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Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media
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We consider ultrashort light pulse propagation through an inhomogeneous monomodal optical fiber exhibiting
higher-order dispersive effects. Wave propagation is governed by a generalized nonlinear Schrödinger equation
with varying second-, third-, and fourth-order dispersions, cubic nonlinearity, and linear gain or loss. We
construct a type of exact self-similar soliton solution that takes the structure of a dipole via a similarity
transformation connected to the related constant-coefficients one. The conditions on the optical-fiber parameters
for the existence of these self-similar structures are also given. The results show that the contribution of all orders
of dispersion is an important feature to form this kind of self-similar dipole pulse shape. The dynamic behaviors
of the self-similar dipole solitons in a periodic distributed amplification system are analyzed. The significance of
the obtained self-similar pulses is also discussed. By performing numerical simulations, the self-similar soliton
solutions are found to be stable under slight disturbance of the constraint conditions and the initial perturbation
of white noise.
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I. INTRODUCTION

Light pulses in optical fibers are referred to generically as
solitons and are usually described within the framework of the
cubic nonlinear Schrödinger equation (NLSE) that includes
only basic effects on waves such as group velocity dispersion
(GVD) and self-phase modulation (SPM) [1–3]. Depending
on the anomalous dispersion or the normal dispersion, the
NLSE model allows for either bright or dark solitons, respec-
tively [4]. The formation of these solitons results from the
exact balance between the GVD and SPM of the material. Due
to the robust and stable nature of solitons, such wave pack-
ets have been successfully used as the information carriers
(optical bits) to transmit digital signals over long propagation
distances. However, many applications in various areas such
as ultrahigh-bit-rate optical communication systems, infrared
time-resolved spectroscopy, ultrafast physical processes, and
optical sampling systems require ultrashort (femtosecond)
pulses [3,5], which leads to the appearance of different higher-
order effects in the optical material. For instance, the third-
order dispersion plays a significant role in propagation if short
pulses whose widths are nearly 50 fs have to be injected [6,7].
The fourth-order dispersion is also important when pulses are
shorter than 10 fs [6,7]. In such a situation, the wave dynamics
can be described by the higher-order NLSE incorporating the
contribution of various physical phenomena on short-pulse
propagation and generation. One notes that additional higher-
order effects introduce several new important phenomena into
the system dynamics that are absent in nonlinear media of the
Kerr type.

However, for describing more realistic phenomena, the
inhomogeneities present in nonlinear dispersive media should
also be considered. Taking into account the inhomogeneities

in the optical fiber, for example, the description of the op-
tical pulse propagation is generally based on the generalized
NLSE with distributed coefficients (i.e., allowing nonlinearity,
dispersion, and gain profiles to change with the distance
along the direction of propagation) [8,9]. Such a generalized
model possesses a rich variety of exact self-similar solutions
that are characterized by a strictly linear chirp [8–10]. These
self-similar pulses (also called “similaritons”) have attracted
considerable interest in recent years because of their extensive
applications in photonics and fiber-optic telecommunications
[11]. Importantly, these similaritons can maintain the over-
all shape while allowing their parameters such as ampli-
tude and width to change with the modulation of system
parameters [12].

Recently, propagation of self-similar waves has drawn
much interest and many important results have been pre-
sented, which is an essential prerequisite for understanding
the dynamical processes and mechanisms of the complicated
phenomena in different inhomogeneous media [13–28]. For
example, bright and dark solitonlike similaritons [13,14] have
been theoretically investigated in graded-index waveguide
amplifiers with gain or loss and in the presence of spatial
inhomogeneities. In addition, significant results have been
obtained by studying self-similarity in Bragg gratings [15],
stimulated Raman scattering [16], self-written waveguides
[17], and fractal formation in optical materials that support
spatial solitons [18]. Moreover, the self-similar nature of
optical wave collapse in Kerr-like systems of higher dimen-
sionality has been also elucidated in Ref. [19]. The existence
of self-similar optical structures of the kink type has been
also shown in a wide class of resonant nonlinear media [20].
Furthermore, stable spatial similaritons have been demon-
strated in pure quintic nonlinear media doped with resonant
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impurities [21]. Recently, Dai et al. [22] investigated the
dynamic behaviors of spatial similaritons in inhomogeneous
nonlinear cubic-quintic media. They also discussed control-
lable optical rogue waves in the femtosecond regime [23]. In
Ref. [24], the authors constructed explicit chirped and chirp-
free self-similar solitary wave and cnoidal wave solutions of
the generalized cubic-quintic NLSE by applying the similarity
transformation method. Very recently, Choudhuri et al. [25]
derived the exact self-similar localized pulse solutions for
the NLSE with distributed cubic-quintic nonlinearities. Triki
et al. [26] investigated the propagation of self-similar optical
solitons on a continuous-wave background in a quadratic-
cubic noncentrosymmetric waveguide. Liu et al. [27] con-
structed a variety of spatiotemporal self-similar wave solu-
tions for the (3 + 1)-dimensional variable-coefficients NLSE
with cubic-quintic nonlinearities. Serkin et al. [28] discovered
solitary nonlinear Bloch waves of the bright and dark types in
dispersion-managed fiber systems and soliton lasers.

However, most investigations on the propagation of self-
similar solitons in inhomogeneous fiber systems have been
focused on bright, dark, and kink-type self-similar solitary
waves or solitons, as well as rogue and cnoidal waves.
But many novel localized structures including, for exam-
ple, dipole solitons, vortex solitons, and soliton trains have
been demonstrated experimentally and theoretically in both
one- and two-dimensional nonlinear media [29–34]. To our
knowledge, no exact self-similar “dipole” soliton solutions
have been previously reported within the framework of the
variable-coefficient NLSE models. Moreover, the control of
self-similar localized pulses under the combined influence of
second-, third-, and fourth-order dispersions as well as Kerr
nonlinearity management has not been widespread. In this
paper, we demonstrate the existence of self-similar pulses that
takes a dipole structure in inhomogeneous highly dispersive
optical fibers and investigate their propagation dynamics for
different parameters.

