optimal mode consisting
of the only action with the maximum reward, which indicates
B = {s j |ai : s j ∈ S } for all agents and f ∗

ai
= 1. For the latter,

agents are in the different optimal modes consisting of one or
several actions with the maximum reward. Here, one learns
that f ∗

ai
∈ (0, 1) if ai ∈ A ∗ and f ∗

ai
= 0 otherwise, where A ∗

is the set of optimal actions at f∗. Furthermore, we take an
equilibrium point f∗ is strictly stable if the system is able to
suppress fluctuations at the point without delay.

We now focus on the stability of the mixed equilibrium
points rather than the pure ones in RLEGs since each pure
point is a fixed point and is always strictly stable [50]. To
determine the properties of a mixed f∗, we assume it is
strictly stable firstly and then investigate whether this assump-
tion is self-consistent. Under the assumption, our analysis
in Sec. III A indicates that agents’ belief set B are frozen
gradually but beliefs in BE become fragile at the frozen points.
So, agents’ belief is likely to be undermined by fluctuations
around f∗. Meanwhile, the switches of beliefs also react
to these fluctuations that either amplify or suppress them.
Therefore, we next pay attention to the interaction between
fluctuations and frozen agents’ beliefs through rewards in the
game.

Without loss of generality, we assume that there is a
fluctuation δf with δ fak = 0,∀ak /∈ A ∗ in the neighborhood
of f∗ at τ (see Appendix A 3). In the round, the closed
beliefs path and state for the initiator are denoted in their
general form, BE (τ ) = (s′

1|a′
2, s′

2|a′
3, · · · , s′

nE |a′
1) and s′

i, in
which nE ∈ N∗ and s′

i|a′
j is in BE . Here, the beliefs in

BE are fragile because of the narrowing of the gaps δQ =
{Qs′

ia
′
j
− Qs′

ial : s′
i|a′

j ∈ BE , s′
i|al /∈ BE , al ∈ A ∗} at f∗. Thus,

the belief s′
i|a′

j in BE will be undermined and replaced by a
new one once the reward change by fluctuations causes any
difference in δQs′

i
= {Qs′

ia
′
j
− Qs′

ial : s′
i|al /∈ BE , al ∈ A ∗} that

is less than zero in the current update event.
In an f event, the update for the initiator’s Q table is that

Qs′
ia

′
j
(τ + 1) = Qs′

ia
′
j
(τ ) + αδra′

j

= Qs′
ia

′
j
(τ ) + α

∑
ak∈A ∗

δ fak (τ )�a′
j ak .

So, the probability of s′
i|a′

j being replaced by a new one in-

creases with the reduction of reward for a′
j , −δra′

j
(τ ) = r∗

a′
j
−
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ra′
j
(τ ). While for an m event, the update for the initiator’s Q

table is

Qs′
ial (τ + 1) ≈ Qs′

ial (τ ) + αδral

= Qs′
ial (τ ) + α

∑
ak∈A ∗

δ fak (τ )�al ak ,

as the initiator’s action al ∈ A ∗. Therefore, the transition
probability of belief from s′

i|a′
j to s′

i|al increases with the
increment of the reward for al , δral ≈ δral (τ ) − r∗

al
> 0. As

mentioned above, fa′
j

increases but fal decreases potentially if

s′
i|a′

j is replaced by s′
i|al in the update events.

Based on these analysis, we reach a set of ordinary differ-
ential equations dδf/dτ = F (δf ) with

dδ fa j

dτ
=

⎡
⎣ 1

|A ∗| − 1
·

∑
ai∈A ∗\a j

f ∗
ai
ψ f

ai
(−δrai ; α, γ ,�) − f ∗

a j
ψ f

a j
(−δraj ; α, γ ,�)

⎤
⎦ ·

[
1 − (na − 1)ε

na

]

+
⎡
⎣ ∑

ai∈A ∗\a j

(
f ∗
ai
ψm

ai
(δraj ; α, γ ,�) − f ∗

a j
× ψm

aj
(δrai ; α, γ ,�)

)⎤⎦ · ε

na
, (5)

where ψ
f

a (x; α, γ ,�) and ψm
a (x; α, γ ,�) are the change rates

of beliefs from {sl |a : sl ∈ S } to {sl |a′ : sl ∈ S } (a �= a′) in
f events and m events, respectively. The analysis of belief
change for the initiator indicates ψμ

a (x; α, γ ,�) increases
with x if sgn(x) = 1, and zero otherwise. In addition, the
change of reward δra for a ∈ A ∗ is the function of the
fluctuation δf . Notice that, the first and last terms are flows
between beliefs in f events and m events, respectively. The
learning parameters and the payoff matrix determine initia-
tors’ feedback to fluctuations and the distribution of δQ.

According to Eq. (5), we can now judge the assumption
is self-consistent if the dominant eigenvalue of DF (δf ) at 0
is less than zero, and not self-consistent otherwise. In other
words, whether a mixed equilibrium is strictly stable in RLEG
can be determined with the help of the semi-analytic equation.
However, it is difficult or even impossible to get accurate ψ .
Fortunately, knowing the main properties of ψ is sometimes
sufficient to determine the strict stability of f∗ to understand
qualitatively the dynamics. In fact, for an RLEG at a strictly
stable mixed equilibrium point, we may get more detailed
information, such as the composition of agents residing in
different modes, as shown in the next subsection.

