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Dynamics of a driven harmonic oscillator coupled to independent Ising spins in random fields
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We aim at an understanding of the dynamical properties of a periodically driven damped harmonic oscillator
coupled to a Random Field Ising Model (RFIM) at zero temperature, which is capable of showing complex
hysteresis. The system is a combination of a continuous (harmonic oscillator) and a discrete (RFIM) subsystem,
which classifies it as a hybrid system. In this paper we focus on the hybrid nature of the system and consider
only independent spins in quenched random local fields, which can already lead to complex dynamics such as
chaos and multistability. We study the dynamic behavior of this system by using the theory of piecewise-smooth
dynamical systems and discontinuity mappings. Specifically, we present bifurcation diagrams and Lyapunov
exponents as well as results for the shape and the dimensions of the attractors and the self-averaging behavior of
the attractor dimensions and the magnetization. Furthermore we investigate the dynamical behavior of the system
for an increasing number of spins and the transition to the thermodynamic limit, where the system behaves like
a driven harmonic oscillator with an additional nonlinear smooth external force.
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I. INTRODUCTION

This work is motivated by problems, which arise if a
dynamical system contains a hysteretic subsystem. Hysteresis
phenomena in general can be found in many different research
fields, such as magnetic effects at oxide interfaces [1], shape
memory alloys [2], ultrathin single-layer films [3], organic
ferroelectrics [4], soft porous crystals [5], atomtronics [6],
and metallic nanoparticles [7]. An overview over the field
of hysteresis can be found in Ref. [8]. In general, hysteresis
means that the instantaneous output depends not only on the
current input value but also on its history. Thus, systems
with hysteresis are systems with memory. For example, in the
case of magnetic materials this means that the magnetization
and the orientation of the magnetic domains depend not only
on the current external magnetic field but also on its past
behavior. In contrast to simple bistability, complex hysteresis
is characterized by multistability, i.e., multiple internal states
are possible for a single input value, and nonlocal memory,
i.e., different internal states are connected to a given output
value. As a consequence, not only one major loop but also
various small subloops may appear in systems with complex
hysteresis.

One of the most prominent model for complex hysteresis is
the Preisach model [9]. It is a purely phenomenological model
and a superposition of rectangular hysteresis loops, which are
the elementary building blocks, also called Preisach units. In
contrast to the Preisach model a more physical way to model
hysteresis is the zero-temperature RFIM [10,11]. In the Ising
model hysteresis appears because of the interaction between
spins, which represent, for instance, magnetic or dielectric
dipole moments of atoms. This paper serves as preparatory
work for studies of the zero-temperature RFIM initially es-
tablished to study phase transitions with a renormalization
group approach [12]. In addition to the usual Ising model each
spin in the RFIM has its own local quenched disorder field,

which in general leads to “smooth” hysteresis loops instead of
“hard” jumplike loops appearing in the normal Ising model.
The RFIM shows many properties, which can be also found in
the Preisach model [13], but in contrast to the Preisach model,
the RFIM is a spatially extended model.

Typically, the dynamical interaction of a hysteretic sub-
system (hysteretic transducer) with some environment can be
considered in two different ways. In the first scenario, the
hysteretic transducer handles the input from the environment
and produces the output of the system without feeding back
to the environment. In contrast, in the second scenario the
feedback of the hysteretic transducer to the environment is
not negligible. In this case, a dynamical model, e. g., in form
of an Ordinary Differential Equation (ODE), is necessary for
describing the environmental behavior. Many results in the
literature on hysteretic systems can be attributed to the first
scenario [13–20]. Other studies without feedback focus on
thermal relaxation processes [21,22] or the power spectral
density of stochastically driven Preisach models [23–28]. On
the other hand, not much is known about the second scenario,
i.e., hysteretic systems coupled to their environment via a
feedback mechanism. The general difficulty for such prob-
lems lies in the model for the hysteresis and the resulting dy-
namical systems. For example, for the Preisach model or the
RFIM one obtains coupled ODE-Preisach-operator equations
or piecewise smooth hybrid dynamical system, respectively.
Some work has been done on ODEs coupled to a Preisach
operator. The ferroresonance phenomenon in LCR circuits
with an inductance modeled by a Preisach operator is studied
in Refs. [29,30], and the mechanical equivalent, an iron pen-
dulum in a magnetic field, has been studied in Ref. [31], where
the hysteresis appears because of the interaction between the
ferromagnetic iron mass and the magnetic field.

In a general manner, we are interested in such dynamical
systems with hysteresis. As a prototypical example we con-
sider a driven harmonic oscillator similar to Ref. [31], but in
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contrast to Ref. [31], the dynamics of the magnetization of the
iron pendulum is modeled by a bulk of Ising spins.

As a first step, especially in this paper, we neglect spin-
spin interactions, and we will focus on systems with nearest-
neighbor interactions in following papers. The absence of
spin-spin interactions means that the system does not have
nonlocal memory and no hysteresis between the intensity of
the magnetic field and the magnetization of the pendulum
is possible. However, this simplified system of a pendulum
coupled to a RFIM with independent spins already shows
very complex behavior. On the one hand, the dynamics of the
system is quite interesting, because of the hybrid character
of the system with discrete internal states of the Ising spins
and a continuous nature of the pendulums motion. Such kinds
of system are called piecewise-smooth hybrid systems and
can be found in many fields and in every system where a
sudden change of the dynamics appears. Typical examples are
relay feedback systems [32–34] or mechanical systems with
strong impacts, such as impact moling, ultrasonic assisted
machining [35], gear dynamics including backlash [36], or
systems exhibiting dry friction [37,38]. An overview of this
topic can be found in Ref. [39]. On the other hand, we are
indeed neglecting the memory and therefore the hysteresis in
the system, but the disorder of the random fields of the Ising
spins can cause some interesting issues when dealing with
physical properties of the system because of the dependence
on the actual disorder realization. Therefore questions of self-
averaging arise.

