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Evolutionary public goods game on the birandom geometric graph
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To investigate the evolution of cooperation in spatial public goods games, this paper establishes a birandom
geometric graph, in which two types of nodes, representing players and public goods respectively, are placed at
random locations in the unit square. Each public good has a limit influence range and the individuals that fall
into the same range engage in a public good game. In contrast to the classical network models consisting of
only one type of nodes, the birandom geometric graph provides a natural way to describe the scenarios where
individuals and public resources are independent of each other. Numerical simulations reveal that cooperation
can be significantly promoted when the group size and the average number of groups that each player participates
in are relatively small, which is at odds with the results on the square lattice, but is consistent with a body of
empirical evidence reported by Ostrom and Olson et al. Analysis of the evolutionary process suggests that the
facilitation of cooperation is due primarily to the formation of the cooperative clusters, which can effectively
resist the invasion of the defectors.
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I. INTRODUCTION

In many social and economic organizations, individuals
are confronted with conflicts between their own interests and
collective interests. Hardin’s The Tragedy of the Commons
indicated that these conflicts can lead to overexploitation
and collapse of public resources [1]. However, altruistic be-
haviors among self-interested individuals extensively exist,
which poses a riddle. Thus many empirical and theoretical
studies have been performed to explore the reasons for the
emergence of cooperation. Olson [2] pointed out that the
greater effectiveness of relatively small groups is evident from
observation and experience. Coincidentally, Ostrom [3,4],
who became the first woman to receive the prestigious Nobel
Prize in Economics for her research in the management of
public resources, concluded from empirical research that a
cooperative organization will come into existence if the group
size is relatively small and the users live perennially near
common-pool resources, which agrees well with the results
obtained in the following sections of this paper.

In terms of theoretical research, as a powerful mathemat-
ical framework, evolutionary game theory [5–11] is widely
applied to study social dilemmas. In particular, the public
goods game (PGG) for group interactions has attracted much
attention [12,13]. In a typical PGG, each player must de-
cide simultaneously whether to contribute (cooperate) or not
(defect) to the common pool. The accumulated contribution
is multiplied by an enhancement factor and then evenly re-
distributed across all participants, irrespective of their initial
decision. Obviously, a defector can obtain a higher payoff by
exploiting the cooperative efforts of others, which leads to the
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deterioration of cooperation [14]. To explore how cooperative
behavior evolves among selfish individuals, several mecha-
nisms have been put forward over the last decades [15–28].
Network reciprocity, as one of the five rules discussed in
Ref. [29], is known to play a critical role in the evolution of co-
operation. A pioneering work performed by Szabó et al. [30]
analyzed the voluntary participation in the PGG on a square
lattice and found that optional participation can efficiently
prevent successful spreading of selfish behavior. Considering
diversity is ubiquitous, Santos et al. [31] introduced social
diversity by means of heterogeneous graphs and concluded
that cooperation was enhanced by the diversity associated
with the number and size of the PGGs. Moreover, Rong
et al. [32] studied the influence of degree correlation on the
evolution of cooperation in the networked PGG. With the aid
of a double-star graph, they noticed that the assortative mixing
among the individuals inhibits the emergence and sustainment
of the cooperation. Additionally, Szolnoki et al. [33] inves-
tigated the spatial effect on the square lattice and focused
on the effects of different sizes of groups. Simulation results
indicated that cooperation may be promoted by means of
enhanced spatial reciprocity that sets in for very large groups.
Following this line, many modified PGG models have been
studied on various typical complex networks, such as reg-
ular lattices, small-world networks and scale-free networks,
etc.

However, almost all the existing network models employed
to study the spatial PGG consist of only one kind of nodes,
that is, each node represents both a public good and a player.
Such models cannot accurately characterize the interaction
structure between individuals in reality, because it is obvious
that players and public goods are independent of each other.
More intuitively, both natural resources (such as mineral,
fishing) and communal facilities (such as parks, roads) can
be regarded as public goods, but they are not tied to some
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people. Meanwhile, it should be noted that the connections
between users of public resources are usually based on spatial
location rather than social relationships, just as you can not be
acquainted with everyone in a park, the reason why you are
enjoying the same public resource is that you are within its
service range.