2. The analysis at the strictly stable equilibrium point in the
general RLEGs

Based on agents’ visible belief, we further divide agents
into ns × na types, � = {s̃|a′ : s ∈ S , a′ ∈ A }, and we use
f� = ( fs̃1|a1 , fs̃1|a2 , · · · , fs̃ns |ana

)T to denote the fraction of
agents in these types. One can see the connection between the
beliefs and behaviors is fai = ∑

s j∈S fs̃ j |ai . The evolution of
f� is

df�

dτ
= W (τ ) · f�

=
[(

1 − ε

n

)
W f (τ ) + ε

n
W m(τ ) − I

]
· f�, (6)

where W f and W m represent transition rates due to the
switches of initiator’s visible belief in f events and m events,

respectively. For W f and W m, we have w
f
s̃i|a j→s̃k |al

(τ ) = 0 for

sk �= s j and wm
s̃i|a j→s̃ j |ak

(τ ) = 0.

For a strictly stable mixed equilibrium point f∗, f� can
be denoted as f∗� and reasonably be assumed fixed. But the
matrix W is not fixed at the point because the degree of
freedom for W is higher than the one for f∗� , i.e., W keeping
f� at f∗� is not unique. To infer f∗� at f∗, we define a Shannon
entropy

S (τ ) =
∑

s̃i|a j∈�

fs̃i|a j (τ ) log
[

fs̃i|a j (τ )
]
, (7)

which characterizes the degree of disorder of agents’ visible
belief. Thus, f∗� could be inferred with the help of the maxi-
mal entropy principle

max{S (W )}
s.t.

∑
si∈S

f ∗
s̃i|a j

= f ∗
a j

,
∑

s̃i|a j∈�

f ∗
s̃i|a j

= 1,

∑
ak∈A

w
∗ f
s̃i|a j→s̃ j |ak

= 1,
∑

sk ∈ S \s j

al ∈ A

w∗m
s̃i|a j→s̃k |al

= 1,

0 � f ∗
s̃i|a j

� 1, 0 � ws̃i|a j→s̃k |al � 1,

df�

dτ
|f�=f∗� = 0. (8)

The information df�/dτ = 0 at f�∗ derives from the assump-
tion that f� is fixed at f∗. In specific cases, we can then obtain
the proportion of agents residing in different modes.

C. The analysis in the general RLEGs specific
to 2 × 2 game setting

1. The stability of mixed equilibrium point

In this part, we apply the above analysis to the sim-
plest case—2 × 2 game setting. The rewards for actions are
rc(τ ) = fc(τ )	�c: + �cd and rd (τ ) = − fc(τ )	�d: + �dd ,
where 	�c: = �cc − �cd and 	�d: = �dd − �dc. Besides,
there is at most one mixed equilibrium point f∗ = ( f ∗

c , f ∗
d )T =

042402-6
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FIG. 6. The mechanism diagram of the stability for the mixed
equilibrium points in 2 × 2 RLEGs. In panels (a)–(d), the feedback
to reward gap would push fc toward or away from the mixed
equilibrium point f ∗

c (dotted arrows), which determines the trend
stability of f ∗

c . The feedback to different fluctuations around a trend
stable f ∗

c would take a driving force in the same or opposite direction
(solid arrows), which decides the strict stability of f ∗

c . In panel (a),
the mixed equilibrium point is unstable in trend for SH RLEGs
since the reward gap always drives cooperation preference away
from it. Panel (b) shows the mixed equilibrium point are both trend
stable and strictly stable for MS RLEGs. In panels (c), (d), we
show two cases that the mixed equilibrium point is trend stable but
not strictly stable. In case (c), 	�:d/	�:c < ψm

d /ψm
d , the point is

strictly stable in the left neighborhood but not in the right neigh-
borhood. A periodic oscillation emerges in the right neighborhood.
For case (d), 	�:d/	�:c > ψ

f
d /ψ

f
d , the point is strictly stable in

the right neighborhood but not in the left neighborhood. There, the
equilibrium always breaks down from the left neighborhood and an
aperiodic oscillation arises.

( 	�:d
	�:c+	�:d

, 	�:c
	�:c+	�:d

)T, at which the rewards for cooperators
and defectors are identical. Thus, the existence condition for
the point is that sgn(	�:c) = sgn(	�:d ) because f ∗

c ∈ (0, 1).
As mentioned before, the reward gap between agents pushes
f toward one of equilibrium points, and the gap is erased. In
addition, the gap also drives agents to take superior action or
mode by learning. In the following, we first analyze the trend
stability of mixed equilibrium points.

Based on the property of columns in the payoff matrix,
we divide settings with a mixed equilibrium point f ∗

c into
two classes: sgn(	�:c) = sgn(	�:d ) = 1 and sgn(	�:c) =
sgn(	�:d ) = −1. For the former, the environment favors
cooperators rather than defectors under fc ∈ ( f ∗

c , 1] because
rc > rd . As a result, the reward gap will promote the cooper-
ator prevalence further. In the opposite case of rd > rc under
fc ∈ [0, f ∗

c ), defectors are favored and cooperators decreases.
Accordingly, the reward gap always drives fc away from f ∗

c .
Therefore, the mixed equilibrium point is trend unstable, such
as SH game settings [see Figs. 2(a), 2(b), and 6(a)]. Com-
paratively for the later case, the environment favors defec-
tors over cooperators when fc ∈ ( f ∗

c , 1], and the cooperators
are favored when fc ∈ [0, f ∗

c ). It suggests the reward gap
pushes f toward the mixed equilibrium point, and the mixed

equilibrium point is trend stable, such as MS and SD game
settings [see Figs. 2(c)–2(f) and Figs. 6(b)–6(d)].