The paper is organized as follows. In Sec. II we give a
brief introduction to our model, which basically consists of
two parts: an oscillator model and an Ising model. Because
of the hybrid character of the system, in Sec. III we briefly
introduce specific methods for piecewise-smooth systems,
derive the thermodynamic limit in the case of an infinite
number of spins, and make some remarks on the numerical
calculation of the trajectories and the Lyapunov exponents. In
Sec. IV we present characteristic results on the dynamics of
the system with one spin as well as the system with many
spins, the transition from the piecewise-smooth hybrid system
to the smooth system in the thermodynamic limit, and the
self-averaging behavior of the attractor dimensions and the
magnetization. We end with a conclusion and an outlook on
future work in Sec. V.

II. MODEL

Our dynamical system basically consists of two subsys-
tems. One part is the continuous subsystem given by a peri-
odically driven damped harmonic oscillator as described in
Sec. II A. The second part is the discrete subsystem even-
tually given by the full RFIM and described in Sec. II B. A
mechanical example for such a system, which can be realized
in experiments, is illustrated in Fig. 1.

A. Oscillator model

We consider a periodically driven damped harmonic os-
cillator with an iron mass subject to an external magnetic
field (see Fig. 1). The position of the iron mass x(t ) can be

FIG. 1. Illustration of the prototypical example of a dynamical
system with external force FM (red curve), because of the interaction
between the iron mass (black disk) and the external magnetic field
(gray arrows). Here the external force shows non hysteretic behavior
because of the neglected nearest-neighbor interaction.

determined by [31]

m x′′(ϑ ) + c x′(ϑ ) + k x(ϑ ) = A cos ωϑ + FM (ϑ ), (1)

where m, c, and k are the mass, damping, and stiffness of the
oscillator, respectively, and A and ω are the amplitude and the
angular frequency of the periodic excitation, respectively. FM

denotes the additional force, which comes from the interaction
of the iron mass with the external magnetic field and is
described in detail below.

The oscillator model Eq. (1) is put into a dimensionless
form by using the transformations t = √

k/mϑ and q(t ) =
k
A x(ϑ ). Thus, we obtain

q̈(t ) + 2ζ q̇(t ) + q(t ) = cos �t + F (t ), (2)

where ζ denotes the damping ratio, � is the dimensionless
excitation frequency, and F (t ) = FM (ϑ )

A . Note that the angular
eigenfrequency of the oscillator in Eq. (2) is equal to one,
which means that the resonant forcing is given by � = 1 and
the period of the resonant oscillation is equal to 2π . Later we
will see that the additional force will be piecewise constant
F (t ) = const = CM, which allows us to give an explicit solu-
tion for Eq. (2) with q(t = 0) = q0 and q̇(t = 0) = v0 in the
case of moderate damping ζ > 1:

q(t ) = CM + 1

κ
[2�ζ sin �t − (�2 − 1) cos �t]

+ 1

2κη
e−ζ t {2η cos ηt[�2 − 1 + κ (q0 − CM )]

− sin ηt[2ζ (�2 + 1) − 2κ (v0 + q0ζ − ζCM )]}, (3)

where a and b are given by

κ = (�2 − 1)2 + 4�2ζ 2, (4)

η =
√

1 − ζ 2. (5)

We will use this solution later to avoid numerical integration,
when simulating the system (see Sec. III D), and also to ana-
lytically calculate bifurcation points for single-spin dynamics
(see Sec. IV A).
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FIG. 2. The feedback mechanism of the RFIM coupled to a
harmonic oscillator: The actual position x of the oscillator affects
the magnetic field B (input) of the RFIM. Therefore the spin con-
figuration and the magnetization M (output) depend on x. Then the
magnetization again acts on the oscillator as an additional external
force.

B. Random field Ising model

For completeness and later reference we introduce here
the general RFIM with nearest neighbor couplings and its
zero-temperature dynamics. It simplifies considerably for in-
dependent spins as detailed in Sec. II C.

The RFIM is used to determine the magnetic force F (t )
that acts on the iron mass. The input and output of the RFIM
is the external magnetic field B and the magnetization M
of the iron mass, respectively, which in general is depending
on the position of the mass. (cf. Fig. 2). The total magneti-
zation results from a superposition of the magnetization of
N discrete spins, whose states are given by σi ∈ {−1,+1}.
Consequently, the RFIM is a discrete subsystem because the
total magnetization can take only a discrete set of values,
which is also known as quantization (see, e.g., Ref. [40]).
Moreover, the spin flips are assumed to occur instantaneously,
which means that also the change of the magnetization occurs
instantaneously equivalent to an impact.

The energy of a specific configuration of the RFIM can be
given by its Hamilton function

H = −J̃
∑
〈i j〉

σiσ j − μB

∑
i

(B + b̃i )σi, (6)

where J̃ is the coupling constant between two spins, μB is the
magnetic moment, and b̃i is the local field of the ith spin. The
〈i j〉 indicates a sum over nearest-neighbor pairs, where each
pair of spins is only counted once. Since we are interested in
a coupling of the mechanical oscillator with the RFIM, the
external magnetic field B = B(q) is assumed to be a function
of the oscillator position q. In the following, we focus on the
case of a linear dependence

B(q) = β0 + β1q, (7)

which means that the oscillator displacements are linearly
coupled to the variations of the magnetic field. Similar to the
continuous subsystem we will use a dimensionless Hamilto-
nian for the RFIM

H = H
μBβ1

= −J
∑
〈i j〉

σiσ j −
∑

i

(q + bi )σi, (8)

where J = J̃
μBβ1

and bi = b̃i+β0

β1
are the dimensionless coupling

constant and the dimensionless local disorder field, respec-
tively. The values bi, i = 1, . . . , N are parameters of a specific
realization of the RFIM, which are chosen randomly and kept
fixed during the time evolution of the system (local quenched
disorder). In particular we choose the random fields to be
Gaussian distributed and uncorrelated variables with bib j =
R2δi j and bi = 0. Here X denotes a quenched average of X ,
i.e., an average over all disorder realizations of the system.