These facts challenge the common assumption that each
individual engages in the PGGs centered on his neighbors
and himself. Therefore, we propose a novel network model,
called birandom geometric graph (BRGG), in which public
goods and individuals are, respectively, represented by two
kinds of nodes that randomly sampled from the uniform
distribution of underlying space [0, 1]2. We assume that each
public good has a circular service range with an adjustable
radius and the players that fall into the same range participate
in a PGG. In this case, the structure of the network is mainly
determined by group size and the number of groups per capita
participation. This paper focus on clarifying the effects that
are brought about by the network structure on the evolution
of cooperation. Large quantities of simulations demonstrate
that, when the group size and the number of groups that each
individual partakes in are relatively small, cooperation can be
significantly promoted even in the absence of reputation, pun-
ishment, preferential selection, and other mechanisms. Our
results differ from the conclusions of evolutionary PGG on
regular networks [33], but are in accord with many empirical
results exhibited by Ostrom. In addition, the BRGG provides
a potentially promising avenue to capture the complex rela-
tionships of the users of public resources.

The remainder of this paper is structured as follows. The
details of our model will be presented in Sec. II. We discuss
the results of computer simulations in Sec. III and summarize
our findings in Sec. IV.

II. MODEL

The theory of random geometric graphs (RGGs) enables
research of complex networks via geometry [34,35]. The
standard RGG is a graph where N nodes are placed at random
location in the unit square, and attached to others nodes within
distance d , as shown in Figs. 1(a) and 1(b). The properties
of networks generated along this way have been exhaustively
studied, with particular emphasis on percolation [36,37].

Inspired by RGG, we propose the concept of BRGG, which
is composed of two types of nodes, namely public good nodes
and player nodes. Initially, M public good nodes are assigned
random coordinates in [0, 1]2 and each public good node mi

has a circular influence zone with radius d . Player nodes
arrive at a rate of one per unit time, they are also placed
at random locations in the same square and attached to all
exiting player nodes in the same zone. The process stops until
N player nodes are present in the network [see Figs. 1(c) and
1(d) for an illustration]. For given M, N , and d , the average
number of players per group is z = πd2N , and the average
number of groups per capita is y = πd2M. The variation of
network structure is closely related to parameters of z and
y. Note that varying M, N , and d but keeping z and y fixed
will cause networks to have the similar structures. Besides,
varying d but keeping M and N fixed, i.e., changing z and
y, the networks generated will have very different statistical

FIG. 1. Top row: illustration of the RGG’s vertex attachment
rule is shown in (a). A standard RGG in the domain [0, 1]2, with
N = 1000 and d = 0.05, shown in (b). Bottom row: the schematic
diagram of BRGG is shown in (c). A BRGG with M = 500 and
N = 1000 is shown in (d), where the fixed radius d is 0.05. The
red vertices representing common resources and the black vertices
representing players. There are no edges across the boundaries, i.e.,
the boundary conditions are open, not continuous.

properties; if d � 1, large numbers of isolated nodes will
exist; if d > 1, the network will be fully connected. Ideally,
for the sufficiently large value of M, altering the values of N
and d will enable most network structures to be represented.
There is no in-depth study on the specific properties of BRGG,
and it is not the focus of this paper.

To explore the evolutionary PGG on the BRGG, simula-
tions are carried out on the BRGG with M public goods and
N = αM players, where α is the ratio of the number of players
to public goods. Initially, each individual i is designated as a
cooperator (si = 1) or defector (si = 0) with equal probability.
In our model, players contribute and receive payoffs from the
PGGs centered on public goods instead of their neighbors.
Therefore, an indicator function δi,l is introduced to indicate
whether i is in the group Gl centered on the public good
node l ,

δi,l =
{

1, i ∈ Gl ,

0, i /∈ Gl .
(1)
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FIG. 2. Fraction of cooperators ρC in the equilibrium state as a function of d and η for different values of α. From (a)–(d), α is set to be
0.5, 1.0, 1.5, 2.0. There are no edges across the boundaries, i.e., the boundary conditions are open, not continuous. Other parameter setup is
M = 1000, MCS = 10000, κ = 0.1.