But a mixed equilibrium point could be not strictly stable.
Here, we investigate the strict stability of f∗ by examining
the dynamics of fluctuations in Eq. (5). By normalizing f , the
evolution of δ fc is

dδ fc

dτ
= ε

2

[
f ∗
d ψm

d (δrc:; α, γ ,�) − f ∗
c ψm

c (δrd ; α, β,�)
]

+
(

1 − ε

2

)[
f ∗
d ψ

f
d (−δrd ; α, β,�)

− f ∗
c ψ f

c (−δrc; α, β,�)
]
, (9)

in which δrc = δ fc · 	�c: and δrd = −δ fc · 	�d:. Besides,
ψ subject to the distribution of δQ with ψm

c = ψ
f

d and ψ
f

c =
ψm

d (Figs. 13–15 in Appendix A 3). In most cases, its distribu-
tion is approximately symmetric at the point, especially when
	�c: = �d:.

Equation (9) shows that the properties of rows for the pay-
off matrix pose great influence on the strict stability. For the
MS game with sgn(	�c: ) = sgn(	�d: ) = −1, the agents’
belief change will suppress fluctuations in the neighborhood
of f∗ without delay since the signs of δ fc and dδ fc/dτ are
opposite in Eq. (9) [Figs. 6(b), 13(a), 13(b), and 14]. Thus,
the mixed f∗ in RLEGs for the MS game setting is both stable
in trend and strictly stable [Figs. 2(a) and (3)].

For SD games with sgn(−	�d: ) = sgn(	�c: ) = 1, we
focus on two specific cases: (i) f ∗

c / f ∗
d = 	�:d/	�:c <

ψm
d /ψm

c as δ fc > 0 and (ii) f ∗
c / f ∗

d > ψ
f

d /ψ
f

c as δ fc < 0. For
case (i), the fluctuation δ fc → 0− will be suppressed without
delay because dδ fc/dτ > 0 [see Fig. 6(c)]. Therefore, the
mixed equilibrium point is strictly stable in the left neighbor-
hood of f ∗

c . But the change of frozen initiators’ belief caused
by the fluctuation δ fc → 0+ is to amplify it further since δ fc

and dδ fc/dτ are of the same sign [see Figs. 13(c) and 15].
The enhancement of the fluctuations will cause more agents
to change their fragile beliefs and the system goes into an
“explosive stage” by cascades. In this stage, the increasing
rate of cooperators increases with ε/2 as Eq. (9) shows. But
the increase of rd − rc in the meanwhile will push f back to
f∗ and enter the “quiescent stage.” Again, the agents’ beliefs
become fragile gradually, later on, a periodic oscillation is
formed [Fig. 2(d)]. The above analysis also explains why the
periodic oscillation fades away with the increase of b (Figs. 3
and 12) and the presence of the point b′ separating oscillation
from nonoscillation areas for the SD RLEGs (Fig. 3).

For case (ii), a fluctuation δ fc → 0+ will be suppressed
without delayed time because δ fc and δ fc/dτ are of opposite
sign as Fig. 6(d) shows. Thus, the mixed equilibrium point
is stable in the right neighborhood of f ∗

c . However, a fluc-
tuation δ fc → 0− could be increased further since δ fc and
dδ fc/dτ are of the same sign [see Fig. 13(d)]. Analogously,
the increase of the fluctuation cause more agents to change
their beliefs in this delayed stage, and the cooperators de-
crease rapidly because 1 − ε/2 
 ε/2. Meanwhile, there is
a quite high increase of rc − rd , which result in the a drastic
promotion of cooperation again after this stage. As fc > f ∗

c ,
the system enters the second delayed stage because rd > rc.
Finally, the reward difference between actions pushes fc back
to f ∗

c . In brief, the fluctuation goes through two delayed
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TABLE I. The classification of 2 × 2 RLEGs according to properties of payoff matrix and the spectrum of collective behaviors. In the
table, the properties of the payoff matrices in RLEGs are shown in the first two rows, while game types, equilibrium points, and the spectrum
of collective behaviors in the following rows, respectively. The connection between the spectrum and payoff matrix demonstrates that the
columns determine the position of equilibrium points and their trend stability, while their strict stabilities are up to the rows.

sgn(	�:c · 	�:d ) = −1 sgn(	�:c · 	�:d ) = 1

sgn(	�:c ) = −1

sgn(	�:c ) = 1sgn(	�:c ) = −1sgn(	�:c ) = 1 sgn(	�c: ) = 1, sgn(	�d: ) = −1 sgn(	�c: ) = −1, sgn(	�d: ) = −1

HM PD SH SD MS
f ∗
c = 1 f ∗

c = 0 c f ∗
c = 0, 1 f ∗

c = 	�:d
	�:d +	�:c

or 	�:d
	�:d +	�:c

	�:d
	�:c

<
ψm

d
ψm

c

ψm
d

ψm
c

<
	�:d
	�:c

<
ψ

f
d

ψ
f

c

	�:d
	�:c

>
ψ

f
d

ψ
f

c
f ∗
c = 	�:d

	�:d +	�:c

Stable Stable Bistable Periodic Oscillation Stable Aperiodic Oscillation Stable

stages before returning to f ∗
c and an aperiodic oscillation

emerges [Fig. 2(f)]. According to above analysis, we learn that
there is a nonoscillating area between (i) and (ii), in which
ψm

d /ψm
c < f ∗

c / f ∗
d < ψ

f
d /ψ

f
c [see Fig. 2(e)]. Summarizing our

analysis and previous work [50], we further classify RLEGs
for the 2 × 2 game settings into several classes according
to the spectrum of collective behaviors and the properties of
payoff matrix as shown by Table I.