Our results are presented as follows. Section II presents
the method used for obtaining traveling wave solutions of
the extended NLSE that describes the propagation of ex-
tremely short pulses inside a highly dispersive optical fiber
medium. In Sec. III, we derive the analytical quartic and
dipole soliton solutions of the model and their characteristics.
In Sec. IV, the variation of fiber dispersions, nonlinearity, and
gain or loss is considered and a similarity transformation to
reduce the generalized nonlinear Schrödinger equation with
varying coefficients to the related constant-coefficients one
is presented. Self-similar dipole structures of the generalized
NLSE and their dynamical behaviors in a periodic distributed
amplification system are reported in Sec. V. In Sec. VI, the
analytical stability analysis of soliton solutions based on the
theory of optical nonlinear dispersive waves is presented. In
Sec. VII, the stability of the solutions is discussed numeri-
cally. In Sec. VIII, we present a physical discussion and some
applications of the theoretical model under consideration.
Finally, we summarize our work in Sec. IX.

II. TRAVELING WAVES

In this section, we reduce the extended NLSE to an or-
dinary differential equation. The extended NLSE is derived

for the assumptions of slowly varying envelope, instantaneous
nonlinear response, and no higher-order nonlinearities [35].
This nonlinear equation has the next form for the optical pulse
envelope E (z, τ ),

iEz = αEττ + iσEτττ − εEττττ − γ |E |2E , (1)

where z is the longitudinal coordinate, τ = t − β1z is the re-
tarded time, and α = β2/2, σ = β3/6, ε = β4/24, and γ is the
nonlinear parameter. The parameters βk = (dkβ/dωk )ω=ω0

are the k-order dispersion of the optical fiber and β(ω) is the
propagation constant depending on the optical frequency.

This equation has been intensively studied for its im-
portance from various viewpoints [35–39]. In particular, the
modulational instability phenomena of Eq. (1) were analyzed
in the region of the minimum group-velocity dispersion in
Ref. [35]. In a very recent work, Kruglov and Harvey [36] pre-
sented an exact solitary wave solution having the functional
form of “sech2” for the NLSE (1) including second-, third-,
and fourth-order dispersion effects. Moreover, Karpman and
Shagalov [37,38] have studied the time behavior of the ampli-
tudes, velocities, and other parameters of radiating solitons.
Shagalov [39] has investigated the effect of the third- and
fourth-order dispersions on the modulational instability. Roy
et al. [40] have also studied the role of third- and fourth-order
dispersions in the radiation emitted by fundamental soliton
pulses in the form of dispersive waves within the framework
of the dimensionless form of the NLSE (1).

We consider the solution of the generalized NLSE in the
form,

E (z, τ ) = u(x) exp[i(κz − δτ + θ )], (2)

where u(x) is a real function depending on the variable x =
τ − qz, and q = v−1 is the inverse velocity. Also, κ and δ are
the respective real parameters describing the wave number and
frequency shift, while θ represents the phase of the pulse at
z = 0.

Equations (1) and (2) lead to the next system of the
ordinary differential equations:

(σ + 4εδ)
d3u

dx3
+ (q − 2αδ − 3σδ2 − 4εδ3)

du

dx
= 0, (3)

ε
d4u

dx4
− (α + 3σδ + 6εδ2)

d2u

dx2
+ γ u3 − (κ − αδ2 − σδ3

− εδ4)u = 0. (4)

In the general case the system of Eqs. (3) and (4) is overde-
termined because we have two differential equations for the
function u(x). However, if some constraints for the parameters
in Eq. (3) are fulfilled the system of Eqs. (3) and (4) has
nontrivial solutions. We refer to the solution of the extended
NLSE where the function E (z, τ ) is given by Eq. (2) with
u(x) �= const as a non-plain-wave or traveling-wave solution.

The system of Eqs. (3) and (4) with ε �= 0 yields the
non-plain-wave solutions if and only if the next relations are
satisfied:

q = 2αδ + 3σδ2 + 4εδ3, δ = − σ

4ε
. (5)

The system of Eqs. (3) and (4) with ε = 0 has the non-plain-
wave solutions only when the parameter σ = 0. Note that
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Eq. (3) is satisfied for an arbitrary function u(x) according to
the conditions in Eq. (5) with ε �= 0. The relations in Eq. (5)
lead to the next expression for the velocity v = 1/q defined in
the retarded frame,

v = 8ε2

σ (σ 2 − 4αε)
. (6)

The relations in Eq. (5) reduce the system of Eqs. (3) and (4)
to the ordinary nonlinear differential equation,

ε
d4u

dx4
+ b

d2u

dx2
− cu + γ u3 = 0, (7)

where the parameters b and c are

b = 3σ 2

8ε
− α, c = κ + σ 2

16ε2

(
3σ 2

16ε
− α

)
. (8)

By analytically solving Eq. (7), we obtain the soliton struc-
tures that can propagate in the highly dispersive fiber medium.
However, it would be very difficult to find the closed form
solutions of such ordinary differential equations in which two
even-order derivative terms coexist. Obtaining solutions in
analytic form is of great interest since these are useful, for
instance, to compare experimental results with theory. In the
following, families of soliton solutions having the functional
form of sech2(·) and sech(·)th(·) are derived in the presence
of all physical parameters.

III. QUARTIC AND DIPOLE SOLITONS IN HIGHLY
DISPERSIVE OPTICAL FIBER

In this section, we consider the traveling-wave solutions of
Eq. (7) in the form

u(x) = FN (x)

GM (x)
=

∑N
n=−N An exp[−nw(x − η)]∑M
n=−M Bn exp[−nw(x − η)]

. (9)

The quartic dark soliton solution of this form is given by

u(x) = A + B th2[w(x − η)] = D − B

ch2[w(x − η)]
, (10)

where D = A + B and D �= 0. In the case when D = 0 we
have the sech2 solitary wave.

