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Generalized network theory of physical two-dimensional systems
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The properties of a wide range of two-dimensional network materials are investigated by developing a
generalized network theory. The methods developed are shown to be applicable to a wide range of systems
generated from both computation and experiment; incorporating atomistic materials, foams, fullerenes, colloidal
monolayers, and geopolitical regions. The ring structure in physical networks is described in terms of the node
degree distribution and the assortativity. These quantities are linked to previous empirical measures such as
Lemaître’s law and the Aboav-Weaire law. The effect on these network properties is explored by systematically
changing the coordination environments, topologies, and underlying potential model of the physical system.
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I. INTRODUCTION

Two-dimensional (2D) networks are ubiquitous in the natu-
ral world, emerging across all physical disciplines and length
scales. Traditional examples range from the atomic level of
ultrathin materials [1–3], through colloids [4,5], foams [6,7],
epithelial cells [8,9], and geological rock formations (see
Fig. 1) [10]. There are, however, countless more occurrences,
with drying blood [11], stratocumulus clouds [12], and geopo-
litical borders [13] all being the subject of studies. Although
these systems are incredibly physically diverse, it has long
been noted that they have strikingly similar properties [14].
This is because they can all be mapped onto a generic sys-
tem, which can be equivalently described as a collection of
tessellating polygons or percolating rings, and hence they are
governed by the same fundamental laws. Understanding the
behaviours of two-dimensional networks is therefore key to
a wide range of problems in cutting-edge research, including
the control of mitotic division [15,16] and directed synthesis
of nanomaterials [17,18], as well as to curiosities such as
explaining the arrangement of the stones in Giant’s Causeway
[19] or cracking in famous artworks [20].

A consequence of this universality is that both the language
and the metrics used to describe two-dimensional networks
varies considerably between fields, as demonstrated in Table I.
From a nanomaterials perspective we may think of rings
being formed from a set of bonded atoms, in crystals we
have grains separated by boundaries and in biological tissues
cells which divide. Further complication may arise from the
concept of graph duality, where ring structure emerges only
after transforming the physical coordinates. In the context
of colloidal monolayers, for instance, rings are generated
using the Voronoi construction, where the vertices have no
real manifestation and the particle positions are the simplices
in the dual Delaunay triangulation. However, the continuing
expansion and maturity of network science as a field has
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led to new ways of thinking about and quantifying complex
networks [21]. These advances were largely driven by interest
in networks in the more abstract sense of the internet, social
media, and neural networks [22,23], with applications to
physical systems still being more confined to topics such as
biological signaling pathways.

In this paper we therefore aim to apply the techniques
of network science to the analysis of commonly occurring
physical systems to demonstrate how better to quantify their
structure. As part of this process we will recast and extend
some of the existing empirical observations of physical net-
works, namely Lemaître’s law and the Aboav-Weaire law,
on the distributions and arrangements of rings. We will also
develop both simulation and experimental methods to gener-
ate realizations of complex two-dimensional networks, com-
prising a variety of computational Monte Carlo techniques as
well as production of colloidal monolayers. We will analyze
these configurations alongside existing available experimental
coordinates from two-dimensional materials [1,2,24] to ex-
plore the properties of a range of commonly studied systems
encompassing materials, foams, and colloids.

II. THEORY

A. Network description

All the physical networks considered in this work can all
be viewed as a collection of linked nodes, where the entities
that the nodes and links represent depend on the system in
question. For example, in materials they could represent atoms
and bonds or in colloids the vertices and edges of Voronoi
cells. The networks are also planar, in the sense that no
links overlap. An example of this network is given by the
square nodes in Fig. 2. The number of links to each node
in the network is termed the node degree, which we will
denote c. In atomic systems, this is termed the coordination
number, i.e., the number of atoms each atom is bonded to.
For the vast majority of natural random networks, including
the Voronoi diagram, all node degrees are equal to three, as
higher-order vertices are unstable with respect to even the
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TABLE I. Terminology to describe ring structure in literature
reflects the diversity of the underlying physical systems.

Term Synonyms and Examples

Ring Face, polygon, cell, grain, pore, Voronoi cell
Network Graph, tiling, packing, tessellation, partition,

arrangement, decomposition, net, mosaic
Link Edge, bond, boundary, interface
Node Vertex, point, atom

smallest perturbations and readily split into multiple lower-
order sites [25]. The main exception is in atomic systems,
where the exact number of bonds depends on the chemistry of
the elemental species involved. Therefore while this network
is often the most physically intuitive, it does not capture the
disorder of the system well, as in the first instance all nodes
appear equivalent.

Instead, we note that the system can also be viewed as
percolating rings of different sizes, where the size of a ring,
k, is defined by the number of its constituent nodes. From this
we may construct a dual network, where a node is placed at
the center of each ring and the nodes of adjacent (i.e., edge-
sharing) rings linked. In our colloidal systems, for example,
this would be equivalent to the Delaunay triangulation. An
example of this network is given by the circular nodes in
Fig. 2. The node degree in this dual network, k, is then equal
to the ring size in the original network. In addition, the links
now describe the ring adjacencies. The direct relationships
between the physical descriptions and network measures are
given in Table II and discussed in detail below.

