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Excited state of spiral waves in oscillatory reaction-diffusion systems caused by a pulse
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Previous studies claim that the dynamic behaviors of spiral waves are uniquely determined by the nature of
the medium, which can be determined by control parameters. In this article, the authors break from the previous
view and present an alternate stable state of spiral waves, named the excited state. The authors find that two
states of the spiral wave switch to each other after a one-off pulse is applied to the medium. The dynamic
behaviors of the two states are quite different, specifically, the spiral tip trajectory of the original spiral, which is
named the ground-state spiral as observed in the previous studies, is a point, while the spiral tip trajectory of the
excited-state spiral is a circle. Moreover, the authors study the trajectories of the spiral tip of spiral waves in both
states after the pulse is applied and find two types of trajectories, a spiral trajectory and a spiral-inward-petal
trajectory. The frequency of the spiral wave in the excited state is less than that in the ground state. The findings
enrich the dynamics of pattern formation.
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I. INTRODUCTION

Spiral waves are typical spatiotemporal patterns in
reaction-diffusion systems driven far from thermodynamic
equilibrium. They exist extensively in excitable and oscil-
latory systems having spacial extensions, such as reacting
chemical systems [1–4], aggregating starving slime mold cells
[5,6], liquid crystals subjected to electric or magnetic fields
[7], catalytic reactions on a platinum surface [8,9], and cardiac
tissue [10,11]. The study of the dynamics of spiral waves
has attracted great interest not only because of its nonlin-
ear and far-off characteristics but also because of its exten-
sive applications and destructions. For instance, spiral waves
and turbulence may be the main mechanisms of tachycardia
and ventricular fibrillation, respectively [12,13]. Many types
of spiral waves, such as meandering [14,15], ripple-armed
[16,17], segmented [18,19], super-armed [20,21], zigzag-
armed [22], multiarmed [23], stepped super-armed [24],
multi-stable stepped [25], super multi-armed and segmented
(SMAS) [26], and bistable Yin-Yang (BYY) [27] spirals,
have been reported in the past three decades. Generally, the
dynamic behavior of a spiral wave transits from one type to
another with the change of the values of control parameters
[28]. Further, Barkley et al. [14] and Cai et al. [29] have
discovered the dynamic behaviors of spiral waves in parame-
ter space based on the Barkley model and FitzHugh-Nagumo
model, respectively. Mahanta et al. have obtained different
tip trajectories of spiral waves with different parameters [30].
Previous works hold that the dynamic behaviors of spiral
waves can be determined by the control parameters; i.e., the
characteristic of a spiral wave depends only on the properties
of the medium [28–30].

In addition, the application of a continuous external pe-
riodic force can also change the dynamic behavior of the
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spiral wave [31–34]. For example, periodic illumination can
cause the spiral tip in the Belousov-Zhabotinsky reaction to
meander, and as the frequency of illumination changes, the
pattern of the tip trajectory changes [31,32]; even if a very
weak periodic disturbance is applied in a small area around
the spiral tip, the spiral wave becomes unstable [34–36].
However, when the periodic force is removed, the spiral wave
will return to its original state [33]. In summary, previous
studies show that the dynamic behaviors of spiral waves are
uniquely determined by the nature of the medium without
external forces.

In mathematics, a single spiral wave is only a special solu-
tion of a reaction-diffusion equation, which raises a question:
Is the special solution, i.e., a single spiral wave with a certain
dynamic behavior, unique when the control parameters of
the system are fixed? To answer this question, we apply a
one-off pulse to a spiral wave to examine whether the final
state (dynamic behavior) of the spiral wave can be changed. If
the final state of the spiral wave can be changed, it means
that we have overturned the previous research and found an
alternative state of the spiral wave. Amazingly, we found that
the state of the spiral wave stably remains in another state after
a one-off pulse is applied, and the two states of the spiral
wave switch to each other by applying a one-off pulse to
the medium. The rest of the article is organized as follows.
Section II shows the method. Section III shows the numerical
results, including four subsections: apply a pulse to the spiral
wave in the ground state; apply a pulse to the spiral wave
in the excited state; the change process near the spiral tip;
and the oscillation of local points in the excited-state spiral
wave. Section IV presents the analytical results, and last, a
discussion and conclusions are presented in Sec. V.