Substituting the function (10) into Eq. (7) and setting the
coefficients of independent terms equal to zero, we obtain the
following equations:

cD = γ D3, c = 16εw4 + 4bw2 + 3γ D2, (11)

40εw4 + 2bw2 + γ DB = 0, 120εw4 + γ B2 = 0. (12)

We now discuss solutions to these parametric equations for
two cases: (1) D = 0 and (2) D �= 0. In case 1 with D = 0 and
E0 = −B we have

w = 1

4

√
8αε − 3σ 2

10ε2
, E0 = ±

√
−3

10γ ε

(
3σ 2

8ε
− α

)
. (13)

Furthermore, we get from Eqs. (11) and (12) a condition on
the parameter c as

c = − 4

25ε

(
3σ 2

8ε
− α

)2

. (14)

Incorporating these results into Eq. (10), we obtain the
following soliton solution to the extended NLSE (1) [36]:

E (z, τ ) = E0 sech2(wξ ) exp[i(κz − δτ + θ )], (15)

where ξ = τ − v−1z − η, with η being the position of the
pulse at z = 0. The wave number κ follows from Eqs. (8) and
(14) as

κ = − 4

25ε3

(
3σ 2

8
− αε

)2

− σ 2

16ε3

(
3σ 2

16
− αε

)
. (16)

The velocity v and frequency shift δ in this soliton solution
are given by Eqs. (5) and (6).

Physically, Eq. (15) describes a solitary pulse with am-
plitude E0 and inverse temporal width w depending on all
order of dispersion as well as nonlinearity. It follows from
Eq. (13) that this sech2 solitary wave exists when the next two
conditions are satisfied: γ ε < 0 and 8αε > 3σ 2.

In case 2 with D �= 0, Eqs. (11) and (12) lead to the
complex values for parameters B and D. However, the func-
tion u(x) in Eq. (7) is real which contradicts such complex
parameters. Thus, the extended NLSE given by Eq. (1) does
not have a quartic dark soliton solution.

We have also found that Eq. (7) admits an exact dipole
soliton solution of the form

u(x) = E0
sh[w(x − η)]

ch2[w(x − η)]
. (17)

Inserting this solution into Eq. (7) and equating the coeffi-
cients of independent terms, one obtains

c = εw4 + bw2, 120εw4 = γ E2
0 , (18)

60εw4 + 6bw2 − γ E2
0 = 0. (19)

These equations yield the dipole soliton solution as

E (z, τ ) = E0 sech(wξ ) th(wξ ) exp[i(κz − δτ + θ )], (20)

where ξ = τ − v−1z − η. Thus, we have the following rela-
tions for the pulse inverse width w and amplitude E0:

w = 1

4

√
3σ 2 − 8αε

5ε2
, E0 = ±

√
6

5γ ε

(
3σ 2

8ε
− α

)
. (21)

Equations (18) and (19) yield the parameter c = 11b2/100ε.

Hence, it follows from Eq. (8) that the wave number κ in the
dipole soliton solution is given by

κ = 11

100ε3

(
3σ 2

8
− αε

)2

− σ 2

16ε3

(
3σ 2

16
− αε

)
. (22)

The velocity v and frequency shift δ in this dipole soliton
solution are given by Eqs. (5) and (6), respectively. It follows
from Eq. (21) that the dipole soliton solution exists when the
next two conditions are satisfied: γ ε > 0 and 8αε < 3σ 2.

The corresponding energy E of the dipole solitons is given
by

E =
∫ +∞

−∞
|E (z, τ )|2 dτ = (3σ 2 − 8αε)3/2

4γ ε
√

5ε2
. (23)
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Note that the energy of the pulse, E , is the integral of motion
(dE/dz = 0) of the NLSE (1) for any pulses satisfying the
boundary condition E (z, τ ) → 0 for τ → ±∞ .

IV. TRANSFORMATION TO GENERALIZED NLSE
WITH VARIABLE COEFFICIENTS

We consider in this section the variations of fiber dis-
persion, nonlinearity, and gain or loss. For our purpose, the
dynamics of pulses is described by the following generalized
NLSE with distributed coefficients:

iUs = D(s)Utt + iP(s)Uttt − Q(s)Utttt − R(s)|U |2U
+ i�(s)U, (24)

where D(s), P(s), and Q(s) are the variable parameters of
second-, third-, and fourth-order dispersions, respectively.
The function R(s) stands for the varying Kerr nonlinearity

parameter, while �(s) denotes the amplification (�(s) > 0) or
absorption parameter (�(s) < 0).

In the simplest case, when all the coefficients are constants
and �(s) = 0, then Eq. (24) can be transformed into the
constant-coefficient NLSE (1). It is of interest to control opti-
cal solitons in communication systems when all orders of dis-
persion, nonlinearity, and gain or loss are varied as described
by the NLSE (24). In following, we first search for exact
self-similar soliton solutions of the variable-coefficient NLSE
(24) by employing the similarity transformation method and
then discuss their propagation behaviors in a specified soliton
control system.

We first construct the transformation [22–24]

U (s, t ) = A(s)E [z(s), τ (s, t )]eiφ(s,t ), (25)

where A(s) and φ(s, t ) are both real functions, describing the
amplitude and phase of the pulse, respectively, while z = z(s)
and τ = τ (s, t ) are two unknown functions to be determined.