To explore the impact of learning parameters on the ampli-
tude and the period, it is necessary to discuss what causes the
delay effects and their influence. In fact, after the cooperation
preference relaxes to the mixed equilibrium point f ∗

c , nearly
all AI agents approach r∗

c = r∗
d = r∗, where a fluctuation δ fc

can change both rc and rd by then. But, the initiator is unable
to get the reward change for both actions in its learning round
because it’s impossible to get the reward change for both
actions since the initiator can only take either cooperation or
defection. As a result, it will take a delay effect on exploration
of optimal beliefs for agents if sgn(rc − rd ) = −sgn(rc −
r∗

d ) or sgn(rd − rc) = −sgn(rd − r∗
c ), such as SD RLEGs

[Figs. 6(c) and 6(d)]. Therefore, long memory and long-term
vision for agents magnify the impact of past Q table so as
to strengthen the delay effect confronting the environmental
change. It suggests that a low α or a high γ increases the
amplitude and period as Fig. 11 shows. In contrast, there is
no delay effect under sgn(rc − rd ) = sgn(rc − r∗

d ) or sgn(rd −

rc) = sgn(rd − r∗
c ) and the mixed equilibrium point is strictly

stable [see Fig. 6(b)], such as MS RLEGs.
In the paradigmatic EGs, the evolution of cooperation

preference only depends on the ratio 	�:c/	�:d and sign
of 	�:ai (∀ai ∈ A ) [13,14]. Our simulations and analysis,
however, indicate that the evolution of RLEGs is not only
subject to the columns of � but also to it rows: the ratio
	�:c/	�:d and the sign of 	�:ai determine the position
of equilibrium points and their trend stability, while the
properties of rows affect the agents’ response to fluctuations.
According to Eq. (9), we conjecture that the response depends
on the ratio 	�c:/	�d: and the signs of 	�si : (si ∈ S ) anal-
ogously. If this is true, then any two systems that have iden-
tical 	�:c/	�:d , 	�c:/	�d:, sgn(	�:ai ), and sgn(	�si: )
should be qualitatively equivalent. To check the conjecture,
we compute the ensemble average of time series of w

μ

s̃|a→s̃′|a′

and fs̃|a with s̃|a ∈ � in a series equivalent MS and SD RLEGs
by simulations, in which the superscript μ ∈ { f , m} refers to
f events or m events. The results support our conjecture since
they exhibit the same dynamics (see Figs. 7 and 17).

2. The analysis for MS RLEGs

Here, we apply the beliefs formalization in Sec. III B 2 to
MS RLEGs to infer f∗� with the help of the maximum entropy
principle and the known information as Eq. (8) shows. In this
case, the master equation of f� is expressed as

df�

dτ
= W (τ ) · f� =

[(
1 − ε

2

)
W f (τ ) + ε

2
W m(τ ) − I

]
· f� (10)

=

⎛
⎜⎜⎜⎜⎜⎝

(
1 − ε

2

)
w

f
c̃|c→c̃|c(τ ) − 1 ε

2wm
c̃|d→c̃|c(τ )

(
1 − ε

2

)
w

f
d̃|c→c̃|c(τ ) ε

2wm
d̃|d→c̃|c(τ )(

1 − ε
2

)
w

f
c̃|c→c̃|d (τ ) ε

2wm
c̃|d→c̃|d (τ ) − 1

(
1 − ε

2

)
w

f
d̃|c→c̃|d (τ ) ε

2wm
d̃|d→c̃|d (τ )

ε
2wm

c̃|c→d̃|c(τ )
(
1 − ε

2

)
w

f
c̃|d→d̃|c(τ ) ε

2wm
d̃|c→d̃|c(τ ) − 1

(
1 − ε

2

)
w

f
d̃|d→d̃|c(τ )

ε
2wm

c̃|c→d̃|d (τ )
(
1 − ε

2

)
w

f
c̃|d→d̃|d (τ ) ε

2wm
d̃|c→d̃|d (τ )

(
1 − ε

2

)
w

f
d̃|d→d̃|d (τ ) − 1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

fc̃|c
fc̃|d
fd̃|c
fd̃|d

⎞
⎟⎟⎟⎠,

in which elements in W f and W m are transition rate because
of the switches of the visible belief in update events (Fig. 4).
To proceed, it is necessary to compare f∗� and S by inference
with those by the simulations. Interestingly, an identical result
is shown by the method for different payoff matrices but with

an identical equilibrium point. Since Eq. (9) shows that the
difference between ψc and ψd is increased with the difference
between 	�c: and 	�d: (see Fig. 14), we therefore focus
on the case of 	�c: = 	�d: first. The comparison between
ensemble average of time series for fs̃|a as well as S and those
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(a) (b)

(d)(c)

FIG. 7. The ensemble averaged time series of W μ

s̃a→s̃′a′ and fs̃|a in equivalent MS and SD RLEGs. In panels (a) and (b), the payoff matrices
for the equivalent MS RLEGs are (1, 4; 6, 3) and (5, 14; 20, 11), respectively. In panels (c) and (d), the payoff matrices for SD game settings
take default form (6, b; 6 + b, 2) with b = 2.5 and (21, 14; 26, 13), respectively. Time series of w

μ

s̃|a→c̃|c, W μ

s̃|a→d̃|d , and fs̃|a are shown in panels
(a)–(d). Other parameters: α = γ = 0.9, ε = 0.02, and the system size N = 10 000. In panels (a)–(d), the ensemble average is over 1 000
realizations.

by inference at f ∗
c shows that the performance by our method

is decent under various payoff matrices and exploration rates
as Figs. 8(a)–8(c) show. However, the results by inference
deviate from the simulations slightly when 	�c: �= 	�d: as
Fig. 8(d) shows. The reason for the mismatch may be that the
constraints on W demand the feedback is symmetric in our
method.