B. Average degree

An interesting consequence of the well-defined local coor-
dination environments in physical systems is that the average

node degree of the ring network, 〈k〉, becomes constrained.
As the networks considered in this work are planar, they are
subject to Euler’s formula given as:

N + V − E = χ, (1)

where N , V , E are the number of rings, vertices, and edges in
the graph and χ is an integer termed the Euler characteristic,
which is topology dependent. A generic physical network
consists of c-degree vertices, with the proportion of each type
given by xc, where

∑
c xc = 1, and the mean node degree

is therefore 〈c〉 = ∑
c cxc. This allows the number of edges

to be written in terms of the vertices as E = V
2 〈c〉. In turn

the mean ring size is simply the total number of vertices
per ring, allowing for multiple counting, so that 〈k〉 = V

N 〈c〉.
Substituting these two expressions into Eq. (1) leads to the
expression:

〈k〉 = 2〈c〉(1 − χ/N )

〈c〉 − 2
. (2)

Hence we find that the average node degree in the ring
network (equivalent to the mean ring size of the physical net-
work) is simply related to the average degree of the physical
network (i.e., local coordination environment), the topology
of the system, and the number of rings.

Although Eq. (2) may appear simple, it is a very powerful
constraint. To demonstrate this consider a two-dimensional
lattice with two possible coordination environments c = 3, 4.
The planar case with periodic boundary conditions maps onto
the torus with χ = 0, and so we find:

〈k〉 =
⎧⎨
⎩

6, x3 = 1
4, x4 = 1
5, x3 = 2/3, x4 = 1/3

. (3)

To reiterate in plain terms, this means that if we have a ma-
terial consisting of atoms all forming exactly three bonds (as

FIG. 1. Two-dimensional networks emerge in diverse physical systems and span a range of length scales, coordination environments,
and topologies: (a) 3-coordinate, bond-length controlled network, e.g., glass; (b) 3-coordinate, angle controlled network, e.g., foam; (c) 4-
coordinate network; (d) 3-coordinate network in spherical geometry, e.g., nonclassical fullerene; (e) triangle raft, e.g., silica bilayer; (f) Voronoi
partition, with dual network highlighted (black points and dashed lines), e.g., colloidal monolayer; and (g) communes of Switzerland. Rings are
colored similarly according to size with blue, gray, and red indicating smaller than, equal to, and greater than the mean ring size, respectively.
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FIG. 2. An example physical network is given by the linked
square nodes, which all have node degree (or coordination) of three.
The dual network is given by the linked circular nodes, which have
a node degree equal to the ring size in the physical network. This
network therefore describes the ring structure.

for amorphous carbon), then the mean ring size must be equal
to 6. For aperiodic systems strictly χ = 1, but as N grows and
the proportion of vertices with unsatisfied coordination on the
sample perimeter become negligible overall, in reality these
relationships hold and remain as applicable to amorphous
graphene [26] as the basalt columns in Fingal’s cave [10] and
the Penrose tiling [27].

This analysis extends to spherical topology where χ = 2,
and so:

〈k〉 =
{

6N−12
N , x3 = 1

4N−8
N , x4 = 1

. (4)

These relationships are the origin of the 12-pentagon rule
for 3-coordinate fullerenes [28] (the “football problem”), or
equivalently an “8 triangle rule” in the 4-coordinate case, as
this is the only way to satisfy these equations if the allowed
ring sizes are limited to k = 5, 6 and k = 3, 4, respectively.
Much of the richness in the behavior stems from this funda-
mental constraint on the network average degree.

C. Degree distribution

Knowing that the mean node degree is fixed, the next level
of available information is the form of the underlying degree
distribution, pk . In materials science this quantity is often
referred to as the ring statistics and encodes information about
the level of disorder in an amorphous system [29]. Perhaps
surprisingly, the degree distributions found in physical ring
networks seem relatively well defined. It was noted in silica
that the ring statistics looked to follow a lognormal distribu-
tion [30], but Lemaître et al. demonstrated that the distribution

TABLE II. Network measures directly correspond to traditional
quantities of ring systems.

Symbol Network measure Physical description

k Degree Ring size
pk Degree distribution Ring statistics
e jk Joint degree distribution Ring connectivity
r Assortativity Ring correlations

in 3-coordinate networks systems can be described by a max-
imum entropy distribution [31]. We summarize the maximum
entropy method here, noting that there is a trivial extension to
arbitrary coordination.

The entropy of a probability distribution is defined as
S = −∑

k pk log pk . The degree distribution has the following
constraints: ∑

k

pk = 1, (5)

∑
k

kpk = 〈k〉, (6)

∑
k

pk/k = const, (7)

where the first two constraints correspond to the normalization
condition and the fixed mean ring size. The final constraint
will be discussed below. The entropy can then be maximized
using Lagrange’s method to yield the result:

pk = e−λ1k−λ2/k∑
k e−λ1k−λ2/k

, (8)

which can be solved numerically by substitution into Eqs. (6)
and (7). By allowing the chosen constant to vary, a family
of maximum entropy curves can be generated. The resulting
distributions can be summarized by relating the variance,
μ2 = 〈k2〉 − 〈k〉2, to a single chosen node degree probability,
leading to the plot known as Lemaître’s law. It is usually
framed in the context of the proportion of hexagons in a
system, p6, for the precise reason that most networks have
〈k〉 = 6 and p6 as the largest contribution. Many experimental
and theoretical studies have shown good agreement to this law
[25,32,33]. Simple extensions of the classic law are, however,
possible by modifying the mean degree or the permitted
degree range. We note that k is usually taken in the interval
k � 3 (as the triangle, k = 3, is the smallest polygon), but
there could in principle be manifestations of physical systems
where only certain degrees are accessible.

The only somewhat puzzling aspect of this successful
theory is the choice of constraint (7). It was originally ratio-
nalized on the basis that the areas of rings of a given size, Ak ,
can be well fit by an expression Ak = ak + b + c/k, where
a, b, and c are constants. As noted at the time, this is by
no means true for all systems [34] and in fact is contrary
to the widely known Lewis law [35], which states that Ak is
linear in k for many observable networks [36–38]. Despite
this, the universality of the Lemaître law suggests that there
must be a physical basis to (7), and in the following section
we demonstrate that it can be regenerated by considering ring
adjacencies.