Substituting Eq. (25) into Eq. (24) leads to Eq. (1), but now
we must have the following set of equations:

As − �A − DAφtt + 3PAφtφtt + QAφtttt − 6QAφ2
t φtt = 0, (26)

τs − 2Dτtφt + 3Pτtφ
2
t − Pτttt + 4Qτtttφt + 6Qτttφtt − 4Qτtφ

3
t + 4Qτtφttt = 0, (27)

φs − Dφ2
t − Pφttt + Pφ3

t + 4Qφtφttt − Qφ4
t + 3Qφ2

tt = 0, (28)

(3Pφt − D)τtt + 3Pτtφtt + Qτtttt − 12Qτtφtφtt − 6Qτttφ
2
t = 0, (29)

−3Pτtτtt + 12Qτtτttφt + 6Qτ 2
t φtt = 0, (30)

RA2 = γ zs, (31)

(D − 3Pφt )τ
2
t − 4Qτtτttt + 6Qτ 2

t φ2
t − 3Qτ 2

tt = αzs, (32)

−Pτ 3
t + σ zs + 4Qτ 3

t φt = 0, (33)

Qτ 4
t = εzs, (34)

τtt = 0. (35)

Solving these equations self-consistently allows us to find the following parameters that characterize the self-similar pulse:

A(s) = A0 exp

[∫ s

0
�(ζ ) dζ

]
, (36)

τ (s, t ) = k

[
t + p

(
4p2 + 2αk2 + 3pσk

ε

) ∫ s

0
Q(ζ ) dζ

]
+ t0, (37)

z(s) = k4

ε

∫ s

0
Q(ζ ) dζ , (38)

φ(s, t ) = p

[
t + p

(
3p2 + αk2 + 2pσk)

ε

) ∫ s

0
Q(ζ ) dζ

]
+ φ0, (39)

where k and p are parameters relative to pulse width and phase shift, respectively, τ (s, t ) is the mapping variable, and z(s)
represents the effective propagation distance. Here the subscript 0 denotes the initial values of the corresponding parameters at
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distance s = 0. Furthermore, the constraint conditions on the inhomogeneous fiber parameters are given as

D(s) =
(

6p2 + αk2 + 3pσk

ε

)
Q(s), (40)

R(s) = γ k4

εA2
0

exp

[
−2

∫ s

0
�(ζ ) dζ

]
Q(s), (41)

P(s) =
(

4p + σk

ε

)
Q(s). (42)

Equations (38) and (39) show that the effective propagation distance and phase are strongly dependent on the fourth-order
dispersion parameter Q(s). The latter influences the GVD parameter D(s), Kerr nonlinearity parameter R(s), and third-order
dispersion parameter P(s) as seen from the preceding constraints. Hence, one can control the dynamics of propagating self-
similar dipole solitons in the fiber medium by selecting the profile of this parameter suitably.

Thus, the general form of self-similar solutions of the generalized NLSE (24) is of the form

U (s, t ) = A0E

{
k4

ε

∫ s

0
Q(ζ ) dζ , k

[
t + p

(
4p2 + 2αk2 + 3pσk

ε

) ∫ s

0
Q(ζ ) dζ

]
+ t0

}

× exp

[∫ s

0
�(ζ ) dζ + iφ(s, t )

]
, (43)

where the phase function φ(s, t ) is given by Eq. (39) and
E (z, τ ) are the exact solutions of Eq. (1).

Therefore, exact self-similar solutions to Eq. (24) can
be constructed by using the exact solutions of Eq. (1) via
the transformation (43). One thus needs to use the closed
form solutions of the constant-coefficient NLSE (1) presented
above.

V. SELF-SIMILAR DIPOLE SOLITON SOLUTIONS

Making use of the exact solution given in Eq. (20) of
the extended constant-coefficient NLSE (1), the transforma-
tions in Eq. (43), and Eqs. (36)–(39), we can construct the
self-similar solutions of the generalized NLSE with varying
coefficients (24). The self-similar dipole soliton solution of
Eq. (24) is then given by

U (s, t ) = A0E0 exp

[∫ s

0
�(ζ ) dζ

]
sech(wξ ) th(wξ )

× exp[i�(s, t )], (44)

where the traveling coordinate ξ is given by

ξ (s, t ) = kt − η +
{

kp

(
4p2 + 2αk2 + 3pσk

ε

)
− k4

vε

}

×
∫ s

0
Q(ζ ) dζ + t0, (45)

and the phase of the field, �, has the form

�(z, t ) = κz − δτ + θ + φ(s, t ), (46)

where τ and z are given by Eqs. (37) and (38), respectively,
while the phase φ(s, t ) is given by Eq. (39).

From the results obtained above, we see that the contribu-
tion of all orders of dispersion is necessary for the existence of
self-similar dipole soliton solutions for the generalized NLSE
with distributed coefficients (24). This is markedly different
from the dipole structures of many constant-coefficient NLSE
models describing femtosecond pulse dynamics in homoge-

neous fibers [30–32], which exist only when second-, third-,
and fourth-order dispersions are compensated. It should be
noted that the simultaneous compensation of various orders of
dispersion is generally more difficult in optical systems [30].
Therefore, our results could be of importance in applications
of dipole-type solitons in optical-fiber systems exhibiting
dispersive effects up to the fourth order.

To examine the dynamical evolution of the obtained self-
similar structure in the optical-fiber medium, it is worthwhile
to consider a specific soliton control system. Here, we focus
on studying the propagation of self-similar waves through a
periodically distributed amplification system similar to that
of Ref. [23]. In particular, we suppose that the fourth-order
dispersion management takes the form of a cosinelike space-
dependent rapidly varying function as [23] Q(s) = d4 cos(gs),
while the gain function is given by �(s) = �0. Here d4 and
g are the parameters to describe fourth-order dispersion and
�0 represents the constant net gain or loss. From the prac-
tical point of view, the propagation with periodic dispersion
is of great importance as it has application in enhancing
the signal-to-noise ratio and reducing Gordon-Hauss time
jitter and is also helpful in suppressing the phase matched
condition for four-wave mixing [41,42]. Then, according to
Eq. (38), the effective propagation distance can be obtained
as z(s) = d4k4

εg sin(gs), implying that z varies periodically with
the propagation distance s. Furthermore, the amplitude can be
calculated from Eq. (36) as A(s) = A0 exp (�0s). This means
that the amplitude of the self-similar pulse will undergo in-
crease (�0 > 0) and decrease (�0 < 0) along the propagation
distance, while it remains a constant when the gain (loss)
vanishes (�0 = 0). As concerns the other parameters, they can
be obtained exactly through Eqs. (40)–(42).