In this paper we consider the RFIM at zero temperature,
which means that there are no stochastic spin flips and the
system dynamics is fully deterministic. The so-called single-
spin-flip dynamics is used to describe the internal dynamics of
the RFIM subsystem [41,42]. In this case the RFIM changes
its spin configuration only if a single spin flip would lower the
energy of the subsystem, i.e., the Hamiltonian function H in
Eq. (8) after the spin flip is smaller than the initial value before
the spin flip. The energy difference �Hi for a single flip of the
ith spin can be given by

�Hi = 2σi

⎡
⎣J

∑
j∈nn(i)

σ j + q + bi

⎤
⎦, (9)

where
∑

j nn(i) indicates the sum of j over the nearest neigh-
bors of the ith spin. Hence, the ith spin flips if �Hi < 0.
Equation (9) can be used to define so-called metastable states,
which are spin configurations where no single spin flip would
lower the energy of the RFIM subsystem, that is, �Hi � 0
for i = 1, . . . , N . Hence, these metastable states fulfill the
so-called metastability condition:

σi = sgn(Fi ), (10)

where Fi = J
∑

j∈nn(i) σ j + q + bi is the local field of the ith
spin.

Now, the dynamics of the RFIM subsystem can be de-
scribed as follows. The position q of the oscillator is updated
according to Eq. (2) until the energy difference for any single
spin flip is lower than zero (�Hi < 0). The spin is reversed
and the energy differences �Hi for a possible following spin
flip are calculated for the new spin configuration. This is
necessary because one spin flip may cause an avalanche of
spin flips. If there is another spin with �Hi < 0, this spin is
also reversed, and the procedure is repeated until the system
reaches the next metastable state. If the RFIM has reached
the next metastable state and Eq. (10) is fulfilled for every
spin, the position q of the oscillator is updated again and the
spin configuration does not change until the metastable state
becomes again unstable. The present update mechanism for
the RFIM is known as sequential update because the next
metastable state is achieved by a sequence of single spin
flips. It can be shown that during avalanches other update
mechanisms, for example, parallel or synchronous update,
also lead to the same metastable state. Moreover, a different
order of the single spin flips also would not change the next
metastable state. This is due to the so-called no passing rule
[43], which means that no spin flips more than once (either
from down to up or vice versa) during the transition to the
next metastable state [44]. It might be worth noting that the
analysis of numerical algorithms for updating the internal
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states of the RFIM and its connection to graph theory is an
enduring field of research [45–52].

The output of the RFIM is the normalized dimensionless
magnetization M defined by

M = 1

N

∑
i

σi. (11)

The connection between the dimensionless magnetization M
and the original magnetization M of the iron mass is given
by M = ρmM, where ρm is the magnetic dipole density. The
magnetic force FM on the oscillator can be determined by
FM = −∂xH, which leads to the dimensionless force

F (t ) = CM(t ), C = μbβ1kN

A2
. (12)

At each time t the oscillator position q(t ) determines the spin
configuration of the RFIM, and therefore the magnetization
M = M(t ). In comparison to the oscillator dynamics the
update of the RFIM can be characterized as adiabatic limit
because at each time t the discrete subsystem is always in a
metastable state.

C. Independent spins

In this paper, we consider the case of independent spins,
i.e., J = 0. In this case, there are no nearest-neighbor in-
teractions and no spin avalanches. Also the phenomena of
first-order phase transition in dependence of the randomness R
and of the dimension of the system vanish. Since there are no
nearest-neighbor interactions the spatial arrangement of the
spins is irrelevant. From Eq. (10) we find that the condition
for metastable states takes the simple form

σi(t ) = sgn[q(t ) + bi], ∀i = 1, . . . , N. (13)

Equation (13) can be understood as a definition of the spin
dynamics of the system. For a given position of the oscillator
at time t , each spin of the RFIM points in the direction of its
local field. Thus the magnetization can be calculated by

M[q(t )] = 1

N

∑
i

sgn[q(t ) + bi]. (14)

For our case of independent spins Eq. (14) directly determines
the magnetization M[q(t )] in dependence of q(t ). Therefore
the metastable state is always equivalent to the ground state
of the RFIM with the lowest possible energy. As a result for
J = 0 the hysteresis feature vanishes and no memory develops
in our system.

Nevertheless, the case of independent spins is not trivial
because there are still discrete changes of the force F (t ) and
the hybrid character of the system does not vanish. In fact,
the limitation J = 0 gives us the possibility to calculate exact
results for the smooth system in the limit of N → ∞ and to
study the transition from the hybrid system for large but finite
N and the smooth system with infinite N .

III. METHOD

In this section we want to explain some details of the
dynamics of the hybrid system and the calculation of Lya-
punov exponents for such systems. In addition, we derive

FIG. 3. An illustration of our piecewise-smooth system. The two
smooth regions Si−1 and Si are separated by the boundary �i. The
intersection point of the flow �i with the boundary is called x∗.

a smooth representation in the thermodynamic limit with
infinitely many spins (N → ∞) and make some remarks on
the implementation of the numerical methods.

A. Dynamics of the piecewise-smooth system

If the spins are ordered according to their local disorder
fields bi, it can be seen that the function M(q) is a step function
with N + 1 different levels of the magnetization at which the
force F acting on the oscillator is constant

Mi = 2i

N
− 1, i = 0, . . . , N, (15)

implying, that M(q) is piecewise constant. Such systems are
called piecewise-smooth systems. The regions {Si} of constant
F are separated by N boundaries at which the spin flips occur.
Hence, one can argue that there is one ODE in each of these
regions of the phase space and the system state is completely
determined by knowing t , q(t ), and q̇(t ). In other words,
our system behaves like a piecewise-harmonic oscillator with
same stiffness and same damping ratio but with a forcing
which depends on the regions Si.

Thus, we can write our system as a combination of a set of
N + 1 ODEs:

ẋ(t ) = F i(x(t ), t ) =
⎛
⎝ v(t )

−2ζv(t ) − q(t ) + cos φ(t ) + CMi

�

⎞
⎠,

(16)
with i = 0, . . . , N . The state variable x = (q, v, φ)T is an
element of the smooth regions x ∈ Si, with

⋃
i Si = D ⊂ R3.