D. Assortativity

The degree distribution is a very important measure for
physical networks, but it does not provide a complete char-
acterization of the ring structure, as it says nothing about
the ring adjacencies. This is important because while with
the same ring statistics it is theoretically possible to organize
the rings in many different arrangements, it is well known
experimentally that only a subsection of these are observed. In
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fact, the vast majority of physical systems have a preference
for small rings (k < 〈k〉) be adjacent to large rings (k > 〈k〉).

Traditionally, in physical sciences the extent of this small-
large ring pairing is quantified through the empirical Aboav-
Weaire law [38–40],

kmk = 〈k〉2 + μ2 + 〈k〉(1 − α)(k − 〈k〉), (9)

where mk is the mean ring size about a ring of size k
and α is a fitting parameter. The value of α describes the
ring correlations, with a larger positive value indicating a
greater tendency for small-large ring adjacencies. The law
is well used, for example, in studies of materials [41,42],
emulsions [43], biological tissues [44], as well as in planetary
science [45].

There are, however, limitations with quantifying ring cor-
relations in this way. First, it is not intuitive what the actual
value of α or its limits represent. It can be shown by evaluating
∂mk
∂k = 0 that if rings were arranged purely randomly (the

“topological gas” [31]) then α = −μ2/〈k〉2. This highlights
both that α is dependent on the ring statistics and that its sign
is an insufficient classifier. Second, and more critically, the as-
sumption Aboav-Weaire law holds and is indeed linear is often
overlooked [4,46,47]. The determination of the α parameter
therefore always has a degree of grayness. A combination of
these effects make it difficult to draw accurate comparisons
between different systems.

However, the analogous problem in network science is
already well established. The assortativity was introduced by
Newman to measure the preference of low-degree nodes to be
adjacent to high-degree nodes in generic networks [48]. It has
proved highly popular in the network science and the study of
social and biological networks [49] but has also been applied
for example in theoretical studies of hard-disk packings [50].
The calculation of the assortativity revolves around the edge
joint degree distribution, e jk , which measures the probability
of two nodes of degrees j, k sharing a link (i.e., two rings of
sizes j, k being adjacent). The probability of any link having
degree k is distributed according to qk = kpk/〈k〉, and so
if nodes are randomly arranged, then e jk = q jqk . Deviation
from this random arrangement is the assortativity and can be
measured by Pearson’s correlation coefficient:

r =
∑

jk jk(e jk − q jqk )∑
k k2qk − ( ∑

k kqk
)2 = 〈k〉2 ∑

jk jke jk − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2
.

(10)
For this coefficient to be calculable, the second and third
moments of the degree distribution must be finite [51]. This
condition is satisfied for these physical systems, as the pro-
portion of large rings quickly becomes vanishingly small.

The advantages of adopting this measure of assortativity
are clear. The correlation coefficient is bounded between
−1 � r � 1 and has three well-defined limits: r = 0, indicat-
ing a random network; r = 1, a perfectly assortative network;
and r = −1, a perfectly disassortative network. This allows
physical networks to be readily compared in a way that the
Aboav-Weaire law does not allow. Physical networks can now
be fitted in to the wider field of network science, introducing
them as important examples alongside more traditionally stud-
ied networks. Using the assortativity also provides a natural

extension to higher dimensions, which has been difficult to
reconcile with the empirical Aboav-Weaire law [52].

For completeness, we will, however, show that the assor-
tativity can be related to the Aboav-Weaire parameter. To
achieve this we use the fact that that the mean node degree
about a j-degree node can be expressed

∑
k ke jk = q jmj .

Substituting this expression into Eq. (10), and assuming the
Aboav-Weaire law (9) holds exactly, it can be shown that:

α = − r(〈k〉〈k3〉 − 〈k2〉2)

μ2〈k〉2
− μ2

〈k〉2
, (11)

which is consistent with the topological gas, when r = 0. In
reality, the Aboav-Weaire fit is never perfect, and so Eq. (11)
provides an approximation to the value of α. The accuracy of
this equation will therefore depend on the applicability of the
linear fit.

The assortativity also provides a natural framework to
extend Lemaître’s maximum entropy arguments to factor in
ring adjacencies. We now define the entropy in terms of
the edge joint degree distribution, as S = −∑

jk e jk log e jk .
Considering e jk , the following constraints must hold:

∑
jk

e jk = 1, (12)

∑
jk

ke jk = μ2

〈k〉 + 〈k〉, (13)

∑
jk

1

j
e jk = 1

〈k〉 , (14)

∑
jk

jke jk = c(r), (15)

resulting from the normalization condition, Weaire’s sum rule
[40], and Euler’s formula and finally a constraint imposing the
assortativity from Eq. (10). As for Lemaître’s law, Lagrange’s
method can be used with the constraints above (noting that
e jk = ek j) to generate a maximum entropy joint distribution
which satisfies:

e jk = e− λ1
2 ( j+k)− λ2

2 (1/ j+1/k)−λ3 jk∑
jk e− λ1

2 ( j+k)− λ2
2 (1/ j+1/k)−λ3 jk

, (16)

and Eqs. (13)–(15). This can again be solved numerically, and
the resulting distribution can be related to a single node degree
probability (e.g., p6) and an assortativity value.

III. COMPUTATIONAL METHODS

Here we discuss different ways to generate configurations
for network analysis. The primary method we will use in this
work is the bond switching algorithm, due to its flexibility, but
results will also be supplemented with data generated using
the triangle raft algorithm and hard-disk Monte Carlo.
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TABLE III. List of starting crystalline lattices for bond switching
for a range of coordinations.