Consider first the most interesting case when the optical-
fiber medium is not subject to the effect of the gain or
loss effect (i.e., �0 = 0). The evolution of the self-similar
dipole soliton solution (44) calculated with the framework
of the generalized NLSE (24) is shown in Figs. 1(a) and
1(b) with the parametric values α = −1, γ = −2, σ = 1.53,
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FIG. 1. Evolution of the dipole self-similar intensity wave profile
|U (s, t )|2 as computed from Eq. (44). The parameters are defined in
the text.

and ε = − 1
4 . Also we take k = 1, p = 3.055, A0 = 0.3098,

d4 = −0.01, η = 0, g = 1, and t0 = 0. From these figures,
one can clearly see that the self-similar structure displays
a snakelike behavior along the propagation distance due to
the presence of the periodic distributed dispersion parameter
Q(s). For such an oscillatory trajectory, the self-similar pulse
keeps no change in propagating along the optical medium
although its position oscillates periodically (which is called
“snakelike” in Ref. [43]).

When the self-similar dipole soliton is subjected to the
action of a constant gain or loss, that is, �(s) = �0, its
intensity decreases when �0 < 0 and increases when �0 > 0,
and the time shift and the group velocity of the soliton pulse
are changing while the soliton keeps its shape in propagation
along the fiber [Figs. 2(a) and 2(b)]. One readily concludes
that the gain parameter affects only the evolution of the soliton
peak and has no influence on the width or shape of the pulse.

Another interesting behavior appears when the gain or loss
function is chosen to vary periodically with the propagation
distance as �(s) = sin(s). This spatial profile of gain (loss)
was first used in studying soliton management in inhomo-
geneous pure Kerr media [44]. The corresponding intensity
profiles of self-similar dipole solitons are shown in Figs. 3(a)
and 3(b) for the same values of parameters as those in Fig. 1,
except A0 = 0.1. As can be seen from this figure, in the pres-
ence of periodic gain, the dipole solitons emerge periodically
in the inhomogeneous fiber system.

FIG. 2. Evolution of the dipole self-similar intensity wave profile
|U (s, t )|2 as computed from Eq. (44) when (a) �0 = −0.02 and
(b) �0 = 0.02. The other parameters are the same as in Fig. 1.

FIG. 3. Evolution of the dipole self-similar intensity wave profile
|U (s, t )|2 as computed from Eq. (44) when �(s) = sin(s). The other
parameters are the same as in Fig. 1 except A0 = 0.1.

Let us now investigate the propagation dynamics of self-
similar dipole pulses in a distributed fiber system whose
fourth-order dispersion and gain or loss parameters are dis-
tributed according to [44] Q(s) = tanh(s) and �(s) = sin(s).
Figures 4(a) and 4(b) show the nonlinear evolution of the
self-similar solution (44) for the same values of parameters
as those in Fig. 1, except A0 = 0.1. We observe an interest-
ing periodic occurrence of dipole solitons appearing for this
choice of dispersion and gain or loss management, as can be
seen from Fig. 4.

VI. NONLINEAR DISPERSIVE WAVES

We consider in this section the analytical stability analysis
of soliton solutions of the generalized NLSE based on the
theory of optical nonlinear dispersive waves. For our purpose,
we develop the dynamics of nonlinear dispersive waves in the
next form,

E (z, τ ) = F (ω) exp[i�(z, τ )], (47)

where the amplitude F (ω) and phase �(z, τ ) are real func-
tions. The wave number k and frequency ω of nonlinear
dispersive waves are given by the equations k = �z and
ω = −�τ . We assume that ω(z, τ ) = ω̃(Z, T ) and k(z, τ ) =
k̃(Z, T ), where Z = εz and T = ετ with ε � 1 are slow vari-
ables. Here ω̃(Z, T ) and k̃(Z, T ) are slowly varying functions

FIG. 4. Evolution of the dipole self-similar intensity wave profile
|U (s, t )|2 as computed from Eq. (44) when �(s) = sin(s) and Q(s) =
tanh(s). The other parameters are the same as in Fig. 1 except A0 =
0.1.
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of variables Z and T . The substitution of Eq. (47) to NLSE
(1) leads to the series of nonlinear equations. The equations in
zero and first order to small parameter ε are

k(ω) = k0(ω) + γ F 2(ω), k0(ω) = αω2 + σω3 + εω4,

(48)

∂F

∂z
+ k′(ω)

∂F

∂τ
= 2γ FF ′ ∂F

∂τ
− 1

2
k′′

0 (ω)F
∂ω

∂τ
, (49)

with k′(ω) = dk(ω)/dω and F ′ = dF (ω)/dω. Thus, Eq. (48)
is the nonlinear dispersion relation and Eq. (49) is the equa-
tion for the amplitude F (ω) of nonlinear waves defined in
Eq. (47). Note that such forms of equations were found first
in fluid mechanics [45]. We have by definition that �zτ = kτ

and �τ z = −ωz, which yield the equation ωz + kτ = 0. This
equation for varying frequency ω(z, τ ) has the next form,

∂ω

∂z
+ k′(ω)

∂ω

∂τ
= 0, (50)

where k′(ω) = 2αω + 3σω2 + 4εω3 + 2γ F (ω)F ′(ω). The
nature of the system of Eqs. (48)–(50) based on the method
of slow variables can be hyperbolic or elliptic. We first con-
sider the case when this system of equations is hyperbolic.
The characteristics connected to the hyperbolic system of
Eqs. (48)–(50) are given by

dτ

dz
= k′(ω),

dω

dz
= 0, (51)

dF

dz
= 2γ F (F ′)2 ∂ω

∂τ
− 1

2
k′′

0 (ω)F
∂ω

∂τ
. (52)

It follows from Eq. (51) that dF/dz = F ′(ω)dω/dz = 0.
Thus, Eq. (52) yields the differential equation

dF (ω)

dω
= ±1

2

√
k′′

0 (ω)

γ
, k′′

0 (ω) = 2α + 6σω + 12εω2.