Specifically, isolated players are not counted in the results.
Then, player i’s payoff from group Gl is

Pi,l = r
∑N

j δ j,l s j∑N
j δ j,l

− si, (2)

where
∑N

j δ j,l is the size of the group Gl and
∑N

j δ j,l s j

denotes the number of cooperators in Gl . r stands for the
enhancement factor. Therefore, the total payoff of player i can
be summed up as

Pi =
M∑

l=1

Pi,l . (3)

After obtaining the total payoff, each individual i will
adjust its strategy by replicating the strategy of a randomly
selected neighbor j with a probability

W (si ← s j ) = 1

1 + exp[(Pi − Pj )/κ]
, (4)

where κ characterizes the environmental noise and Pi rep-
resents i’s total payoff [38,39]. In line with most previous
studies, we set κ to be 0.1 [30,31,40].

In the process of evolution, on the one hand, given that
the distribution of public goods in real life and the scope of
people’s activities are bounded (such as cities and villages),
simulations are carried out on the BRGG with aperiodic
boundary. The size of the network is M = 1000, and α is set
to be 0.5, 1.0, 1.5, 2.0, respectively. As a comparison, we also
present results under periodic boundary conditions. On the
other hand, we explore the impact of different sizes of BRGGs
on the cooperation level (e.g., M = 200, 500, and 1000), and
the consequences are consistent with the above conclusions
about the characters of the network structure.

The level of cooperation is characterized by the fraction of
cooperators ρC , which is defined as the ratio of the cooperators
to the participations in the steady state. In the following simu-
lations, ρC is obtained by averaging over the last 1000 steps of
the up to 104 Monte Carlo steps (MCS). Each data results from
an average of over 20 realizations. In addition, isolated nodes
will inevitably appear due to the random distribution of nodes.
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FIG. 3. Fraction of ρC at the stationary state as a function of d and η for various sizes of network. From (a)–(c), M is set to be 200,
500, 1000, respectively, and the boundary conditions are open. In (d), M is equal to 500, and the boundary conditions are continuous. Other
parameter setup is α = 1.5, MCS = 10000, κ = 0.1.

Nevertheless, a large number of simulations have verified that
in the case of M = 1000, when d > 0.02, the proportion of
loners is less than 1% and decreases rapidly as d increases.

III. SIMULATION AND ANALYSIS

To begin with, we present the fraction of cooperators ρC

as a function of the service radius d and the normalized
enhancement factor η = r/z for different values of α in Fig. 2,
where z is the average number of players per group. As
one can see that cooperators can survive the evolution for
different combinations of d and η in the absence of reputation,
punishment and preferential selection, etc. It is worth pointing
out that the distribution of data points with ρC > 0 is bimodal.
Take α = 0.5 for an example, high level of cooperation can
be achieved for small values of service radius (when 0.04 <

d < 0.12), but the range of parameter d that leads to high
level of cooperation is small. For the intermediate values of
service radius (when 0.44 < d < 0.64), the maximum level of
cooperation is less than 0.3, but parameter d’s range is wider

than the former. In other cases, the defectors dominate the
entire system. It can also be seen from Fig. 2 that the boundary
between the parameter area of high-level cooperation and the
area of complete defection is blurred. Due to quenched spatial
randomness, the phase transitions become relatively slow in
the vicinity of critical points (these features are more clearly
shown in Fig. 4 and Fig. 5). The rigorous analyses of these
critical phenomena are well investigated in Refs. [11,41],
which do not belong to the scope of the present study. The
numerical analyses of this paper are focused on deriving
simple phase diagrams.

Figure 3 presents comparison results of ρC under different
values of M. From Fig. 3(a)–3(c), α is fixed to be 1.5 and
M is set to be 200, 500, 1000, respectively. We find that
as M increases, the value of d that reaches the same level
of cooperation will decrease, which implies that if M is
improved, d will be correspondingly reduced in order to keep
the network structure unchanged. The simulation results agree
well with the conclusion as stated in the previous section and
it also indicates that increasing group size and the average
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FIG. 4. Fraction of cooperators ρC at the stationary state as a function of the normalized enhancement factor η for different values of α.
From (a)–(d), the service radius d is set to be 0.04, 0.06, 0.08, 0.10, respectively. In each panel, the α is changed from 0.5 to 2.0. Other
parameter setup is M = 1000, MCS = 10000, κ = 0.1.

number of groups that each player participates in is not always
conducive to the promotion of cooperation.