Topology x3 x4 Lattice

Planar 1 0 Hexagonal
Planar 0 1 Square
Planar 2/3 1/3 Cairo
Planar x3 x4 Mixed hexagonal-square
Spherical 1 0 12-Pentagon fullerene
Spherical 0 1 8-Triangle fullerene

A. Bond switching

The bond switching algorithm is a Monte Carlo approach
for generating periodic disordered network configurations
which are well relaxed. It was originally developed in three
dimensions by Wooten, Winer, and Weaire to generate high-
quality models of silica glass [53]. Analogous approaches
have since been utilized for 3-coordinate, and in one instance
4-coordinate, planar atomic systems [54,55]. We present a
further natural extension of the bond switching method to
variable atomic coordination environments and overall sys-
tem topology. As a review from a networks perspective, the
bond switching algorithm is a stochastic sampling method.
Starting from an initially well-ordered network, links be-
tween neighboring nodes are switched and the effect on the
potential energy of the system (i.e., the amount of strain
which is introduced or removed) is calculated. The energy
of the system is determined by the potential model, which
expresses the total energy of the network as a function of all
node positions. After the links between nodes are switched,
geometry optimization of the node positions takes place to
minimize the total potential energy. By incorporating switches
which reduce the potential energy of the network with greater
probability, one can bias the search towards networks of lower
energy and therefore which occur more commonly in nature.

The general algorithmic procedure for bond switching is as
follows:

(1) Generate initial crystalline atomic lattice i.e., make a
regular array of nodes with known degrees.

(2) Thermalize the lattice with a large number of random
moves, i.e., switch links between nodes to generate a random
network with high energy.

(3) Anneal the system at finite temperature, T , by accept-
ing moves according to the Metropolis criterion [56]:

P = min[1, e−�U/kBT ], (17)

where �U is the energy change as a result of the proposed
move, i.e., continue to switch links in the network, but now
accepting changes which reduce energy with greater proba-
bility.

The specificities of the algorithm will, however, depend
on the exact nature of the system in question. In particular,
the choice of the starting lattice can be used to determine the
system properties in terms of the atomic coordination envi-
ronments and topologies (Table III, Fig. 3). This is because
in the bond switching algorithm the node degree distribution
of the atomic network is constant, and hence from Eq. (2) so
is the mean node degree of the dual network.

FIG. 3. The choice of starting lattice can be used to select coordi-
nation properties, and therefore 〈k〉, in the bond switching algorithm.
(a) Hexagonal net, (b) square net, (c) Cairo lattice, (d) mixed three-
and four-coordinate lattice, and [(e) and (f)] fullerenes based on
hexagonal and square nets, respectively.

The bond switching move will then vary depending on
the coordination properties, as outlined in Fig. 4. The first
[Figs. 4(a)–4(c)] is the original move, which was designed
for purely 3-coordinate atoms, and is in effect introducing
a Stone-Wales defect. We note that this move augments the
ring size of two rings and decrements two others, preserving
both the mean ring size and the coordination number of the
individual atoms involved in the transformation. The changes
in ring size (equivalent to the changes in node degree of
the dual network) are highlighted in the figure as “±1.” The
extension to 4-coordinate atoms [Figs. 4(d)–4(f)] is relatively
straightforward, simply involving extra spectator atoms, but
for mixed coordination it is subtly different [Figs. 4(g)–4(i)].
For both systems the local ring sizes are again changed
by ±1 (as highlighted and preserving the mean ring size).
However, whereas for the pure systems the switch move must
be coordination preserving, for mixed coordination systems
this prevents true melting. This can be countered by using a
move in which the coordinations of neighboring atoms are
exchanged while maintaining a constant mean ring size. As
the effects of the bond switching moves on the ring network
are clearly well defined, this also opens the possibility of
manipulating the ring network directly, while maintaining the
rules of the atomic space [57,58].

The thermalization of the initial lattice requires a large
number of random moves as described above, the purpose
being for the system to “forget” all memory of the original
ordered lattice. To ensure the lattice is fully randomized,
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FIG. 4. Bond switching Monte Carlo moves differ depending on
atomic coordination environment, as shown for 3-coordinate sites
[(a)–(c)], 4-coordinate sites [(d)–(f)], and mixed 3/4 coordination
[(g)–(i)]. For each coordination type the atomic connectivity is
shown for the starting structure (left), the initial switched structure
(middle), and a geometry optimized switched structure (right) via the
squares and solid lines. The effect on the dual network (circles and
dashed lines) is also demonstrated, with the numbers indicating the
change in node degree after the move is applied. Coloring is used as
a guide for the eye to track changes between the pre- and postswitch
configurations.

observables such as the second moment of the ring sizes and
assortativity can be monitored. For mixed lattices it is also
important that the variously coordinated atoms are adjacent to
the number of others as expected from pure chance, namely
the binomial expansion of (3x3/〈k〉 + 4x4/〈k〉)2.