(53)
Equations (51) and (53) with k′(ω) = k′

0(ω) + 2γ F (ω)F ′(ω)
yield the next characteristic equation,

dτ

dz
= k′

0(ω) ± γ F (ω)

√
k′′

0 (ω)

γ
. (54)

It follows from this equation that the system of Eqs. (48)–(50)
is hyperbolic when the condition k′′

0 (ω)/γ � 0 is satisfied,
and the system of Eqs. (48)–(50) is elliptic for the next
condition, k′′

0 (ω)/γ < 0. Thus, the characteristic equations
can be defined only in the hyperbolic case. The integration
of Eq. (53) leads to the real amplitude F (ω) as

F (ω) = ±1

2

∫ √
γ −1(2α + 6σω + 12εω2)dω + C, (55)

where C is an integration constant.
Equations (53) and (54) lead to apparent physical inter-

pretation of stability for the soliton solutions of Eq. (1). We
may suppose that the soliton is stable when it cannot radiate
the nonlinear dispersive waves. One can show, using the lin-
earized Eqs. (49) and (50), that outgoing nonlinear dispersive
waves connected with such radiation processes exist only in
the case when the above system of equations is hyperbolic.
Moreover, in the case of elliptic equations the problem of

optical pulse radiation is not correct from the mathematical
point of view. This situation takes place in the case when
k′′

0 (ω)/γ < 0. This relation follows from Eqs. (53) and (54)
because the outgoing nonlinear dispersive waves do not exist
when the square root

√
k′′

0 (ω)/γ is imaginary and hence the
system of Eqs. (47)–(50) is elliptic. Note that the inequality
k′′

0 (ω)/γ < 0 is satisfied in some domain D of parameters α,
σ , ε, and γ . Thus, this physical interpretation of stability of
the soliton solution yields the stability domain Dst for a given
type of soliton as Dst = Dsol

⋂
D. Here Dsol is the domain

where the given type of soliton solution is defined.
We first consider this stability criterion for σ = ε = 0. In

this case we have the relation k0(ω) = αω2 and hence the
amplitude F (ω) of a nonlinear dispersive wave is given by
Eq. (55) as

F (ω) = ± 1
2ω

√
2α/γ + C. (56)

Thus, the characteristic in Eq. (54) has the form

dτ

dz
= 3αω ± γC

√
2α

γ
. (57)

It follows from this equation that the system of Eqs. (48)–
(50) is elliptic when the condition γα < 0 is satisfied. It is
well known that this is the stability condition for the soliton
solution of the NLSE with second-order dispersion term only.
Thus, the formulated above criterion k′′

0 (ω)/γ < 0 of soliton
stability leads to the correct result. Hence, the optical pulses
cannot radiate the nonlinear dispersive waves when γα < 0
and hence the system of Eqs. (48)–(50) is elliptic.

Now we consider the stability condition for soliton solu-
tions given in Eqs. (15) and (20). These quartic and dipole
soliton solutions take place for the frequency δ = −σ/4ε. The
functions k′

0(ω) and k′′
0 (ω) at ω = δ are

k′
0(δ) = σ (σ 2 − 4αε)

8ε2
= v−1, k′′

0 (δ) = 8αε − 3σ 2

4ε
. (58)

Note that the velocity v in this equation coincides with the
soliton velocity given in Eq. (6). Thus, Eq. (54) at ω = δ has
the form

dτ

dz
= v−1 ± 1

2
γ F (δ)

√
8αε − 3σ 2

γ ε
. (59)

The criterion k′′
0 (ω)/γ < 0 of soliton stability at ω = δ yields

the next inequality,

8αε − 3σ 2

γ ε
< 0. (60)

It follows from Eq. (59) that the system of Eqs. (47)–(50) is
elliptic in the domain of parameters α, σ , ε, and γ given by
Eq. (60). We have two different domains D1 and D2 where
the inequality in Eq. (60) is satisfied. The first domain D1

is given by two conditions: γ ε < 0 and 8αε > 3σ 2. This
domain coincides with the domain of existence of the quartic
soliton solution in Eq. (15). Hence, the quartic soliton is stable
in the entire domain D1 of the soliton solution in Eq. (15). The
second domain D2 is given by the next two conditions: γ ε > 0
and 8αε < 3σ 2. This domain coincides with the domain of
existence of the dipole soliton solution in Eq. (20). Thus, the
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dipole soliton is stable in the entire domain D2 of solution
solution in Eq. (20). Note that D = D1

⋃
D2 is the domain

where the inequality in Eq. (60) is satisfied. Moreover, these
two domains D1 and D2 do not intersect: D1

⋂
D2 = /O.

We emphasize that the stability criterion formulated
for Eq. (1) can be extended to more general nonlinear
Schrödinger equations which have the Hamiltonian form.
Thus, we suppose that the extended stability criterion is
applicable to Hamiltonian systems. This requirement is con-
nected with the conservation of energy and other integrals
of motion for solitary wave solutions. We also note that the
transformation of the generalized NLSE with variable coeffi-
cients developed in Sec. IV does not influence the stability
of quartic and dipole solitons because the transformation
in Eq. (25) is connected with scaling functions only. More
rigorous analytical consideration of the stability of the quartic
and dipole solitons will be presented elsewhere. We confirm
in the next section the stability of quartic and dipole solitons
and hence the stability criterion given in Eq. (60) by numerical
simulations of Eq. (1).