The two-dimensional manifold �i = {x:Hi(x) = 0} with the
indicator function Hi(x) = q + bi separates two neighboring
regions Si−1 and Si. The intersection point of the trajectory
with the boundaries and the flow in the region Si is denoted by
x∗

i−1,i and �i(x(t0), t ), respectively (see Fig. 3). An exemplary
trajectory of the system with N = 3 spins in the state space
is illustrated in a projection in Fig. 4. We consider a point on
the trajectory with q < −b1 [black bullet (•) in left figure].
This means that all spins are in the down state. The system
is evolved with magnetization M0 = −1. After some time we
have −b1 < q < −b2, and the first spin has been flipped to the
up state. In this region of the phase space the system further
evolves with magnetization M1 = − 1

3 . After passing the next
boundary with −b2 < q < −b3 the next spin will flip, and the
magnetization is M2 = 1

3 . For q > −b3 all spins are in the
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FIG. 4. Example of a projection of a state space trajectory of the harmonic oscillator coupled to N = 3 spins. There are four smooth regions
Si with piecewise constant magnetization ( ) corresponding to four different spin configurations (↑↓↑). At each of the three boundaries a jump
discontinuity appears in the acceleration q̈. The values of the local disorder are b1 = −1.0, b2 = 1.5, and b3 = −3.0.

up-state with M2 = 1 (right figure). When the oscillator moves
in the other direction, the spins flips occur in reverse order.

B. Thermodynamic limit N → ∞
For N spins there are N boundaries, and at each boundary

the magnetization increases by the value 2
N . For increasing

N , on one hand, the number of boundaries increases and, on
the other hand, the changes of the magnetization decrease.
Thus, in the limit N → ∞ (thermodynamic limit) the hybrid
character of the piecewise smooth system should vanish. In
the following we derive a smooth function M(q) for the
magnetization in dependence on the oscillator position q,
representing the behavior of the system in the thermodynamic
limit.

For q → −∞ each spin is in the down state and the
magnetization is given by M = −1. For increasing q the mag-
netization increases monotonically and in the limit q → +∞
we have M = +1. The specific shape of the function M(q)
is determined by the positions of the boundaries. Since the
location of the boundaries is determined by the local disorder
bi, the probability density of the boundaries is a Gaussian
distribution p(q) with zero mean and standard deviation R.
The associated cumulative distribution can be written as

P(q) =
∫ q

−∞
p(q′) dq′ = 1

2

[
1 + erf

(
q

R
√

2

)]
. (17)

It determines the ratio between the number of spins in the
down state and the number of all spins in dependence of the
oscillator position q. Therefore, in the limit N → ∞ we can
substitute the ratio i

N in Eq. (14) by P(q) and obtain a smooth
function for the magnetization

M[q(t )] = 2P[q(t )] − 1 = erf

[
q(t )√

2R

]
. (18)

This means that in the limit N → ∞ our smooth dynamical
system consisting of a driven damped harmonic oscillator
coupled to a RFIM with infinitely many independent spins can
be described by

ẋ(t ) =

⎛
⎜⎝

v(t )

−2ζv(t ) − q(t ) + cos φ(t ) + C erf
[

q(t )
R
√

2

]
�

⎞
⎟⎠, (19)

with a smooth nonlinearity given by the error function. Thus,
in Eq. (19) the feedback from the RFIM is characterized by
an additional nonlinear external force that depends on the
oscillator position q(t ). In Sec. IV we compare the dynamics
of the piecewise smooth system Eq. (16) with a large but finite
number of spins N and the dynamics of the smooth system
Eq. (19) with infinitely many spins.

C. Lyapunov exponents

Lyapunov exponents are defined as the average rate of
divergence or convergence between a reference trajectory and
a perturbed trajectory, where the perturbations are infinitely
small. For the smooth dynamical system Eq. (19) we use the
standard method [53] for calculating Lyapunov exponents.
We use the same method in the smooth regions Si of the
piecewise smooth system Eq. (16). However, if the reference
trajectory crosses a discontinuity boundary, the determination
of the dynamic behavior of the infinitesimal perturbations is
not straightforward because the perturbed trajectory may have
crossed or may cross the boundary at an earlier or a later
time instant, respectively. In general, in the neighborhood of
the discontinuities a careful treatment of the determination of
the perturbations is necessary because the switching behavior
of the perturbed trajectory is typically different from the
switching behavior of the reference solution. The compensa-
tion of such deviations can be done by using the concept of the
so-called Discontinuity Map (DM) [54–57]. In the following,
we describe at first the basic concept of the DM for transversal
intersections of the boundary, where the reference trajectory
crosses the boundary. Later we recall the concept of gracing
intersections, where the reference trajectory hits the boundary
tangentially.

1. Transversal intersection: Discontinuity mapping

During the calculation of the Lyapunov exponents we
know only the time instant t∗, where the reference trajec-
tory reaches a discontinuity boundary and where we switch
between two different ODEs. At t∗ the perturbed state is in
the neighborhood of the boundary but may have crossed it
in the past or will cross it in the future. If the perturbed
trajectory crossed (will cross) the boundary at an earlier (a
later) time t∗ + δt with δt < 0 (δt > 0), the DM predicts the
crossing time t∗ + δt by using knowledge of the state x∗,
approximates the perturbed state at the crossing time, applies
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FIG. 5. Illustration of the calculation of the Lyapunov exponent
for piecewise-smooth systems. To evolve a small perturbation δx in
the smooth region, we can use the fundamental solution Y(t2, t1) of
the variational equation of the ODE. The effect of the boundaries on
δx is described by the saltation matrix X.

the effects from the discontinuity crossing, and approximates
the perturbed state at time t∗ by evolving the perturbations
before intersecting the boundary to the perturbations after the
dynamics has been switched. In other words, the DM immedi-
ately incorporates the effects of a discontinuity crossing even
if the state is only in the neighborhood of a boundary and the
crossing appeared in the past or will appear in the future. For
our system, the DM from a region Si to a region S j can be
given by the map Qi j :

x → Qi j (x) =
⎛
⎝ q

C(Mi − Mj )δt + v

φ

⎞
⎠, (20)

where δt = q∗−q
v∗ . Since there is only a force jump at the

boundary the DM changes only the velocity of the state
variable. Note that only changes with |i − j| = 1 are possible
and that the change in the magnetization is �M = Mj − Mi =
±2.