A key aspect in the bond switching algorithm is the po-
tential model, which is required for geometry optimization
after the transposition and evaluation of the system energy.
The method naturally lends itself to the use of semiempirical
potentials which have explicit bonding and angular neighbor
lists, and as such a popular choice is the Keating potential
[59,60] or modifications thereof [61]. For this work we have
also opted to use a simplified two-dimensional version of the
Keating potential [62] with the option of being augmented
with a restricted bending (ReB) potential [63]. This has the
form:

U =
∑

i, j∈bonds

kr (ri j − r0)2

2

+
∑

i, j,k∈angles

kθ (cos θi jk − cos θ0)2

f (θi jk )
, (18)

where r0 is the equilibrium separation between atoms and
θ0 the equilibrium angle and kr , kθ are the respective bond

and angle force constants. The equilibrium bond length was
set equal for all interaction types and the equilibrium angles
were set to 2π/c for c-coordinate atoms. The function f (θi jk )
can either be set to unity or f (θi jk ) = 2 sin2 θi jk to obtain the
simplified Keating (SK) and ReB potentials, respectively. In
addition, to generate networks in spherical geometry, a simple
harmonic restraining potential was added to all atoms to keep
them on a sphere of a fixed radius.

The rational for choosing this potential is that we aim to
obtain results for generic systems, generating configurations
with a high-throughput approach. This model captures the
essential physics the problem while remaining computation-
ally tractable when producing a large number of samples.
The ratio of the force constants, kr/kθ , can also be varied
to transform the system from one which is more like atomic
material (length dominated) to a foam (angle dominated). In
addition, the possibility of using the ReB angle potential is
an elegant way to maintain ring convexity, providing that
any nonconvexity introduced by the bond switch is resolved
before the geometry optimization takes place. Finally a major
advantage of the bond switching algorithm is that a local
geometry optimization can be employed such that only the
atoms in the immediate vicinity of the switching move need
to be minimized to obtain an accurate structure [64], which in
our work included all atoms within five coordination shells.

Unless otherwise stated, the results in this work were
obtained for 1024 ring systems for 〈k〉 = 3, 4 and 1152 ring
systems for 〈k〉 = 5. Each was thermalized with 2 × 105

random moves and annealed over a further 4 × 106 moves. For
each system 100 simulations were run starting from different
random seeds.

B. Triangle raft

The concept of using triangle rafts to represent glasses
dates back to Zachariasen [65] and was used to construct some
of the first models [66] of amorphous materials. The principle
is to build a network in a sequential manner by adding rings
consisting of triangular subunits. Unlike bond switching, this
method is not constrained by a periodic boundary and mimics
an “organic” growth mechanism. An improved version of this
method has recently been implemented computationally [67],
such that rings are added with probabilities based on their
relative energetics as opposed to purely randomly. Once a
site to add a new ring has been identified, rings of different
sizes are trialled, geometry optimized, and accepted with
probability:

Pk = e−�Uk/T∑
k e−�Uk/T

, (19)

where �Uk is the energy change on adding a ring of size k
and T is a temperature parameter. This temperature allows
the degree of disorder to be controlled, which is not possible
with the original algorithm. Samples generated in this way
have proved a good proxy to amorphous materials such as
silica bilayers. In this work some 27 500 networks consisting
of 1000 rings were constructed across a range of temperatures
to sample all available ring statistics.

042309-6



GENERALIZED NETWORK THEORY OF PHYSICAL … PHYSICAL REVIEW E 101, 042309 (2020)

C. Hard-disk Monte Carlo

Hard-disk Monte Carlo has been extensively studied [68]
and simple hard-disk Monte Carlo simulations were per-
formed here to supplement experimental colloid data. These
involved placing N = 1000 disks in a square cell with periodic
boundary conditions at a given packing fraction in the range
φ = 0.0 → 0.77 (the loose random packing limit), and then
performing Monte Carlo cycles of N random displacement
moves. Each simulation consisted of 105 equilibration cycles
and 105 production cycles, with sampling every 10 production
cycles. For each packing fraction 10 calculations were run
using a different random seed, the results compiled, and a
Voronoi analysis was performed for each configuration to
generate a system of tessellating rings [69].

IV. EXPERIMENTAL METHODS

A. Colloid monolayers

The quasi-2D colloidal system has been shown to be an ex-
cellent model for hard disks, as has been previously discussed
[70]. It consists of particles with a diameter of ∼2.79 μm
dispersed in a water-ethanol mixture and confined by gravity
to form a monolayer on the base of a glass sample cell.
Out-of-plane fluctuations are quantified by the gravitational
height of the particles, which is a very small percentage of
their diameter, and as such the system is structurally two di-
mensional. Monolayers are considered at a variety of packing
fractions from φ = 0.29 to φ = 0.66, which correspond to
the fluid phase of the system [70]. Samples are imaged using
an inverted bright-field microscope and particle coordinates
obtained using standard particle tracking routines. Quantities
discussed here are calculated from 100 frames of the system,
with the time between frames around 10 s. At the highest
packing fractions considered, the area of the system imaged
contains around 3000 particles. As the system is inherently
aperiodic, after Voronoi analysis [69] the cells on the image
boundary are neglected.

B. Geopolitical regions

Common real-world examples of two-dimensional tilings
are geopolitical maps. Physicists have previously studied the
regions of France and Ireland and noted the similarity in their
properties to materials [13,71]. Therefore, we have continued
this tradition by analyzing five further maps: the communes of
Switzerland, the parishes and Westminster constituencies of
Great Britain, and the socio-economic regions of the European
Union (EU) and European Free Trade Association (EFTA)
(including both current and candidate countries at the time of
writing). The shapefiles for these regions are available from
the relevant institutions [72].

In geopolitical tilings an administrative region on the map
is defined by its boundary. Regions are said to be neighbors
if they share at least one point anywhere along the boundary,
such that the region size is then given by the number of neigh-
bors. Therefore, vertices are formed where three regions share
a boundary and edges where two regions share a boundary.
Analysis of these networks is slightly complicated by the
possible presence of defects. Defects arise when regions have
k < 3 neighbors, either as a result of small imperfections in

TABLE IV. Summary of map network analysis. The number
of total and interior regions (without defects) are given for each
map. The interior regions were then used to calculate the network
properties.