At the mixed point of an MS RLEG, agents reside one
of following three behavior modes: frozen cooperation in the
form of C-C mode (CCM), frozen defection in the form of
D-D mode (DDM), and cyclic mode in the form of cyclic
C-D mode (CDM). Since f∗� reflects the fraction of agents
in different modes, the fraction of agents in CCM and DDM
equal to fc̃|c and fd̃|d , and the fraction in CDM approaches to
the sum of fc̃|d and fd̃|c. In addition, W f and W m are correlated
with the average residence time of agents in modes at the
equilibrium point. Unfortunately, the matrices are not unique
and hard to infer via our method (see Fig. 16). Therefore, we
calculate the agent’s mode residence over its learning round
by simulations and compute the migrating rates between
different modes at f∗ (Fig. 9 shows). Very different from

the disordered behaviors for MS EGs at the fixed point, the
agents’ action exhibit a remarkably high time correlation via
behavior modes [see Fig. 9(a)]. In addition, the migration rate
indicates each mode is robust in f events even the mode is
rare, such as CCM [see Fig. 9(b)].

IV. DISCUSSION AND CONCLUSION

In this work, we developed a theoretical framework to
understand the collective behaviors in the reinforcement learn-
ing evolutionary games (RLEGs). Within this framework, we
formalize each agent’s Q table in the learning as beliefs of
the optimal action at different states. The series of agents’
actions following their beliefs form different behavior modes.
As a preliminary step, we investigate a single agent in a time-
independent environment and find two useful propositions: (i)
each nonoptimal mode is unstable and (ii) an optimal mode
becomes fragile if the optimal is not unique.

Along with the above clues, we reveal that the reward gap
in RLEGs between actions drive the action preferences toward
one of equilibrium points, where the reward gap between
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FIG. 8. The comparison between f ∗
s̃|a as well as S∗ in inference

and ensemble average of time series of fs̃|a as well as S in simu-
lation. In panel (a), the payoff matrix � = (0, 3; 5, 2) and learning
parameters α = γ = 0.9 as well as ε = 0.02. Compare with panel
(a), the difference is that exploration rate is replaced with ε =
0.04 in panel (b), while alternative payoff matrices are (1, 5; 7, 3)
and (0, 2.5; 2.5, 2) in panels (c) and (d). In the settings, the ratio
	�c:/	�d: = 1 is the same but the equilibrium point is different in
panels (a) and (c). On the contrary, there is an identical equilibrium
point but different 	�c:/	�d: in panels (a) and (d). The scale of
each system is N = 10 000 and the ensemble average is over 100
realizations in the simulation.

agents disappears. Furthermore, we uncover that the reward
gap in the neighbourhood of an equilibrium point determines
its trend stability. We also provide a semianalytic equation to
analyze whether a mixed equilibrium point is strictly stable or
not when it is trend stable. This equation helps understand
the various collective behaviors in the simulation, such as

10000 15000 20000 25000 30000 35000 40000 45000 50000
τi

CCM

CDM

DDM

(a) CCM  CDM  DDM
frequency  0.03    0.28    0.69 

(b)
CDM CCM DDM CDM

CCM DDM CDM CCM DDM

0.926

0.853 0.983

0.
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0.0170.062
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2.282
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0.
17

1
0.

94
0

0.0990.718

0.0006

0.003

0.924

0.845 0.974

0.
15

2
0.

01
3

0.0260.063

f-events:1- /2 Total eventsm-events: /2

FIG. 9. The series of modes residence for a focused agent over
its learning round and migration rates between various modes at the
equilibrium point for an MS RLEG. In panel (a), we provide the
series and frequencies for the focused agent in different modes over
update events. In the figure, τi is the focus agent’s learning round.
The migration rate between the modes in f events, m events, and
total events are shown in panel (b). The simulation shares the payoff
matrix and learning parameters with Fig. 8(a).

explosive events, different oscillation, and bistable states,
etc. As the equilibrium point is strictly stable, we combine
the maximum entropy principle with dynamics to infer the
composition of agents from the perspective of modes. When
applied to 2 × 2 game settings, we find that the columns of
payoff matrix in the game setting determine the position of
equilibrium points and their trend stability; The rows deter-
mine the instantaneous response of fluctuations for agents thus
influence the strict stability. Inspired by the above analysis,
we propose an intuitive method to construct equivalent 2 × 2
RLEGs, with which the inferred fraction of agents residing
in different modes is verified by numerical experiments. The
series of modes residence for individuals indicates its actions
are correlated in time, which is significantly different from the
disordered behaviors in traditional evolutionary games.

Our work could provide a theoretic foundation for fur-
ther systematic investigation of evolutionary games from the
perspective of machine learning. It may also help us further
understand explosive events and the related human behavior
patterns in the real world since the reinforcement learning
mimics the introspectiveness of human. Obviously, there still
many open questions remain. Since human strategies are a
mixture of several pure strategies, it would be very interesting
to extend our theory of reinforcement learning evolution
games to continuous game settings. Besides, how to utilize
our theory to detect explosive events in the society, how to
catalyze the beneficial ones among them, on one hand, and
how to suppress the harmful ones, on the other hand.
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APPENDIX

This Appendix contains additional remarks and supporting
materials for the main texts. To further manifest the spectrum
of collective behaviors in 2 × 2 RLEGs, Appendix appends
the time series of the cooperation preference for various game
settings with different learning parameters. In Appendix A 1,
we provide the proofs for the propositions (i) and (ii) of analy-
sis regarding learning dynamics in the static environment (see
Sec. III A). Furthermore, Appendix A 3 as additional remarks
in Secs. III B 1 and III C 1 expounds the connection between
function ψ and distribution of δQ. In Appendix A 4, we
provide more simulations to support our remarks or conjecture
about transition matrix W in Secs. III B 2 and III C 2.