To identify the effect of different boundary conditions on
the evolution of cooperation, simulations are also carried out
on the BRGG with periodic boundaries. ρC as a function
of d and η for fixed M = 500 and α = 1.5 is depicted in
Fig. 3(d). By comparing Fig. 3(b) and Fig. 3(d), a high level of
cooperative behavior occurs only when the value of d is small.
It should not be overlooked that under nonperiodic boundary
conditions, the number of players in the group at the network
boundary is less than the average level. When d is small, this
gap has little effect on the results. However, as d increases,
this gap becomes more pronounced. In the case of the same
enhancement factor η, a small number of cooperators at the
network boundary can survive. As d continues to increase, the
gap begins to diminish, and the cooperators at the boundary
need larger η to resist the invasion of the defectors. In this
case, the network is getting closer to the complete graph. This
explains why cooperators and defectors can coexist under the
intermediate service radius d . It is still necessary to clarify
the rule of achieving a high level of cooperation when d is
small.

For small values of d , the fraction of cooperators ρC as a
function of the normalized enhancement factor η for different
values of α is shown in Fig. 4. Evidently, the cooperation will
be promoted as the η increases, no matter what the value of α

is. Moreover, the increase in service radius d is not helpful to
promoting cooperation and different values of α can affect the
final cooperation levels. In Fig. 4(a), d is set to be 0.04, for a
fixed η that makes the system lies under the coexistence state
of cooperators and defectors, ρC increases with the growth of
α. Take η = 0.8 as an example, α changes from 0.5 to 2.0, ρC

arrives at 0.96, 0.90, 0.71, 0.11, respectively. However, as d
reaches 0.1, an increase in α will inhibit cooperation, as shown
in Fig. 4(d). According to these phenomena, we speculate that
the improvement of the cooperation requires the values of z
and y to remain within a certain range.

To clearly reveal the effects of varying α and d on cooper-
ation, we plot ρC as a function of the parameter d for different
values of α in Fig. 5. From Fig. 5(a)–5(d), η is set to be
0.6, 0.7, 0.8, 0.9, respectively. As previously discovered, the
cooperative behavior can be greatly enhanced when η is varied
from 0.6 to 0.9. It is notably mentioned that, the fraction
of cooperators first rises rapidly until reaching a maximum
value and then decreases as d increases. That is, for each α,
a peak appears in the function of ρC with respect to d . For a
fixed η, as α increases, the corresponding maximum value of
ρC becomes larger, and the value of d that required to reach
the peak becomes smaller. These phenomena reveal that the
level of cooperation will be promoted under a certain network
structure with small z and y, which validates our conjecture
above.
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FIG. 5. Fraction of ρC at the stationary state as a function of the service radius d for different values of α. From (a)–(d), the normalized
enhancement factor η is set to be 0.6, 0.7, 0.8, 0.9, respectively. In each panel, the α is changed from 0.5 to 2.0. Other parameter setup is
M = 1000, MCS = 10000, κ = 0.1.

Our observations are significantly different from the con-
clusions that large group are advantageous to small groups,
as is reported in Ref. [33] for PGGs on the square lattice
where both players and public goods are depicted by one kind
of nodes. Nevertheless, through a large number of empirical
studies, Ostrom et al. [2–4] found that cooperation can be pro-
moted in relatively small groups, which is consistent with our
results. Then, why can BRGGs with relatively small values of
y and z promote cooperation? Some intuitive explanations are
given as follows: a cooperator has more chances to be infected
by defectors when the group size and the number of groups he
engages in is large enough, different from the cooperators in
small groups that can huddle together to resist the invasion of
the defectors.