Region Total Interior 〈k〉 p6 μ2 r

CH 2379 2051 5.914 0.206 3.825 −0.151
GB (parish) 11 663 10 778 6.005 0.241 3.028 −0.163
GB (const.) 654 455 5.930 0.251 3.019 −0.110
EU and EFTA 387 145 5.897 0.283 1.913 −0.215
EU and EFTA 1617 972 5.910 0.271 2.531 −0.161

the boundary data or from legitimate region arrangements. For
example, if k = 0, then the region is an island; if k = 1, then
a region is fully inscribed within another (usually indicative
of a large urban area); and if k = 2, then a region sits on
a ring edge. As these structures are primarily for illustrative
purposes, these defects can be simply discounted for the
purposes of the network analysis. A summary of the results
from these geopolitical tilings is given in Table IV, while
visualizations are provided in Figs. 1 and 5.

C. Atomic materials

In addition to samples generated as part of this work, data
were also supplemented with published experimental coor-
dinates of amorphous silica and graphene [1,2,24]. Atomic
networks were generated from these coordinates by connect-
ing atoms within a given cutoff. For each sample, defects
were identified from the presence of under-coordinated atoms,
arising largely from the sample perimeter or from holes in the
center. As for the geopolitical regions above, such defects can
be removed before performing network analysis.

FIG. 5. Two example geopolitical partitions used in this work
are the Westminster constituencies of Great Britain and the socio-
economic regions of the EU (current and candidate countries) and
EFTA [72].
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FIG. 6. The maximum entropy ring distribution can be summa-
rized in Lemaître’s law, which relates the proportion of hexagons,
p6, against the variance, μ2 (black line). Comparisons are given to
bond switching simulations of two-dimensional materials (gray area
representing two standard deviations from the mean), amorphous
graphene (pink diamonds) [24], silica bilayers (orange hexagons)
[1,2], experimental colloidal monolayers (blue circles), the Poisson
Voronoi diagram (yellow star), and maps of geopolitical regions
(red triangles) [72]. Lemaître’s law is regenerated using maximum
entropy methods with the assortativity as a constraint, shown here
using p6 and r values from hard-disk simulations (blue dashed line).

V. RESULTS

A. Degree distribution

The degree distributions of physical networks are discussed
in terms of Lemaitre’s law with the distribution variance, μ2,
plotted against the proportion of rings of mean size. Figure 6
presents these data for a range of 3-coordinate systems com-
prising experimental, computational, and theoretical. There
are many things to note, but primarily we see that regardless
of the nature of the underlying system, all data fit very well
with the maximum entropy solution provided by Lemaître’s
law. While Lemaître’s law highlights the similarities between
these systems, it is also important to examine some of their
differences. For example, what determines where a system
sits on the Lemaître curve, i.e., what controls the number
of hexagons? For materials this is based on energetics—
the strain associated with bond and angle distortions. For
instance, experimentally silica bilayers have more diverse ring
statistics than graphene due to the reduction in ring strain
due to the presence of oxygen linkages [2]. Even for the
graphene samples which have been modified by an electron
beam (pink diamonds), the disorder does not approach that of
the silica glasses (orange hexagons). For the colloid systems
(blue circles), however, the rings are formed from the Voronoi
tessellation, with no intrinsic cost to distortions and instead
it is the packing fraction, φ, which determines p6. The limit

φ → 0 achieves the Poisson Voronoi ring distribution (yellow
star) [73], with a lower bound of p6 ≈ 0.295. For the admin-
istrative geopolitical regions (red triangles), there is no energy
cost for rings, regardless of shape, convexity, or separation,
and so we find these points in the low-p6, high-entropy portion
of Lemaître’s curve.

On the other hand, using a flexible computational method
allows access to the entire range of μ2 values, where the level
of disorder is controlled by the Monte Carlo “temperature”
parameter. The results from bond switching highlight the
typical dispersion that can be expected within Lemaître’s law,
with the gray shaded region indicating the bounds of μ2 within
two standard deviations of the mean. Finally, we see that using
Eq. (16) with the p6 and r values from hard-disk Monte Carlo
(blue dashed line) reproduces the results from Lemaître’s law
without the need for the empirical constraint. The calculation
of this line is explained at the end of Sec. V B.

The effect on the maximum entropy solutions can also be
explored for different atomic coordination environments and
constraints. Figure 7 gives two such examples where ring
convexity is enforced by using the ReB potential. Figure 7(a)
gives results for a purely 3-coordinate system, x3 = 1, while
Fig. 7(b) gives results for a purely 4-coordinate system, x4 =
1. The maximum solution each case is again given by Eq. (8),
with 〈k〉 = 6, 4, respectively. The value of μ2 is very similar
for 〈k〉 = 4 and 〈k〉 = 6 above p〈k〉 ≈ 0.5. This is because in
this region rings of sizes k = 〈k〉 and k = 〈k〉 ± 1 dominate
the distribution and so μ2 ≈ 1 − p〈k〉. However, as the value
of p〈k〉 is reduced further, the two maximum entropy curves
begin to diverge as the k = 〈k〉 − 2 ring becomes accessible
only to the 3-coordinate system, which in turn facilitates
the presence of higher-order rings. In Figs. 7(a) and 7(b),
the results from bond switching both begin to deviate from the
analytical results of Lemaître’s law at low p〈k〉. The origins of
this deviation can be traced back to the fact that if ring con-
vexity is strictly maintained, it becomes increasingly difficult
to accommodate the very large rings required to achieve large
μ2 values.