1. More simulations for 2 × 2 RLEGs

Here, we first provide more times series of cooperation
preference in RLEGs for various 2 × 2 game settings for
Sec. II B. Figure 10 shows that defection is dominant for
the prisoner’s dilemma (PD) game setting, while cooperation
wins over for the harmony (HM) game setting. These trivial
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FIG. 10. The time series of cooperation preference over MC
steps in reinforcement learning evolutionary games (RLEGs) for PD
and HM game setting. The payoff matrices are � = (6, b; 6 + b, 2)
with b = 1.5, and (5, 2; 4, 1) in panels (a) and (b), respectively.
The learning parameters α = γ = 0.9, ε = 0.02 and the system size
N = 10 000.

results show that the collective behaviors in RLEGs are the
same as the cases in traditional evolutionary game (EG) if
there is a single pure equilibrium point for the game setting.
These points are the globally stable fixed points, where all
agents’ Q table are exactly the same and thus of less interest.

Different from the PD and HM game cases, the collective
behaviors are complex and diverse in the 2 × 2 RLEGs with
a mixed equilibrium, especially for the snowdrift (SD) games
(see Figs. 2 and 3). Figure 2 shows that three kind of col-
lective behaviors around the equilibrium point for SD game
settings, periodic oscillation, aperiodic oscillation, and stable
coexistence. Here, we make more simulations to investigate
how the learning parameters affect the properties of periodic
oscillation (see Fig. 11). The results show that a lower learning
rate (long memory effect) or a higher discounting factor (long-
sight) increases the period and the amplitude of the oscillation.
Therefore, the transition point between periodic oscillation
and stable coexistence may increase with α, while it decreases
with the increasing γ (see Fig. 3). In addition, the increasing
rate of cooperators during the explosive stage as well as the
amplitude A increases with exploration rate ε, but the period
is reduced.
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α=0.5 γ=0.9 =0.02

10000 12000 14000 16000
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α=0.9 γ=0.7 =0.02
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f c

(c) α=0.9 γ=0.9 =0.02
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t
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0.28 (d) α=0.9 γ=0.9 =0.02
α=0.9 γ=0 =0.02

FIG. 11. The comparison of time series of fc over MC steps in
RLEGs for a SD game setting using different learning parameters.
In the SD game, the payoff matrix � = (6, b; 6 + b, 2) with b =
2.5. The learning parameters are shown in each subfigure and N =
10 000. The red dashed lines are the fraction of cooperators at the
fixed point in the traditional EGs.
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FIG. 12. Time series of fc over MC steps in RLEGs for SD game
setting with the increase of b. In the simulations, the payoff matrix
take the default form, � = (6, b; 6 + b, 2), with b being shown in
each panel. The learning parameters α = γ = 0.9, ε = 0.02, and
N = 10 000. The red dashed line is the fraction of cooperators at the
fixed point in the corresponding traditional EGs.

To check whether the RLEGs for default SD game settings
are indeed divided into two types—periodic oscillation and
stable coexistence, we provide some further time series of fc

with the increase of b in Fig. 12. The results display that the
periodic oscillation fades away and turns into more or less
stable as b increases. This thus supports our above two-type
conjecture, and they are seperated by a transition point b′.
Similar to the period T and the amplitude A, the transition
point is also influenced by learning parameters: higher α,
lower γ and ε make RLEGs enter stable area early with the
increase of b.

2. The analysis of learning dynamics in a static environment
within belief formalization

Here, we give the proofs to the two propositions in
Sec. III A: (i) A frozen point for a nonoptimal mode is unstable;
(ii) for a stable frozen point, beliefs in BE become fragile if the
optimal mode is not unique in the environment.

To certify the proposition (i) with the reduction to ab-
surdity, we assume the frozen point for a behavior mode
M = (a′

2, · · · , a′
nE , a′

1) is stable and the rewards for actions
in M meet one of following conditions: (a) there are a′

i and
a′

j having ra′
j
< ra′

i
= rmax or (b) any ai

′ in M with ra′
i
< rmax.

According to BE for the mode M, one learns that elements in
the agent’s Q table have

⎛
⎜⎜⎜⎝

Qs′
1a′

2

Qs′
2a′

3

...
Qs′

nE a′
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

1 − α αγ · · · 0
0 1 − α · · · 0
...

...
. . .

...
αγ 0 · · · 1 − α

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

Qs′
1a′

2

Qs′
2a′

3

...
Qs′

nE
a′

1

⎞
⎟⎟⎟⎟⎠

+α

⎛
⎜⎜⎜⎝

ra′
2

ra′
3

...
ra′

1

⎞
⎟⎟⎟⎠ (A1)
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FIG. 13. The schematic of the connection between ψ and δQ for
the SD and MS RLEGs under various fluctuations. Panels (a, b) show
connection between ψ and δQ for the MS RLEGs under δ fc > 0 and
δ fc < 0, respectively, while panels (b, c) are for the SD RLEGs.

at the point. The maximum element in the row of s′
k−1 is

Qs′
k−1a′

k
=

∑nE
i=k ra′

i
γ i−k + ∑k−1

i=1 ra′
i
γ nE−k+i

1 − γ nE
. (A2)