II. METHOD

Spiral waves are usually studied theoretically by means of
the complex Ginzburg-Landau equation (CGLE), a universal
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model describing the evolution of nearly coherent waves [37].
According to the problem involved, it can appear in vari-
ous forms, including complex coefficients and nonlinearities
[38,39]. The CGLE has been widely applied to different phys-
ical, biological, and chemical systems, such as electrohydro-
dynamic convection in liquid crystal, transversely extended
laser, Bose-Einstein condensate, planar gas discharge, fluid
and chemical turbulence, bluff body motion, plasma surface-
wave oscillation, etc. [40–42], and is closely related to the
Gross-Pitaevsky or nonlinear Schrödinger equation [43,44].

The CGLE system describes spatially extended media, in
which the homogeneous system is oscillatory and is near a
supercritical Hopf bifurcation [45,46]. It has the form

∂A

∂t
= A + (1 + iα)∇2A − (1 + iβ )|A|2A + P, (1)

where α and β are real control parameters, ∇2 = ∂2/∂x2 +
∂2/∂y2, A(�r, t ) is the complex variable, and P is an external
pulse, which reads

P =
{

p, if t ′ � t � t ′ + δt,

0, else,
(2)

where p is a constant and δt represents a very short period of
time, during which time the system has no time to respond to
the pulse. Since the duration of the pulse is extremely short,
the effect of the pulse on the variable A can be separated from
Eq. (1) and calculated separately. The contribution of the pulse
P to the variable A is

�A =
∫

Pdt =
∫ t ′+δt

t ′
pdt = pδt ≡ kA0, (3)

where k is a real number for controlling the pulse strength,
and A0 = 0.95 is the amplitude of the real part Re(A) of
the variable A (when there is a spiral wave in the system).
Consequently, the impulsive differential system [47] of Eq. (1)
has the form

∂A

∂t
= A + (1 + iα)∇2A − (1 + iβ )|A|2A, t �= t ′,

�A = kA0, t = t ′. (4)

Various values of the parameter k were considered; the other
parameters were fixed: α = 3.00 and β = 0.05. Those chosen
parameters were also discussed in Refs. [48,49], which shows
that, this way can form a rigidly rotating spiral wave with the
radius of the trajectory of the spiral tip being zero.

Our model is integrated on 400 × 400 grid points with
no-flux boundary conditions. A nine-point finite difference
scheme is applied to compute the Laplacian term ∇2A, and
then the discrete equation is calculated via the four-order
Runge-Kutta method. The space steps �x and �y are both
1, and the time step �t is 0.01. The spiral waves in this article
are shown in the Re(A) field. FORTRAN and MATLAB codes to
generate the figures are available from the authors on request.

III. NUMERICAL RESULTS

This section is divided into four subsections. In Sec. III A,
we generate a common spiral wave, named the ground-state
spiral wave, in the medium. Then one-off pulses with different

FIG. 1. The ground state of the spiral wave in the medium. The
wavelength of the spiral wave is 23.7 grid points, and the frequency
is 0.4132 × 10−1. The image shown is 400 × 400 grid points.

strengths are applied to the ground-state spiral wave. The
influence of the pulse and the influence of the strength of
the pulse on the dynamic behavior of the ground-state spiral
wave are both studied in detail. At last, we discovered an
alternative state of the spiral wave, named the excited state. In
Sec. III B, one-off pulses with different strengths are applied
to the excited-state spiral wave to study the influence of the
pulse and the influence of the strength of the pulse on the
dynamic behavior of the excited-state spiral wave. At last,
we realized the conversion between the ground state and the
excited state. The change process near the spiral tip and the
oscillation of local points in the excited-state spiral wave are
studied in Secs. III C and III D, respectively.

A. Apply a pulse to the spiral wave in the ground state

In the two-dimensional system, when the initial condi-
tion is Re(A)(1 : 200, 1 : 400) = 0.5, Re(A)(201 : 400, 1 :
400) = −0.5, Im(A)(1 : 400, 1 : 200) = 0.5, and Re(A)(1 :
400, 201 : 400) = −0.5, the system can generate a rigidly
rotating spiral wave with the radius of the spiral-tip trajectory
being zero (Fig. 1), which is the same as that in Ref. [48]. The
frequency of the spiral wave is 0.4132 × 10−1. We named the
state of this spiral wave the ground state.