For infinitely small perturbations δx the Jacobian X =
∂xQ(x) of the DM evaluated at the intersection point x∗ can
be used to calculate the perturbation δx+(t∗) after the crossing
by

δx+(t∗) = Xδx−(t∗), (21)

where δx−(t∗) denotes the perturbation before the intersection
with the boundary. The matrix X is called saltation matrix. For
our system it has the form

X =

⎛
⎜⎝

1 0 0
1
v∗ C�M 1 0

0 0 1

⎞
⎟⎠. (22)

Then, for a trajectory with only one crossing at time t∗ the
largest Lyapunov exponent would be defined as

λ = lim
t→∞

1

t
ln

|Y(t, t∗)XY(t∗, 0)δx0|
|δx0| , (23)

where Y(t, t ′) is the fundamental solution of the variational
equation δẋ(t ) = D δx(t ) of the ODE (16) from time t ′ to t
and D denotes the Jacobian. The calculation of the Lyapunov
exponent via Eq. (23) is illustrated in Fig. 5 and can be
explained as follows. We start with an initial perturbation

δx0 at time t = 0, and evolve the perturbations up to the
intersection time t∗, which is calculated from the reference
trajectory. At this point we have δx−(t∗) = Y(t∗, 0)δx0. Then
the effect of the DM is captured by applying the saltation
matrix X to δx−(t∗). After the intersection we can use Y(t, t∗)
again, to compute the perturbation up to time t . Note that
the Jacobian D and consequently the fundamental solution
Y(t, t ′) is independent of the associated phase space region
Si because only a constant term, i.e., the magnetization Mi,
changes at the boundaries in the ODE (16).

2. Grazing intersection: Poincaré section and zero-time
discontinuity mapping

Note that the saltation matrix has a singularity for v∗ → 0,
when the trajectory hits the boundary tangential. This case is
called the grazing intersection. In general grazing occurs if
the trajectory hits the boundary tangentially with the veloc-
ity normal to the boundary being equal to zero. The point
x∗, which belongs to the grazing intersection, is called the
grazing point. Similar to the case of transversal intersections,
we have to make a correction, when calculating Poincaré
maps for trajectories starting near a orbit, which grazes the
boundary. These correction arise because some trajectories
will not intersect the boundary, whereas others do cross.
There are two common corrections to this, called Poincaré
Section Discontinuity Mapping (PDM) QP and Zero Time
Discontinuity Mapping (ZDM) QZ [58]. Both corrections are
constructed in the same manner as the transversal DM, and
they are describing the same grazing scenario. But whereas
the PDM is defined with respect to a given Poincaré section,
the ZDM is defined such that zero time has been elapsed
between perturbation before and after the intersection with the
boundary.

It has been shown that in the case of the degree of
smoothness of one, one has to add square-root terms of x
in the mapping of points near grazing [57]. For the artificial
example illustrated in Fig. 5 the grazing point is given by
x∗ = (−b, 0, φ∗)T , hence the PDM takes the following form:

x → QP(x) =
{

x for H = q + b < 0,

νz
√

q + b for H = q + b > 0,
(24)

νz = 2
√

2
C�(M1 − M2)

(b + cos φ∗ + CM2)(b + cos φ∗ + CM1)
1
2

⎛
⎝0

0

1

⎞
⎠,

(25)

and the corresponding ZDM can be written as

x → QZ (x) =
{

x for Hmin < 0,

ν
√

Hmin for Hmin > 0,
(26)

ν = 2
√

2
C(M2 − M1)(b + cos φ∗ + CM1)

(b + cos φ∗ + CM2)(b + cos φ∗ + CM1)
1
2

⎛
⎝0

1

0

⎞
⎠,

(27)

where Hmin(x) is the minimum value of H (x) obtained along
the flow �1(x, t ), where x is a arbitrary point near the grazing
point x∗.

For piecewise-smooth systems with a degree of smooth-
ness of one it has been shown that the dynamics—especially
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FIG. 6. Dependency of the mean of the minimal value of the
distances between two boundaries Zmin on the number of spins for
different values of randomness R. The mean Zmin was calculated for
500 different realizations of bi.

the different scenarios, which can occur in bifurcation
diagrams—can be explained by piecewise-smooth discon-
tinuous square-root maps like (25) [58]. The analysis of
piecewise-smooth square-root maps reveals that those maps
can describe various bifurcation scenarios including period
adding and robust chaos [59–61].

D. Numerics

In general for J �= 0 the generation of trajectories of the
hybrid system is done in the following way. The external
force of the initial metastable state of the RFIM is determined
and used to solve the continuous subsystem until the next
boundary is reached, i. e., until the metastable state of the
RFIM becomes unstable. Then the new metastable state of the
RFIM is calculated by using the single-spin-flip update, and
the external force corresponding to the new metastable state
of the RFIM is used to solve the continuous subsystem up to
the next boundary crossing.

In our case of J = 0 the simulation of the RFIM becomes
obsolete, because of the absence of memory in the system.
Hence, from the indicator function Hi(x) = 0 = q + bi, we
can determine the boundaries in the phase space directly
before starting the actual propagation of the trajectories (see
Sec. III A). Also, since the continuous subsystem is linear
between the boundaries, it is possible to analytically calculate
the trajectory of the oscillator for a fixed external magnetic
force [see Eq. (3)]. Nevertheless we are not able to calculate
the time the oscillator needs propagating from one boundary
to the next. In doing so we would have to solve Eq. (3)
for t , and this can not be done in a analytic way. Therefore
for a low number of spins, i.e., a “large” distance between
two boundaries, we then use the analytical solution with a
fixed step size �t to propagate the trajectory until a boundary
given by 0 = q + bi is crossed. Then a root finder is used
to calculate the exact time t∗ and state x∗ at the intersection
point. The step size �t is chosen according to the results in
Fig. 6 such that no boundary crossings will be skipped.