Above explications can be corroborated by analyzing the
microscopic process of cooperation emergence in the PGG
on BRGG. We present the ρC at each time step in Fig. 6.
In Fig. 6(a), without loss of generality, d is set to be 0.08.
At the same time, the α is set to be 0.5, 1.0, 1.5, 2.0. One
can see that the fraction of cooperators ρC decline at the
beginning of evolution but rise later. Compared with the
public goods game on the complete graph [see the Fig. 6(b)],
small groups on the BRGG promote the emergence of coop-
eration. This observation supports the previous explanations

that due to the random initial distribution of strategies,
cooperators are relatively dispersed in the network at the
beginning. Under this situation, defectors infiltrate through
most groups and exploit cooperators. As evolution continues,

FIG. 6. Fraction of cooperators ρC at each MCS time step. The
service radius d is set to be 0.08 in (a) and 1.0 in (b). In each panel,
the α is changed from 0.5 to 2.0. Other parameter setup is M = 1000,
MCS = 10000, κ = 0.1.
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FIG. 7. (a) The mean payoffs of cooperators and defectors at each MCS time step. (b) The mean payoffs of cooperators and defectors along
the boundary of the clusters. In each panel, the parameter setup is α = 1.5, d = 0.08, M = 1000, MCS = 10000, κ = 0.1.

the cooperators tend to form clusters, where cooperators as-
sist each other in avoiding defectors’ exploitation in small
groups. Generally speaking, the formation of the cooperator
clusters influences the payoffs of cooperators and defectors.
The cooperators along the boundary gradually have higher
payoffs than those of defectors, which favors the spreading of
cooperators.

To corroborate the above point, we illustrate the mean
payoffs of cooperators and defectors as a function of time
step t in Fig. 7(a). Without loss of generality, we set d = 0.08
and α = 1.5. In the beginning, the defectors’ mean payoff is
higher than that of the cooperators. As evolution continues,
there are more and more defectors, leading to a decline in the
profits of defectors. At the same time, the surviving coopera-
tors begin to form clusters and obtain higher returns than the
defectors, so the defectors that close to the cooperators tend
to switch camps. Moreover, the mean payoffs of cooperators
and defectors along the boundary as a function of time step
t is shown in Fig. 7(b), where a cooperator (defector) is
on the boundary if it has at least one defector (cooperator)
neighbor. What differs from the above results is that the mean
payoffs of the cooperators along the boundary will continue to
decline after rising. It stands to reason that the higher the pro-
portion of cooperators, the more contacts between defectors
and cooperators, the average income of defectors should also
increase, but due to the random distribution of public goods
and individuals, the degree of each individual and the number
of the available public resources will inevitably be different.
Of course, individuals with higher degrees participate in more
public goods games and can change strategies more quickly
during evolution. At the same time, more benefits can be ob-
tained by these players according to the income accumulation
rules, which are the opposite for the players with smaller
degrees. Therefore, as the evolution progresses, the payoffs of
the defectors and cooperators both decrease, opposite to the
evolution on the square lattice where defectors’ payoffs first
drop and then rise [42].

IV. CONCLUSION

In summary, we have studied the evolution of cooperation
in spatial PGGs on the BRGG. Here, both individuals and
public goods are placed at random locations in the unit
square. Each public good has a circular service range and the
players that fall into the same range form a group. In contrast
with the traditional version that public goods and individ-
uals are tightly tied together, they are independent of each
other in our model. In this case, the cooperators can survive
the evolution in the absence of reputation, punishment, and
other mechanisms. Under nonperiodic boundary conditions,
cooperation can reach a high level when d is small. For the
intermediate service radius d , cooperators and defectors can
coexist in the system. Nevertheless, under periodic boundary
conditions, a high level of cooperative behavior occurs only
when the value of d is small. Through comparison, the ef-
fect of boundary conditions on the results can be verified.
Furthermore, we explore the impact brought about by the
structure of BRGG on the level of cooperation. All the results
indicate that cooperation is promoted when group size and
the average number of groups that each person participates in
(i.e., z and y) are relatively small. In other words, increasing
these parameters does not necessarily lead to the promotion
of cooperation, which is the opposite of the results on the
square lattice [33,43], but is consistent with the conclusions of
empirical research drawn by Ostrom [3,4]. By analyzing the
microscopic process of evolution, we find that cooperators can
survive by forming clusters to avoid defectors’ exploitation
as the evolutionary process forward. We hope our research
can bring inspiration for understanding the emergence of
cooperation.
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