Then we apply a pulse with k = 0.100 to the spiral wave
in Fig. 1 to examine the effect of the pulse on the spiral wave
[Fig. 2(a)]. The results show that, when the pulse is applied,

FIG. 2. The trajectory of the spiral tip with different values of k:
(a) k = 0.100, (b) k = 0.200, (c) k = 0.300, and (d) k = 0.375. The
red arrow indicates the direction of motion for the spiral tip, and the
red point indicates the final location of the spiral tip. The trajectories
have been reasonably digitally manipulated for beautification. Each
image shown is 40 × 40 grid points.
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FIG. 3. The trajectory of the spiral tip with different values of k:
(a) k = 0.379, (b) k = 0.400, (c) k = 0.450, and (d) k = 0.800. The
color bar indicates the number of overlapping layers. The red arrow
indicates the direction of motion for the spiral tip, and the red circle
indicates the final trajectory of the spiral tip. Each image shown is
120 × 120 grid points.

the original spiral wave temporarily loses stability, the spiral
tip moves along a spiral trajectory and eventually reaches the
center of the spiral trajectory, and then the spiral wave returns
to its original state [Fig. 2(a)]. Next, we increase the pulse
strength by increasing the value of k to study the effect of
pulse strength on the dynamic behavior of the spiral wave.
When k is increased (less than k̄1 = 0.379), as described in
Fig. 2(a), the spiral tip moves along a spiral trajectory and
eventually returns to its original state. In addition, the maxi-
mum radius of the corresponding spiral trajectory increases as
the parameter k increases [Figs. 2(a)–2(d)].

When k is greater than or equal to k̄1 = 0.379, the trajec-
tory of the spiral tip is no longer like the spiral trajectory
shown in Fig. 2, but rather has a spiral-inward-petal trajectory
[Fig. 3(a)]. The change process of the spiral wave after being
affected by the pulse is shown in Movie 1 of the Supplemental
Material [50]. The spiral tip moves along the spiral-inward-
petal trajectory and eventually enters a circular trajectory with
a radius of 25 grid points for clockwise motion. As k contin-
ues to be increased, the area occupied by the corresponding
trajectory decreases [Figs. 3(b)–3(d)].

Surprisingly, when the spiral wave reaches its steady state,
the spiral wave does not return to its original state, but enters
a new state (Fig. 4). We named this state the excited state of
the spiral wave. Note that the trajectory of the spiral tip is

FIG. 4. The exited state of the spiral wave in the medium. The
red circle is the final trajectory of the spiral tip, which is the same as
the red circles in Fig. 3. The wavelength of the spiral wave is 47.5
grid points, and the frequency is 0.1623 × 10−1. The image shown is
400 × 400 grid points.

FIG. 5. The trajectory of the spiral tip with different values of k:
(a) k = 0.050, (b) k = 0.100, (c) k = 0.200, and (d) k = 0.250. The
color bar indicates the number of overlapping layers. The red arrow
indicates the direction of motion for the spiral tip, and the red circle
indicates the final trajectory of the spiral tip. Each image shown is
120 × 120 grid points.

no longer a point, but rather a circle with a radius of 25 grid
points. The dynamics of the spiral wave in the excited state
is shown in Movie 2 of the Supplemental Material [50]. The
frequency of this spiral wave is 0.1623 × 10−1.

B. Apply a pulse to the spiral wave in the excited state

Next, we apply a pulse to the excited-state spiral wave in
Fig. 4 to examine the effect of the pulse on the excited-state
spiral wave. When k is equal to 0.050, the excited-state spiral
wave temporarily loses stability, and the spiral tip moves
along the spiral-inward-petal trajectory and finally enters the
circular trajectory with a radius of 25 grid points for clockwise
motion [Fig. 5(a)]. As k is increased, the area occupied by
the corresponding trajectory increases [Figs. 5(b)–5(d)]. The
spiral wave that returns to the steady state is still the excited-
state spiral wave in Fig. 4.