By default, Qs′
k−1a′

k
refers to Qs′

nE a′
1

when s′
k−1 = s′

nE in our

work.
However, Qs′

ka′
k

along the paths passing through s′
k|a′

k in m
events tends to

Qs′
ka′

k
(∞) = γ Q̃s′

ka′
k+1

+ ra′
k

under the assumption that the frozen point is stable. Thus, we
get the following result:

nE∑
k=1

	k =
nE∑

k=1

(
Qs′

ka′
k
(∞) − Qs′

ka′
k+1

) = 0, (A3)

which suggests Qs′
ka′

k
(∞) is greater than Qs′

ka′
k+1

in at least
one state row unless 	k = 0 for all k ∈ {1, · · · , nE}, which
requires ra′

i
= ra′

j
for any a′

i, a′
j in the mode M. However, the

necessary condition to keep the stability of the frozen point is
in contradiction with our assumption ra′

j
in case (a). So, the

frozen point is unstable for the case (a).
For case (b), we should further assume that ra′

j
= ra′

k
<

rmax for any a′
j, a′

k in M at the frozen point according to the
necessary condition in above analysis. Along with the paths
passing through sl |a′

k , we have

Qsl a′
k
→ γ Qs′

ka′
k+1

+ ra′
k+1

= Qs′
ka′

k+1
= Qs′

k−1a′
k

for all sl |a′
k /∈ BE if beliefs in BE are stable, i.e., the elements

in the column of action a′
k in M are homogeneous. Thus,

as ral > ra′
k
, Qs′

kal will be greater than Qs′
ka′

k+1
along with the

paths passing through s′
k|al in m events finally because the

maximum element in row sl is no less than Qsl a′
k
. Therefore,

the frozen point is unstable as sl |a′
k /∈ BE is undermined. To
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FIG. 14. The distribution of δQ in various MS RLEGs. The
learning parameters α = γ = 0.9 and N = 10 000.

sum up, for both the cases (a) and (b), the proposition (I) is
certified.

For proposition (II), the assumption about reward for the
action a′

i in M is that ra′
i
= rmax. In this case, the above

analysis shows that m events homogenize elements in the
column of any action a′

i in M. It suggests that the difference
between the largest element and the second largest is narrow-
ing with update events. So, beliefs in BE become fragile as
long as nE > 1. In the case nE = 1 with the mode M = (a′

i ),
the analysis shows the element in the column a′

i become
homogeneous gradually with m events,

Qs′
j a

′
i
→ Qs′

ia
′
i
=

ra′
i

1 − γ
, ∀s′

j ∈ S . (A4)

Thus, the elements in an arbitrary column of action a′
j

Qs′
ka′

j
→ γ Qs′

ia
′
i
+ ra′

j
=

ra′
j
+ γ (ra′

i
− ra′

j
)

1 − γ
, ∀s′

k ∈ S .

(A5)

The result indicates the elements in the column a′
j only depend

on ra′
j

and rmax. Therefore, the elements in different columns
of actions also tend to be exactly the same as in m event as
long as the rewards for the actions are identical. Thus, the
nonmaximum elements in the column that have the maximum
reward approach the maximum gradually so that the beliefs in
BE become fragile, such as elements in columns of a2, a3, and
a4 in Fig. 5(b).
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FIG. 15. The distribution of δQ in SD RLEGs under various
learning parameters. The exploration rate and the scale of the systems
are ε = 0.02 and N = 10 000.

042402-12



UNDERSTANDING COLLECTIVE BEHAVIORS IN … PHYSICAL REVIEW E 101, 042402 (2020)

(a) (b)

FIG. 16. The time series of Ws̃a→s̃′a′ and fs̃|a in an MS RLEG and SD RLEG. In panels (a) and (b), the payoff matrices for the MS and SD
RLEGs are (1, 4; 6, 3) and (6, b; 6 + b, 2) with b = 2.5, respectively. Other parameters: α = γ = 0.9, ε = 0.02, N = 10 000.

3. The connection between function ψ and distribution of δQ

In this part, we first interpret our assumption in Sec. III B 1
that a general fluctuation δf meets δ fak = 0 for all ak /∈ A ∗ at
a mixed equilibrium point f∗. As mentioned in Sec. III B 1,
the optimal actions at each state for any agent is one action

in A ∗ at the point. Therefore, f ∗
ak

= 0 for ak /∈ A ∗. In fact,
fluctuations come from the random selection for initiators in
RLEGs. For example, the fraction fa j decreases if the visible
belief for initiators in successive rounds is s̃i|a j with si �= s j at
f∗. Therefore, the assumption makes sense because s̃i|ak for

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 17. The time series of Ws̃a→s̃′a′ and fs̃|a in an MS RLEG as well as SD RLEG. The payoff matrices in the three groups are shown in
Table II. The rest parameters are α = γ = 0.9, ε = 0.02 and scale of system is N = 10 000. The ensemble average is over 1 000 realizations.
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TABLE II. The payoff matrices of RLEGs in Fig. 17. The RLEGs
are divided into three groups: (a), (c), (b), (f), and (g), (i), and the
RLEGs in the same group are equivalent systems.

Group 1 (MS) Group 2 (SD) Group 3 (MS)

	�c:/	�d: 1 −7/13 2
	�:c/	�:d 5 −5 −3
sgn(	�c: ) −1 1 −1
sgn(	�:c ) −1 −1 −1

(a) (b) (c) (d) (e) (f) (g) (h) (i)
�cc 1 5 10 6 21 47 3 7 9
�cd 4 14 13 2.5 14 40 11 15 33
�dc 6 20 15 8.5 26 52 12 16 36
�dd 3 11 12 2 13 39 8 12 24

an initiator is impossible after f has stayed at f∗ for a long
time.