VII. NUMERICAL STABILITY ANALYSIS

In this section, we finally confirm the stability of the self-
similar soliton solutions and discuss the constraint conditions
by direct numerical simulation of Eq. (1). In the above results,
we have determined the exact self-similar soliton solutions
under the constraint conditions (40)–(42). These conditions
present the strict balance among various types of dispersion,
Kerr nonlinearity, and gain or loss. But it may be difficult
to produce exactly such constraint conditions in real applica-
tions. Therefore, a study of the perturbations in the constraint
conditions (40)–(42) is necessary. Here we take the self-
similar quartic soliton solution obtained from inserting the
exact solution (15) into the transformation (43) as well as the
self-similar dipole soliton solution (44) and the soliton control
system used in Fig. 1, and perturb the constraint conditions
in the following way: D(s) = 0.9(6p2 + αk2+3pσk

ε
)Q(s). The

other conditions are unchanged. The corresponding numerical
evolution of the self-similar solitons is shown in Fig. 5. It is
seen that the self-similar quartic soliton pulse is still stable
after propagating over 40 dispersion lengths as shown in
Fig. 5(a). We also see that the self-similar dipole soliton
can propagate stably to the same long distance except that
a slight shifting of the peak will appear, as demonstrated
in Fig. 5(b). Besides this example case, we have performed
more numerical simulations for the constraint conditions by
perturbing other management parameters and the results show
that the self-similar solitons remain stable during the prop-
agation under the finite perturbed conditions. Thus, one can
conclude that the perturbations in the parametric conditions do
not affect the evolution of the self-similar structures. Conse-
quently, we may infer that the soliton control system discussed
here may relax the limitations to the constraint conditions.
This may make conditions (40)–(42) more realistic and give
an effective support for the realization of self-similar optical
quartic and dipole solitons in experiment.

Now we analyze the stability of the self-similar wave
solutions presented above with respect to finite initial pertur-
bations. Here we performed direct simulations to demonstrate

FIG. 5. The numerical evolution of (a) the quartic soliton so-
lution obtained from inserting Eq. (15) into Eq. (43) and (b) the
dipole soliton solution (44) under the perturbed constraint condition
D(s) = 0.9(6p2 + αk2+3pσk

ε
)Q(s). Here the parameters adopted for

the bright soliton solution are α = −2, γ = 0.3, σ = 1, ε = − 1
4 ,

k = 3.162, A0 = 1, d4 = −0.0011, η = 0 g = p = 1, and t0 = 0.
The parameters for the dipole solution (44) are the same as those
used in Fig. 1.

the stability of the solutions by adding a white noise in
the pulse U (t, 0) so that the perturbed pulse reads [46,47]
Upert = U (t, 0)[1 + 0.1 random(t )]. The evolution plots of
self-similar quartic and dipole soliton solutions under the
perturbation of 10% white noise are shown in Figs. 6(a) and
6(b), respectively. We observe that the self-similar quartic
soliton can propagate in a stable way under finite initial
perturbations of the additive white noise [Fig. 6(a)]. It can
be also seen that under white noise perturbations, the dipole
structure is still stable. In addition, we have performed other
numerical simulations to analyze the stability of the obtained
solutions under 10% amplitude perturbation; the results reveal
that the main character of the solutions is not influenced by
finite initial perturbations such as amplitude.

We have also performed numerical simulations to analyze
the stability of quartic and dipole soliton solutions (15) and
(20) of the extended NLSE with constant coefficients given in
Eq. (1). We have found by numerical simulations that these
solitons are stable under initial small perturbations (such as

FIG. 6. The numerical evolution of (a) the quartic soliton so-
lution obtained from inserting Eq. (15) into Eq. (43) and (b) the
dipole soliton solution (44) under the perturbation of white noise
whose maximal value is 0.1. The parameters are the same as in Figs.
5(a) and 5(b).
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amplitude and white noise) and also under unideal parameter
profiles. Thus, we can conclude that these quartic and dipole
solitons are stable in both inhomogeneous and homogeneous
optical fiber media.

VIII. DISCUSSION

We discuss in this section some application of the NLSE
model with higher-order dispersion considered in this study.
For high-speed optical communication systems and large
channel-handling capacity, it is necessary to transmit soli-
tons at a high bit rate of ultrashort pulses [48]. With the
development of optical sources generating light pulses in the
femtosecond domain [49], the transmission of these solitons
through optical fibers becomes possible. Moreover, since the
first achievement of few-cycle pulses [50], it is now possible
to reach extremely short light pulses. Usually, the dynamics
of femtosecond optical pulses are described by families of
NLSEs which incorporate the contributions of higher-order
dispersive and nonlinear terms in addition to those of the
cubic model. The major higher-order correction terms come
from the dispersion slope, the dispersive effect of the Kerr
coefficient, and the stimulated Raman scattering. A special
case, which was extensively studied, is ultrashort pulse prop-
agation in an optical fiber for which the carrier frequency of
the signal, ω0, is located at a local minimum or maximum of
the GVD, where the third-order dispersion is identically zero
[51–55]. In this case, the fourth-order dispersion will play an
important role and the propagation equation for solitons is the
generalized NLSE including only β2 and β4 to describe the
dispersion [51–55]. Such a model supports an exact soliton
solution which is referred as a quartic soliton [56]. One notes
that the term quartic soliton here refers to a solitary pulse
which results from interplay between anomalous GVD and
SPM but modified by the presence of fourth-order disper-
sion. Experimentally, silicon photonics offers a particularly
attractive medium in which to generate waveguide structures
exhibiting a wide range of dispersion profiles wherein the
propagation of pulses is described by the NLSE. Particularly,
the possibility of observing quartic soliton pulses has been
recently demonstrated in specially designed silicon-based slot
waveguides excited with quasitransverse magnetic polarized
pulses for which the Raman effect is absent [56]. Experi-
mental and numerical evidence for the so-called pure-quartic
soliton originating purely from the interaction of negative
fourth-order dispersion and SPM has also been reported
[57]. But near the zero-dispersion wavelength, the third-order
dispersion plays a crucial role and the pulse dynamics is
described by the NLSE modified to include the third-order
dispersion [58]. At the same time, it becomes important to
take into account the effect of fourth-order dispersion since
the development of mode-locked laser sources emitting pulses
of duration below 10 fs [59,60].