As k continues to be increased, when k is greater than
or equal to k̄2 = 0.251, the trajectory of the spiral tip is no
longer like the spiral-inward-petal shown in Fig. 5, but is
changed back to the spiral trajectory [Fig. 6(a)]. The tip of the
spiral wave moves along the spiral trajectory and eventually
converges toward the center of the spiral trajectory. When
k is increased, the maximum radius of the corresponding
spiral trajectory increases [Figs. 6(b)–6(d)]. The spiral wave
returning to the steady state becomes the ground state of the
spiral wave in Fig. 1.

Below, we conduct a detailed study of the spiral wave in
the excited state.

FIG. 6. The trajectory of the spiral tip with different values of k:
(a) k = 0.251, (b) k = 0.300, (c) k = 0.450, and (d) k = 0.600. The
red arrow indicates the direction of motion for the spiral tip, and the
red point indicates the final location of the spiral tip. The trajectories
have been reasonably digitally manipulated for beautification. Each
image shown is 40 × 40 grid points.
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FIG. 7. The areas near the spiral core. (a) The changing process
of the central region of the excited-state spiral wave in one period.
(b) The distribution of local points where Re(A) or Im(A) is 0
of the excited-state spiral wave in one period. The black lines are
composed of local points where Re(A) is equal to 0, and the dotted
blue lines are composed of local points where Im(A) is equal to 0.
(c) The distribution of local points where Re(A) or Im(A) is 0 of the
ground-state spiral wave in one period. The red circles indicate the
trajectories of the spiral tips, and the blue points in panel (a) indicate
the spiral tips.

C. The change process near the spiral tip

We observed the change process near the spiral tip and
recorded snapshots near the spiral tip in one period [Fig. 7(a)].
During the clockwise rotation of the spiral tip along the
trajectory (the red circle), the shape of the spiral tip changes
periodically with a period of change of half the period of
the spiral wave. For example, the shape of the spiral tip
with t = (0/8)T is the same as that with t = (4/8)T , and
the shape of the spiral tip with t = (1/8)T is the same as
that with t = (5/8)T . In order to obtain more accurate state
characteristics of the region near the spiral tip, we marked
the local points where the real or imaginary part is zero
[Fig. 7(b)]. The solid black and the dotted blue lines, named
zero-lines, are composed of local points where Re(A) and
Im(A) are equal to 0, respectively. Figure 7(b) shows the
corresponding snapshots of the ones in Fig. 7(a). The dynamic
process in Fig. 7(b) is shown in Movie 3 of the Supplemental

FIG. 8. Oscillation characteristics of local points in a medium.
The red circle indicates the trajectory of the spiral tip, and the black
points indicate the selected local points. Point A is the center of the
circular trajectory. The local points within the red circle are in the
period-2 oscillatory state except one local point in the center of the
circular trajectory, and the local points outside the red circle are in
the single-periodic oscillation state.

Material [50]. As shown in Fig. 7(b) or Movie 3, one can find
that, during the movement of the wave tip along the orbit,
there is always one zero-line (the solid black or dotted blue
line) tangent to the circular trajectory (the red circle). More-
over, a surprising phenomenon can be found in Figs. 7(a) and
7(b) that, in one period of the spiral wave, local points outside
the circular trajectory oscillate once; however, local points
within the circular trajectory oscillate twice. This shows that
the oscillations inside and outside the circular trajectory are
different. In order to compare with the spiral wave in the
ground state, we also recorded the zero-lines near the spiral
center [Fig. 7(c)]. The shapes of both the zero-lines do not
change during the rotation of the spiral wave. The dynamic
process in Fig. 7(c) is shown in Movie 4 of the Supplemental
Material [50].

D. The oscillation of local points in the excited-state spiral wave

We studied the oscillation of local points inside and outside
the trajectory and found that the local points within the
circular trajectory are in the period-2 oscillation state (except
the local point at the center of the circle), while the local
points outside the circular trajectory are in the single-period
oscillation state (Fig. 8). Although the oscillation forms are
different, the oscillation periods of the local points inside and
outside the trajectory are the same (except the local point at
the center of the circle).