For an increasing number of spins in the system, the num-
ber of boundaries becomes large and the distances between

two boundaries decrease. Thus if the number of spins is large,
we use an adaptive scheme to solve the system, because the
performance of the above-mentioned numerical solution with
a root finder is low for large N . However, in this case, there are
still regions in the phase space where the distance between two
boundaries is large. This holds, for example, at very low and
high values of q, where the probability for the occurrence of a
boundary is small. In these regions, we again use the analytical
solution of the continuous subsystem in combination with the
root finder. On the other hand, if the distance between two
boundaries becomes “small,” we calculate the next intersec-
tion point (t∗, x∗) directly by assuming a constant velocity of
the oscillator between two boundary crossings. This is similar
to a linearization of Eq. (3). By using this adaptive method,
we are able to generate bifurcation diagrams with a finite but
very high number of discontinuities (see Sec. IV).

To get quantitative information on the size of “small”
and “large” distances between two boundaries and how to
chose the corresponding step size �t , such that no boundary
crossings will be skipped, we calculated the expectation value
for the minimum distance between two boundaries from the
probability distribution of the local disorder values bi in
dependence on the number of spins and the randomness R.
Specifically, the local disorder values bi can be written as
a multivariate random variable b = (b1, b2, . . . , bN ), where
the bi are independent and identically distributed random
variables with bi ∼ N (0, R2). Since we are interested in the
distances between two boundaries, we consider one sorted
realization of b, called s = (s1, s2, . . . , sN ) with s1 � s2 �
· · · � sN . Hence, we can define the distance between consec-
utive boundaries for one realization as z = (z1, z2, . . . , zN−1)
and zi = si+1 − si, and denote zmin the minimum of z. Because
zmin depends on the realization of b, there is a related random
variable Zmin. The dependence of the expectation value Zmin

on the number of spins N for different values of R is presented
in Fig. 6, where X indicates the expectation value for the
random variable X over different realizations of b. It can be
seen, that for an increasing number of spins, the mean minimal
distance decreases algebraically to zero with an exponent of
roughly N−2.05.

IV. RESULTS

In this section we present the main results, starting with
the single-spin and many-spin dynamics. Next we study the
transition to the thermodynamic limit, i.e., the transition from
the piecewise-smooth system with an increasing number of
spin-flip boundaries to the smooth system. Moreover, we
present some results on the fractal dimensions of the chaotic
attractors and take a look at the behavior of the magnetization
for an increasing number of spins. All numerical simulations
have been done by fixing the normalized eigenfrequency as
� = 1.0 and the damping ratio of the harmonic oscillator as
ζ = 0.05.

A. Single-spin dynamics

We start by investigating the dynamic behavior of the
system with one spin N = 1. We have calculated the largest
Lyapunov exponent and bifurcation diagrams for different
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FIG. 7. The system with one boundary at x = −0.6 shows a sen-
sitive dependence of the asymptotic solution on the initial conditions.
Black boxes (�) indicate chaos with a largest Lyapunov exponent
greater than zero, while the white boxes (�) correspond to periodic
behavior. The parameters are b1 = 0.6 and C = 1.65 in Eqs. (13) and
(16) for N = 1.

initial values q0 and v0. We have found multistablility in a var-
ious parameter ranges. According to Eqs. (13) and (16) with
N = 1, an exemplary basin of attraction for the parameters
b1 = 0.6 and C = 1.65 is presented in Fig. 7, where chaotic
solutions with a largest Lyapunov exponent greater than zero
and periodic solutions with vanishing Lyapunov exponent are
indicated by black and white boxes, respectively. One can
see the effects from the discontinuity at the position of the
spin flip q = −b1 = −0.6 and at v = 0, where the saltation
matrix has a singularity. Multistability can be observed for the
asymmetric case with b1 �= 0. In contrast, for b1 = 0 the spin
flip position would be equivalent to the equilibrium position
of the oscillator, and in this case no multistable behavior can
be observed.

A typical bifurcation diagram for the symmetric case (b1 =
0) is presented in Fig. 8. It shows the displacement of the
oscillator q(φ = 0) at the Poincaré section φ = 0 and the
corresponding Lyapunov exponent of the asymptotic solution.
The bifurcation diagram is generated with the fixed initial
conditions q0 = −1.0, v0 = 0.1 by varying the coupling pa-
rameter C. The system shows the typical scenarios, which are
known for piecewise-smooth square-root maps [59–61]. This
is in accordance with the actual square-root dependence of
the PDM and ZDM from Eq. (25) and Eq. (27) found for our
system. The three corresponding bifurcation scenarios, which
appear due to the discontinuity with degree of smoothness
one, are outlined by the three colored boxes in Fig. 8. The
green box demonstrates an overlapping period-adding cas-
cade, which in the case of decreasing values of C starts at
C∗ = 10. This is in agreement with the prediction we can
make by using the solution of the harmonic oscillator with
constant magnetization from Eq. (3). When starting at the left
side of the boundary q∗ = 0 we can calculate for large t the
maximum q values of the periodic orbit of the system. By
assuming that this orbit touches the boundary if qmax = q∗,

FIG. 8. Bifurcation diagram for the totally symmetric system
with N = 1 and b1 = 0. The system shows the bifurcation scenarios
expected from piecewise-smooth square-root maps, illustrated by
the different colored boxes (from left to right): immediate jump to
robust chaos ( ), period-adding with chaos ( ), and overlapping
period-adding cascade ( ).

we find a formula for C∗:

C∗ = 1

M

(
q∗ − 1√

κ

)
. (28)

For M = −1, q∗ = 0, and ζ = 0.05 we find C∗ = 10. The
blue box illustrates period adding with chaotic segments in
between, and the red box shows an immediate jump from
chaos again to a periodic solution. For a nonzero disorder
parameter b1 �= 0, in general, the qualitative behavior of the
bifurcations is similar to the bifurcations in the symmetric
case. However, in the asymmetric case b1 �= 0 the location
of the periodic windows and the chaotic regions can slightly
change depending on the specific initial condition. Moreover,
it is worth emphasizing that the system without discontinuity
(N = 0) does not show any chaos because it reduces to the
dynamics of a damped harmonic oscillator with periodic
excitation. This means that the origin of chaos in the system
with one spin is the piecewise constant magnetization that
jumps at the spin flip position.