B. Assortativity

The ring correlations as measured by the assortativity are
given for all 3-coordinate systems in Fig. 8(a). We find that
all these 3-coordinate networks are disassortative and lie in
the region −0.35 < r < −0.10 and that curves display a
similar characteristic shape. The experimental colloid samples
are well described by the hard-disk model (blue circles and
blue central line), with p6 ≈ 0.84 corresponding to packing
fractions above the freezing transition limit (φ ≈ 0.70) [74].
The curves generated from bond switching (gray lines) and
triangle rafts (orange lowest line) display different assor-
tativities which depend on the balance of the length- and
angle-driven forces. The driving force for the hard-disk model
is purely entropic, whereas for the other methods there is
also a complex energy landscape, which may favor specific
assortativities [57] and which can be “tuned” by altering the
balance of the interactions. For example, the bond switching
results show the effect of varying this balance with kr/kθ =
16, 4, 1, 1/4 (black to light gray lines), leading to a shifting
in the assortativity curves. We note that this is supported
by the experimental results from amorphous graphene (pink
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FIG. 7. Comparison of Lemaître’s law (black line) for purely
3- and 4-coordinate systems, panels (a) and (b), respectively. Bond
switching results using the ReB potential are also shown (gray area
representing two standard deviations from the mean).

diamonds), which lie in the between the two curves with the
largest bond length to angle force constant ratio, as would be
intuitively expected for atomic systems and from empirical
potential models [26].

For all the systems we note that there are different regimes,
with the high-p6 limit corresponding to configurations best
described as crystalline with defects rather than truly amor-
phous as in the low-p6 limit—with the two often being linked
by a phase transition. The high-p6 limit can be rationalized
by considering the frequency of common defect types at infi-
nite dilution in a hexagonal lattice [75,76] [Figs. 8(b)–8(e)].
These can be calculated by considering the explicit edge joint

FIG. 8. (a) Variation in assortativity against p6 for a range of
3-coordinate systems comprising experimental and simulation data.
Simulation data: bond switching (gray lines, darker indicating greater
kr/kθ ), triangle raft (orange lowest line), hard-disk Monte Carlo
(blue central line). Experimental data: amorphous graphene (pink
diamonds) [24], silica bilayers (orange hexagons) [1,2], experimental
colloidal monolayers (blue circles), and maps of geopolitical regions
(red triangles) [72]. The yellow star indicates the Poisson Voronoi
limit. Panels (b)–(e) show common defects found in crystalline sys-
tems, placed at their limiting assortativity value (b) isolated pair, r =
0.0; (c) adjacent pair, cluster, r = −0.16̇; (d) Stone-Wales, mitosis,
r = −0.25; (e) 5–7 chain (flower defect), 5–8 chain, r = −0.3̇.

probability distribution for a specific defect. For example, for
the Stone-Wales defect [Fig. 8(d)], we see that each 5-ring
has two 7-ring neighbors, and each 7-ring two 5-ring and one
7-ring neighbors such that:

5 6 7

e =
⎡
⎣ 0 3ε 2ε

3ε 1 − 19ε 4ε

2ε 4ε ε

⎤
⎦ 5

6
7

, (20)

where ε = (1 − p6)/12. From here it is simple to evaluate the
dilute p6 limit as limε→0 r = 1

4 .
This helps to rationalize the high-p6 disassortative behav-

ior for these 3-coordinate systems. For hard disks as p6 → 1
the adjacent pair appears to be dominant, whereas for bond
switching and triangle rafts the potential model determines
the balance of defect types. For bond switching the standard
deviation is large as each sample contains a single defect
corresponding to one of the low-energy forms. By visual
inspection, increasing the length relative to the angle driving
force preferences chainlike structures over isolated defects.
Similarly, the rigidity of the triangle units in the triangle
raft method leads to a very tight length distribution which
encourages the formation of defects such as Fig. 8(e). As
p6 decreases more defects are introduced and the system
becomes truly amorphous. Again we posit that as the hard-
disk model has no energetic term, it is able to incorporate
less correlated defects, and in the low packing fraction the
hard-disk model provides an estimate for the Poisson Voronoi
limit of r ≈ −0.15.

Again the effects of coordination environment and po-
tential model on assortativity in complex networks can be
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FIG. 9. Panel (a) shows the variation in assortativity, with ring
statistics for 3-coordinate (green, gray bottom lines), 4-coordinate
(red middle line), and mixed 3/4-coordination systems (blue top
line) using the SK and ReB potentials as indicated. Panel (b) gives
a fragment of a mixed coordination lattice displaying clustering of
rings of similar size.

demonstrated using bond switching. Figure 9(a) shows such
a comparison, where the assortativity is plotted against the
primary ring size for different coordination environments,
averaged by Monte Carlo temperature. The effect of imposing
a hard constraint on ring convexity can be seen through the
two curves corresponding to 〈k〉 = 6. These curves show
very similar behavior for p6 � 0.3, below which there is
increasing deviation. This is as expected given the violation
of ring convexity will only occur for very large rings at high
temperatures, which can undergo deformation to reduce bond
angle strain. This allows larger rings to pack next to each
other, reducing the disassortativity. The behavior of the pure
4-coordinate system, 〈k〉 = 4, is qualitatively the same as
for the 3-coordinate network, and indeed all the defects in
Fig. 8 have analogs in 4-coordinate networks. The network
of greater interest is that with mixed 3- and 4-coordinate
vertices, corresponding to 〈k〉 = 5. In this case we see funda-
mentally different properties as these networks are assortative
at high p5, in contrast to limiting pure coordination cases. This
assortative mixing is readily explainable through energetic
considerations. The hexagonal and square tilings are strainless
and so the disruptive effects of any defect rings is minimized
when such rings are adjacent. Unlike the hexagonal and square
lattices, the Cairo lattice is not strainless, due to a distortion in
one of the edge lengths in the pentagonal tiles. Therefore, any
4- or 6-ring defects experience a driving force to cluster into
the low-energy regular tilings. In effect the lattice demixes
into Cairo, square, and hexagonal regions [as in Fig. 9(b)],
which we identify as inherently assortative behavior. It is for
this same reason that the limit of p5 → 1 cannot be reached,
as the minimum energy lattice will be a mixture of the square,