In order to detail the oscillation characteristics of the
local points, we selected six representative local points and
recorded the time series (Fig. 9). Within the circular trajectory,
from the center of the circle to the outside, the period-2 char-
acteristic of the oscillation becomes more obvious [Figs. 9(a)–
9(d)], while the point A at the center of the circle completely

042219-4



EXCITED STATE OF SPIRAL WAVES IN OSCILLATORY … PHYSICAL REVIEW E 101, 042219 (2020)

FIG. 9. Time series of the selected points in Fig. 8. (a)–(f) are the
time series of the points A-F in Fig. 8, respectively.

loses the characteristics of the period-2 oscillation state, mak-
ing its period half of the period of other local points. The local
points outside the circular trajectory are in a single-period
oscillation state [Figs. 9(e) and 9(f)].

IV. ANALYTICAL RESULTS

For the sake of discussion, Eq. (1) without the external
pulse P is rewritten as

∂A(ρ, θ, t )

∂t
= 	[A(ρ, θ, t )] + 
[A(ρ, θ, t )], (5)

with

	[A(ρ, θ, t )] = A(ρ, θ, t ) − (1 + iβ )|A(ρ, θ, t )|2A(ρ, θ, t ),


[A(ρ, θ, t )] = (1 + iα)∇2A(ρ, θ, t ), (6)

where 	[A(ρ, θ, t )] and 
[A(ρ, θ, t )] are the reaction term
and the diffusion term, respectively; (ρ, θ ) represents the
polar coordinate with the spiral core as the origin coordinate;
and t is the time.

Under periodic boundary conditions, Eq. (5) has the fol-
lowing traveling wave solutions:

A(ρ, θ, t ) = A0 exp[i( �k′�r − ωt )], (7)

where

k′ = 2πm

L
(m = 0,±1,±2, . . .),

A0 =
√

1 − k′2,

ω = β + (α − β )k′2. (8)

Here, L represents the system size, k′ (0 � k′ � 1) represents
the wave number, and ω ≡ 2πν represents the angular fre-
quency.

The single spiral wave solutions shown in Fig. 1 can be
written as

A(ρ, θ, t ) = F (ρ) exp{i[nθ − ωt + ψ (ρ)]}, (9)

where the integer n is the topological charge that n = +1
(or −1) represents the phase changes by 2π when rotating
a circle along the spiral anticlockwise (or clockwise). F (ρ)
represents the amplitude of the spiral wave, and the real
number ψ (ρ) represents the phase of the spiral wave. The
asymptotic behaviors of F (ρ) ≡ |A| and ψ (ρ) are

ρ → 0, F (ρ) ∼ ψ (ρ) ∼ ρ,

ρ → ∞, F (ρ) ∼
√

1 − k′2, ψ (ρ) ∼ k′. (10)

In the region far from the center of the spiral wave, the spiral
wave is a plane wave with uniform amplitude.

With the same control parameters, another special solution,
i.e., the single spiral wave solutions shown in Fig. 4, can be
written as

A(ρ, θ, t ) =
{

F (ρ) exp{i[nθ − ωt + ψ (ρ)]}, if ρ > rt ,

F (ρ)H (ρ, θ, t ), if ρ � rt ,

(11)

where rt is the radius of the tip trajectory, and (ρ, θ ) represents
the polar coordinate with the center of the tip trajectory as the
origin coordinate. The asymptotic behaviors of H (ρ, θ, t ) are

ρ → 0, H (ρ, θ, t ) ∼ exp[−i2ωt + ϕ(θ )],

ρ → rt , H (ρ, θ, t ) ∼ exp[−iωt + ϕ(θ )],
(12)

where ω is the rotating frequency of the spiral wave in Fig. 4,
and ϕ(θ ) represents the phase of the pattern within the tip
trajectory.