B. Many-spin dynamics

For systems with a few number of spins the dynamic
behavior and the bifurcation diagrams look similar to the one
spin case, and only the number of discontinuities may be
different. However, if the number of spins is much higher
than one, the characteristic properties of the system change.
A bifurcation diagram and the corresponding Lyapunov ex-
ponent for a high number of spins N = 20 000 and a fixed
realization of bi is presented in Fig. 9. In this case and for
all following numerical calculations the degree of randomness
of the disorder is chosen as R = 1.7. First, we report that
the largest Lyapunov exponent λmax for the many-spin system
evaluated for chaotic regions is roughly two times larger than
λmax of the system with only one spin. This is not obvious,
because for an increasing number of spins the height of the
magnetization jumps at the boundaries goes to zero and the
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FIG. 9. Comparison of the bifurcation diagrams for the
piecewise-smooth system with N = 20 000 (�) spins and the system
in its thermodynamic limit (�). It can be seen that the typical grazing
scenarios (immediate jump to chaos and period-adding cascades)
vanish, whereas the main behavior is pretty similar.

saltation matrix converges to the identity. On the other hand,
the typical bifurcation scenarios from grazing (period adding,
immediate jump to chaos) vanish, which is also not obvious
because the number of boundaries and discontinuities is much
higher than for the one-spin system. This indicates that the
chaotic behavior arises only due to transversal intersections
with the boundaries. The dynamic properties of the system
with many spins are, in general, very similar to the dynamic
properties of the smooth system in the thermodynamic limit
(N → ∞). This can be seen, for example, by comparing the
bifurcation diagram and the maximum Lyapunov exponent of
the piecewise-smooth system with N = 20 000 spins and their
counterparts calculated from the smooth system, which are
presented by the red curves in Fig. 9. Overall both the black
curves for the piecewise-smooth system and the red curves for
the continuous system look very similar. But a more detailed
view (see Fig. 10) of the bifurcations for C ∈ [2, 3] shows that
the two diagrams are slightly different. This is due to the fact
that even for N = 20 000 the behavior of the system depends
to be noticeable on the actual realization of the disorder {bi}.
The same observation can be made in the comparison of the
chaotic attractors of the smooth and the piecewise-smooth
system, which are presented in Fig. 11. There are nearly no
differences in the macroscopic structure of the attractor, and
only small deviations can be seen at finer scales.

C. Transition to the thermodynamic limit

In the piecewise-smooth system with a finite number of
spins the origin of chaos lies in the discontinuity crossings,
whereas in the smooth system with an infinite number of
spins chaos comes from the nonlinearity in the additional
magnetic force. Nevertheless, for an increasing number of
spins the dynamics of the piecewise-smooth system converges
on macroscopic scales to the dynamics of the system in
the thermodynamic limit. In the following this transition is
studied in more detail.

FIG. 10. Zoom of the bifurcation diagram from Fig. 9. It can
be seen that besides the general similarities between the piecewise-
smooth system and the system in its thermodynamic limit there are
some differences in the actual behavior of the bifurcations. Mainly
this is because of the dependence of the dynamical properties of the
system for N = 20 000 on the actual realization of the local disorder
{bi}.

On the one hand, for increasing N the number of disconti-
nuities increases, but on the other hand simultaneously the in-
fluence of the discontinuities goes to zero, because the jump in
the magnetization �M at each discontinuity vanishes (�M →
0) and the saltation matrix X converges to the identity (X →
I) for N → ∞. To get an idea of the interplay between the
increasing number of boundaries and the decreasing influence
of an individual spin flip, we consider a small segment of the
attractor with length qg, which is divided by n boundaries.
For a very large number of spins, we can assume that the
location of the boundaries is homogeneously distributed in the
small segment with length qg, which means that the distance
between two boundaries can be approximately given by �q =
qg/n. Note that for Gaussian-distributed local disorder fields
of the RFIM the average distance �x still varies with the
location of the attractor segment in phase space. In addition,
we assume the velocity at the intersection to be 0 < v < ∞
for �M > 0, which is a valid assumption, because a positive
velocity leads to an increasing q and a positive �M. The
short-time Lyapunov exponents can be determined by

λi = 1

�t
ln |μi(XY)|, (29)

where �t = �q/v, μi(A) denotes eigenvalues of a matrix A,
and the matrices X and Y are the saltation matrix and the
fundamental solution of the harmonic oscillator for a time step
�t , respectively. They are given by

X =
(

1 0
1
v
C�M 1

)
, Y = exp

[(
0 1

−1 −2ζ

)
�t

]
. (30)

For very large N , �t is very small and the matrix exponential
in Y can be approximated via a linear Taylor approximation.
In this case, the Lyapunov exponents can be determined by

λ1/2 = Re

[
−ζ ±

√
C

�M

�q
+ ζ 2 − 1

]
. (31)
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FIG. 11. Comparison of the chaotic attractor ( ), Poincaré section ( ), and magnetization ( ). (a): The system in its thermodynamic
limit N → ∞. (b): The piecewise-smooth system with N = 20 000 spins and one specific disorder realization {bi}. Both systems are evaluated
for fixed coupling constant C = 3.5 and with the randomness set to R = 1.7.

For 1
C < �M

�q the short-time Lyapunov exponent is positive,
which means that, in general, chaotic behavior is possible.
Note that for an increasing number of spins the jump of the
magnetization �M = 2/N vanishes but simultaneously the
average distance �x between two jumps vanishes. The ratio
�M
�q converges to a positive constant specifying the average

density of discontinuities in the given attractor segment. A
high number of jumps and/or a high coupling constant C
increases the short-time Lyapunov exponent and, therefore,
the probability to observe chaos.