Under the normalization of f in a 2 × 2 RLEG, the evolu-
tion for a general fluctuation δ fc is

dδ fc

dτ
= ε

2

[
f ∗
d ψm

d (δrc:; α, γ ,�) − f ∗
c ψm

c (δrd ; α, β,�)
]

+
(

1 − ε

2

)[
f ∗
d ψ

f
d (−δrd ; α, β,�)

− f ∗
c ψ f

c (−δrc; α, β,�)
]
. (A6)

Here, δrc = δ fc	�c: and δrd = −δ fc�d: with 	�c: =
�cc − �cd and 	�d: = �dd − �dc. In Eq. (A6), ψm

d (ψm
c ) is

the rate of belief change from {s|d : s ∈ S } ({s|c : s ∈ S })
to {s|c : s ∈ S } ({s|c : s ∈ S }) in m events, while ψ

f
d (ψ f

c )
is the rate of belief change from {s|d : s ∈ S } ({s|c : s ∈ S })
to {s|c : s ∈ S } ({s|c : s ∈ S }) in f events. Sections III B 1
and III C 1 show that the increase of reward for cooperation
in m events and decrease of reward for defection in f events
could cause belief {s|d : s ∈ S } change to {s|c : s ∈ S },
while the increase of reward for defection in m events and
decrease of reward for cooperation in f events could cause
belief {s|c : s ∈ S } change to {s|d : s ∈ S }. Based on the
properties of ψ , one learns that there are only two nonzero
terms in the equation for a given fluctuation (see Fig. 13).
Here, we employ δQ = Qsc − Qsd rather than δQ = Qmax

sa′ −
Qsa for the sake of simplicity, in which s refers to focusing
on agent’s state. So, δQ > 0 for cooperators while δQ < 0
for defectors in the population. We normalize the distribution
of δQ for cooperators and defectors, i.e.,

∫ 0
−∞ p(δQ)dδQ = 1

and
∫ ∞

0 p(δQ)dδQ = 1. In Sec. III B 1, the analysis shows ψ

subject to the distribution of δQ at the equilibrium point f∗.
We next show the relationship between ψ and δQ in MS

and SD RLEGs as examples under fluctuations. For the MS
RLEGs, the nonzero terms are

ψm
c ≈

∫ αδrd

0
p(δQ)dδQ, with δrd > 0,

and

ψ f
c =

∫ −αδrc

0
p(δQ)dδQ, with − δrc > 0,

in the case δ fc > 0 as Fig. 13(a) and Eq. (A6) show, while

ψ
f

d =
∫ 0

αδrd

p(δQ)dδQ, with δrd < 0,

and

ψm
d ≈

∫ 0

−αδrc

p(δQ)dδQ, with − δrc < 0,

in the case δ fc < 0 as Fig. 13(b) shows. Here, f ∗
c is stable

because the sign of δ fc is always opposite to the one of
dδ fc/dτ . The simulations show that p(δQ) is symmetric in
the case 	�c: = 	�d:. However, the symmetry is broken
if 	�c: �= 	�d: [see Figs. 14(a)–14(d)]. It makes our infer-
ences decent in the case of 	�c: = 	�d:, but they slightly
deviate for 	�c: �= 	�d: (see Fig. 8).

For the SD RLEGs, the nonzero terms are

ψm
c ≈

∫ αδrd

0
p(δQ)dδQ, with δrd > 0,

and

ψm
d ≈

∫ 0

−αδrc

p(δQ)dδ, with δrc > 0,

in the case δ fc > 0 as Fig. 13(c) shows, while

ψ
f

d =
∫ 0

αδrd

p(δQ)dδQ, with δrd < 0,

and

ψ f
c =

∫ −αδrc

0
p(δQ)dδQ, with δrc < 0,

in the case δ fc < 0 as Fig. 13(d) shows. Through the sim-
ulations in Sec. III C, we learn that the collective behaviors
in SD RLEGs are divided into three kinds, periodic oscilla-
tion (	�:d/	�:c < ψm

d /ψm
c ), stable coexistence (ψm

d /ψm
c <

	�:d/	�:c < ψ
f

d /ψ
f

c ), and aperiodic oscillation (ψm
d /ψm

c <

	�:d/	�:c). For the default payoff matrix, the increase of
b results in an increase of ψm

c but a decrease of ψm
d as

Fig. 13(c) shows. Therefore, the periodic oscillation fades
away with the increase of b in the simulation. In Fig. 15, we
further investigate the impact of the learning parameters and
the payoff matrix on p(δQ). For fluctuations around f ∗

c , the
result shows the ratio ψm

d /ψm
c increases with increasing γ ,

while decreases with the increase of α [see Figs. 15(a)–15(c)].
Therefore, the transition point b′ becomes larger with γ , while
it is reduced with the increase of α (see Fig. 3). The result also
manifests that ψc gets close to ψd gradually as b approaches
b′ (see Fig. 13).

4. The transition matrix and equivalent systems

The analysis in Sec. III C 2 indicates the transition matrix
W is not unique for a given f∗� at f∗ in RLEGs for the
MS game setting. In Fig. 16(a), we give the time series of
W in an MS RLEG rather than the average in an ensemble
to check it further. The result shows the W is not fixed but
indicates some elements in W f fall into several attractors, such
as wm

c̃|d→c̃|c and wm
c̃|d→c̃|c. Furthermore, the time series of W in

an SD RLGE also are displayed in Fig. 16(b). It indicates that
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the element w
f
d̃|d→d̃|d also falls into several attractors during

the quiescent stage but the attractors are evolving over time
and get together finally. The results above indicate that the
transition matrix W is a better quantity than fc to measure
whether two systems are equivalent or not. Through the

average W in an ensemble, we give more simulations to check
our conjecture that systems are equivalent if 	�c:/	�d:,
	�:c/	�:d , sgn(	�c: ), and sgn(	�:c) are identical in the
systems. Due to the normalization, only part of elements in
W f and W m are shown in Fig. 17. The results further confirm
our conjecture in Sec. III C 1.
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