The fixed point of the partial differential equation, Eq. (5),
needs to satisfy the condition

	[A(ρ, θ, t )] = 0,


[A(ρ, θ, t )] = 0, (13)

or

	[A(ρ, θ, t )] + 
[A(ρ, θ, t )] = 0,

	[A(ρ, θ, t )] �= 0, 
[A(ρ, θ, t )] �= 0. (14)

In the ground-state spiral wave shown in Fig. 1, during the
rotation of the spiral wave, the position of spiral tip does not
change. As shown in Fig. 7(c), the real and imaginary parts of
the value in the spiral center are both 0, therefore

	[A(ρ0, θ0)] = 0, (15)

where (ρ0 ≡ 0, θ0 ≡ 0) is the coordinate of the spiral center.
As shown in Eq. (7), in the traveling wave solutions, the peaks
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and troughs are symmetrical with respect to the equilibrium
point, i.e.,

sin( �k′�r) = − sin[ �k′(−�r)]. (16)

Moreover, the zero-lines are symmetrical about the spiral
center. Therefore in the area around the spiral tip,

A(ρ, θ ) + A(ρ, θ + π ) = 0. (17)

Accordingly,


[A(ρ0, θ0)] = 0. (18)

The value of the local point in the spiral center satisfies
Eq. (13); the spiral center is stationary.

However, in the excited-state spiral wave shown in Fig. 4,
the zero-lines are not symmetrical about the spiral center (the
zero-lines have no center of symmetry) [Fig. 7(b)]. Therefore,
in the area around the spiral tip,

A(ρ, θ ) + A(ρ, θ + π ) �= 0, (19)

and therefore,


[A(ρ0, θ0)] �= 0. (20)

The value of the local point in the spiral tip does not satisfy
Eqs. (13) and (14); the spiral tip cannot be stationary.

V. DISCUSSION AND CONCLUSION

The classical [1–4] and the meandering [14,15] spiral
waves have been discovered before, and previous studies
have claimed that these two types of spirals exist in different
parameter spaces. In other words, the transformation of these
two types of spirals can only be achieved by changing the
values of control parameters [14,28]. Indeed, previous studies
have dissevered the inherent relation between the two states
of a spiral wave. However, the results of this article break
with the previous view. We found that these two types of
spirals switch to each other after a one-off pulse is applied
to the medium. In addition, for ease of understanding, we
called the state of the classical spiral wave the ground state
and the state of the meandering spiral wave the excited
state.

The previous studies [14,28] showed that the spiral tip
orbit transits from one type to another by changing the
parameter values generally. For instance, Barkley reported
that the dynamics of spiral waves are organized around the
codimension-2 bifurcation where Hopf eigenmodes interact
with eigenmodes and found the spiral tip orbits in the param-
eter space. However, in our study, we found that the spiral tip
orbits with the same parameter values can be different.

Reference [51] reported that the spiral tip meanders rather
than follows a periodic circular orbit under certain condi-
tions. Meandering spirals have been extensively studied the-
oretically [14,52,53] and experimentally [15,54]. References
[14,52,53,55,56] have shown that the meandering is not an
erratic motion and the spiral tip moves in epicycloidlike orbits
or hypocycloidlike orbits that are quasiperiodic in time [55].
In this article, we discovered an alternative type of orbit of the
meandering which is an erratic motion.

Reference [57] asserts that the rotation frequency of a
spiral wave is determined solely by medium properties. How-
ever, our study shows that two different rotation frequencies
of spiral waves, i.e., the ground state and the excited state
of a spiral wave, exist in the same medium. With a certain
operation, two kinds of spiral waves can exist in the same
medium at the same time.

Finally, in other studies [14,15,28,30,57], the rotation di-
rection of the spiral wave is the same as that of the tip.
Specifically, when the spiral wave rotates clockwise (or coun-
terclockwise), the spiral tip moves along a clockwise (or
counterclockwise) orbit. However, in this study, the rotation
direction of the spiral wave is opposite to that of the wave tip.

We established an alternative connection between the clas-
sic and the meandering spiral waves, found spiral tip orbits
with the same parameter values can be different, discovered
an alternative type of spiral tip orbit of the meandering spiral
wave, reported two types of spiral waves can exist in the
one medium at the same time, and discovered an alternative
rotation mode of spiral tip for meandering spiral waves. In
summary, we discovered an alternative type of state of spiral
waves, i.e., the excited state, and realized the conversion be-
tween the ground state and the excited state of the spiral wave.
The dynamic behaviors of the excited-state spiral wave and
the original ground-state spiral wave are completely different,
which are under the same control parameters. In other words,
we found the dynamic behaviors of spiral waves cannot be
determined only by the control parameters. The formation
mechanism of the excited-state spiral wave was analyzed
in the article. Our findings enrich the dynamics of pattern
formation.
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