In the Conclusion we discuss the possibility of the ex-
istence of sech2 solitons in spatially designed slot waveg-
uides based on silicon and silica or silicon nanocrystals. The
high refractive index of silicon, combined with the silicon-
on-insulator (SOI) technology, allows a confinement of the
optical modes and a consequent increase of the nonlinear
coefficient of the waveguide, enabling efficient nonlinear

optical interactions at low power levels and in relatively
short length. The SOI waveguide fabricated along a special
direction of the surface leads to a regime when the stim-
ulated Raman scattering cannot occur for an input pulse
exciting a quasi-transverse-magnetic (quasi-TM) mode of the
waveguide. Moreover, it is shown numerically that the self-
steepening term added to generalized NLSE (1) does not
disturb the soliton solution [56]. In this work the input wave-
length is λ0 � 2.6 μm and the parameters of the SOI waveg-
uide are β2 � −0.05 ps2 m−1, β3 � 1.9 × 10−5 ps3 m−1, and
β4 � −2.5 × 10−5 ps4 m−1. The nonlinear coefficient for the
silicon-based structure is γ � 42 m−1 W−1. Note that these
parameters satisfy the relations γ β4 < 0 and 2β2β4 > β2

3 ,
which are necessary and sufficient for the existence of the
sech2 soliton solution. Note that these conditions are also
satisfied when the third-order group velocity dispersion β3 is
much larger, for example, β3 � 10−3 ps3 m−1. Such a value
of the third-order dispersion can be achieved by changing
the input wavelength under the condition that the above
necessary constraints are satisfied. Note that this can be ob-
tained in spatially designed slot waveguides based on silicon
and silica or silicon nanocrystals. Moreover, the parameters
of the SOI waveguide as β2 � −0.05 ps2 m−1, β3 � 1.9 ×
10−5 ps3 m−1, and β4 � 2.5 × 10−5 ps4 m−1 with positive
nonlinear coefficient, for example, γ � 42 m−1 W−1, satisfy
the relations γ β4 > 0 and 2β2β4 < β2

3 , which are necessary
and sufficient for the existence of dipole solitons. We have
found using the theory developed in Sec. VI and numerical
simulations that the sech2 solitons and dipole solitons are
robust when the self-steepening term is added to the gener-
alized NLSE (1). However, the numerical simulations show
that in this case the solitons undergo a small frequency shift.
Thus, the absence of the Raman effect for TM-polarized
pulses together with specially designed slot waveguides al-
lows to be realized the necessary and sufficient conditions
for the existence of sech2 soliton and dipole solutions of
the nonlinear Schrödinger equation including higher-order
dispersions.

IX. CONCLUSION

In this paper, we have investigated the variable-coefficient
nonlinear Schrödinger equation incorporating, at the highest
order, a fourth-order dispersion, which governs the femtosec-
ond optical pulse propagation in an inhomogeneous highly
dispersive fiber media. We have first constructed the rela-
tion between this generalized wave equation and the re-
lated constant-coefficients one via a similarity transforma-
tion. Then, based on the obtained transformation, we have
derived the exact self-similar dipole soliton solutions of the
considered model. Conditions on the varying optical-fiber
parameters for the existence of these self-similar structures
are also presented. It is found that the existence of these self-
similar dipole solitons in an inhomogeneous highly dispersive
optical-fiber medium crucially depends, indeed, on all orders
of dispersion. We have further discussed the propagation
dynamics of self-similar waves in a fiber system with period-
ically changing dispersion. It is observed that the self-similar
wave structure and dynamical behavior can be controlled by
choosing appropriate parameters of fourth-order dispersion
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and gain or loss. The numerical simulation shows that the
self-similar quartic and dipole solitons can propagate in a sta-
ble way under slight disturbance of the constraint conditions
and the initial perturbation of white noise.

Finally, let us discuss the possible applications of the self-
similar structures presented here. It is well known that the
nonlinear-Schrödinger-type equations with distributed coef-
ficients provide more realistic models than their constant-
coefficient counterparts, because no optical fiber is homo-
geneous in reality due to manufacturing problems and long
distance communication. The results given here show that
an inhomogeneous fiber system with higher-order dispersion
can support quartic and dipole solitons with a self-similar
pulse shape. These self-similar solutions are exact solutions
for all z (unlike the asymptotically exact parabolic solutions)
and may well find new applications in fiber-optic amplifiers
and in the study of propagation of quartic and dipole soli-
ton pulses in femtosecond fiber laser systems or in com-

munication links with distributed dispersion and nonlinearity
management and the presence of gain (loss). This can be
readily achieved particularly in view of their stability under
perturbations which may well lead to reduced noise in a
generated pulse stream. Because of the stable propagation
of these localized light pulses, they should be observable in
optical fibers with higher-order dispersion. In general, the full
experimental exploitation of these solutions requires optical
fibers with tailor-made dispersion profiles and nonlinearity
profiles. While this is clearly a technical challenge, such
fibers may well become available, enabling the development
of new types of pulsed and oscillatory light sources in the
future.
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