FIG. 10. Mean ring size of hard-disk simulations at different
packing fractions (full lines) compared to results from maximum
entropy (dashed lines). In both cases only ring sizes with pk > 10−4

are displayed and results are offset by 0.5 along the abscissa for
clarity.

hexagonal and Cairo lattices, the exact proportion of which
will depend on the potential model.

Finally, we assess the accuracy of our extension to
Lemaître’s maximum entropy method in Eq. (16). Calculation
of the maximum entropy joint degree distribution requires two
parameters, p6 and r, but the resulting distribution contains
all the information required to calculate ring statistics, pk ,
and the mean ring size about each ring, mk . This has been
performed using the parameters of p6 and r from hard-disk
simulations. As demonstrated in Fig. 6, the ring statistics
calculated in this way regenerate those from Lemaître’s law.
In addition, plots of the mean ring sizes for selected packing
fractions are given in Fig. 10. While the fit is not perfect, this
method does provide a close approximation to the hard-disk
results, particularly in the vicinity of k = 〈k〉. The results are
especially good in the context that only two variables are
required in p6 and r to generate the distributions.

C. Extension to spherical topology

As an illustration of the generalizability of the methods
described in this work, we present results for two-dimensional
networks in spherical topology. Such systems are also of
experimental interest, as we now have access to “nonclassical”
fullerenes [77–80], metal-organic nanocages [81,82], as well
as curved froths [83]. We investigated one such fullerene:
a 92-ring 3-coordinate fullerene consisting of 5-, 6-, and 7-
rings. Possible configurations were again generated via bond
switching, starting from the lattice depicted in Fig. 3(e). Here
106 total configurations were sampled from 100 different
simulations, with kr/kθ = 4.
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FIG. 11. Panel (a) gives a map of fullerene stability as a function
of ring statistics and assortativity. Potential energy increases as more
pentagons and heptagons are accommodated but is also strongly
related to their arrangement as shown by the value of the assortativity,
r. Panels (b)–(d) give three example fullerenes with the same p6 =
36/92 but different assortativities of r ≈ 0.1, −0.1, −0.3, respec-
tively, and as highlighted by the crosses in panel (a).

Results of the network properties averaged across configu-
rations are given in Fig. 11(a), colored by potential energy. In
this plot the value of p6 is discretized, due to the the small and
well-defined number of rings, and cannot exceed the upper
limit imposed by the 12-pentagon rule, whereas the assorta-
tivity is averaged. As expected, the energy of the fullerenes
increases with the increasing diversity in the ring statistics, as
more pentagons and heptagons are accommodated. However,
we also see that the arrangement of the rings, as measured
by the assortativity, is also very important in determining
the stability of the networks. To emphasize this, three exam-
ple configurations are provided in Figs. 11(b)–11(d). These
amorphous fullerenes have the same p6 value (and therefore
p5 and p7) but very different strain energies. In Fig. 11(d)
we see defects similar to the common motifs as in Fig. 8,
which we associate with being low energy. The increased
clustering of similar-sized rings in Figs. 11(b) and 11(c) leads
to increasingly irregular ring geometries that generate high
levels of strain. As previously noted with planar networks,
systems which are disassortative are energetically favored.
Although this is a simple consequence of the mechanical
properties of the system, neglecting any electronic contribu-
tions, such is the difference in stability that we would expect
disassortative fullerenes of this type to be more prevalent in
nature.

VI. CONCLUSION

In summary, we have thoroughly examined the net-
work properties of a wide range of naturally occurring
two-dimensional systems; spanning varying coordination en-
vironments, potential models, and topologies. Data have been
collected from a range of experimental sources, and we have
further developed the theoretical bond switching method to
aid the study of these diverse systems computationally. We
have analyzed these data with rigorous metrics from network
science, with the aim of highlighting the study of real-world
physical systems as an important and interesting addition to
the wider field. In particular, these networks display unique
constraints as a result of their underlying physics. We have
shown that their mean node degree is fixed and the node
degree distribution is well defined, following Lemaître’s law.
In addition, we have investigated the network assortativity,
arguing its preferability over the previous empirical measure
known as the Aboav-Weaire law. Although the assortativity
has been shown to be a function of the potential model
for a system and the limits of the assortativity linked to
the occurrence of well-known physical motifs; most physical
networks show a very similar overall level of disassortativity,
as experienced in nature. An exception to this rule has also
been found, where variable-coordination systems can demix
to exhibit assortative behavior.

In this work we have demonstrated how network science is
applicable to understanding and analyzing generic systems in
physics but also how physical systems form a key and under-
explored area of network science. Going forward, additional
work can be done to more strongly link these two subjects
for mutual benefit. For example, there are still questions to
be answered from this work, such as how network properties
such as the assortativity are explicitly related to the physics
of the underlying system and whether this information can be
utilized experimentally, for example, to control and effectively
quantify the pore size in materials. More broadly, there are
natural extensions to highly disordered networks which are
far less constrained in terms of coordination environments
and potential model, as found often in biology, as well as to
three-dimensional networks.
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