For the smooth system in its thermodynamic limit N → ∞
we can find a similar condition by linearizing the nonlinear
system Eq. (19) around a location q∗ on the attractor. In this
case, the corresponding short-time Lyapunov exponents at q∗
can be calculated from Eq. (29) by substituting the matrix
product XY with the matrix

Y∞ = exp

⎡
⎣

⎛
⎝ 0 1

−1 + C ∂M(q)
∂q

∣∣∣
q∗

−2ζ

⎞
⎠�t

⎤
⎦, (32)

leading to the two Lyapunov exponents

λ1/2 = Re

[
−ζ ±

√
C

∂M(q)

∂q

∣∣∣∣
q∗

+ ζ 2 − 1

]
. (33)

By comparing Eq. (31) and Eq. (33) it becomes clear that
the discrete magnetization jumps in one attractor segment
of the piecewise-smooth system translate into a continuous
increase of the magnetization in the smooth system, and
the short-time Lyapunov exponent depends on the slope of
the magnetization in this segment. By inserting the explicit
expression for the derivative of the magnetization derived
from the distribution of the local disorder of the spins, we
obtain the condition

1

C
<

√
2

πR2
e− q∗2

2R2 (34)

for a positive short-time Lyapunov exponent at q∗.
The behavior of the condition in Eq. (34) is illustrated

in Fig. 12. For C = 0, there are two Lyapunov exponents
λ1/2 = −ζ and no chaos is possible. For increasing C at

some point the term under the square root in Eq. (33) be-
comes positive and by further increasing C the dominant
exponent becomes positive. Thus, increasing C increases the
probability for observing chaos, which is clear because a
higher coupling constant C leads to a higher weighting of
the nonlinear magnetic force. At q∗ = 0, corresponding to
the position with the maximal density of boundaries, the
dominant short-time Lyapunov exponent has its maximum,
and the exponent decreases for an increasing |q∗|. This is clear
because the maximum slope of the nonlinearity in Eq. (19),
and therefore the largest influence of the magnetic force,
can be found at q∗ = 0, whereas for q∗ → ±∞ the slope
goes to zero and the dependence of the magnetization on the
oscillator position vanishes. The dependence of the short-time
Lyapunov exponent on the variance R2 of the local disorder
can be explained as follows. For a small R2 (large 1/R2 in
Fig. 12) most of the spin flips occur around q∗ = 0. There is
a large change of the magnetization around the equilibrium
position but only slight changes at other points, where the
density for spin flips is much lower. As a consequence the
short-time Lyapunov exponent is likely to be positive near
q∗ = 0 and becomes smaller and negative for increasing |q∗|.

FIG. 12. Phase diagram for the short time chaotic behavior of
the nonlinear system in its thermodynamic limit. The shaded areas
illustrate the region with a positive short-time Lyapunov exponent
at q∗.
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FIG. 13. (a) For an increasing number of spins the box count-
ing (red crosses) and the Kaplan-Yorke dimension (blue squares)
converge to the corresponding values of the smooth system (dashed
lines) in the thermodynamic limit (N → ∞). Here the coupling
strength equals C = 3.5 in Eqs. (16) and (19). (b) There is a linear
dependence of the difference between the mean of the fractal dimen-
sion and the corresponding limit value for increasing N , which can
be seen in a semi-log plot. Hence there is an exponential convergence
to the limit values.

In contrast, for a large variance R2 the changes of the density
for observing spin flips is low, and similarly the variations of
the magnetization for varying oscillator position are low. As
a consequence, a positive short-time Lyapunov exponent and
probably chaos can be found only for very high C but then in
a broad region around q∗.

D. Fractal dimensions of the chaotic attractor

Since the system can still produce chaos, even for an
infinite number of boundaries, it is natural to ask for the
dynamic properties of a typical chaotic attractor, which is
shown, for example, in Fig. 11. Hence we are interested
in the behavior of the box counting and the Kaplan-Yorke
dimension DBC and DKY [62,63]. Thus we calculated the mean
values of both dimensions DBC and DKY of the attractor for a
varying number of spins N by using 500 different realizations
of the local disorder {bi} at each value of N . The results
are shown in Fig. 13, where the coupling strength of the
magnetization is chosen as C = 3.5. One sees, that the mean
value of the box counting and the Kaplan-Yorke dimension
converges to the corresponding values of the smooth system
in its thermodynamic limit. The values of both dimensions for
the smooth system in its thermodynamic limit are given by
D∞

BC ≈ 1.56 and D∞
KY ≈ 1.54 (dashed lines in Fig. 13). The

limit values of the mean of both dimensions for the piecewise-
smooth system are D

∗
BC ≈ 1.52 and D

∗
KY ≈ 1.49, calculated

by using the mean of the last five fractal dimensions values
from N = 17 500 to N = 19 500. We also plotted D

∗ − D in
dependence on N , which is shown in the inset in Fig. 13.
We find, that DBC as well as DKY converges exponentially to
their limit values D

∗
BC and D

∗
KY. This supports the proposition,

that the piecewise-smooth system with a very large number of
spins behaves like a harmonic oscillator with an additional
nonlinear smooth external force and the piecewise-smooth

FIG. 14. The self-averaging parameter of the box counting and
Kaplan-Yorke dimension in dependence on the number of spins
appears to decrease exponentially to zero. Therefore the system
shows self-averaging with respect to these dynamical properties for
C = 3.5.

character vanishes. Note that the Kaplan-Yorke dimension
should be lower than the box-counting dimension according to
the theory of the dimensions of chaotic attractors [64], which
is also fully reflected by our simulations. Nevertheless the
question remains whether the variance of the fractal dimen-
sion of the chaotic attractor vanishes for a large number of
spins. To answer this question, we take a look at the coeffi-
cient of variation, also often called Self-Averaging Parameter
(SAP) [65], of the fractal dimension D of the attractor, which
is given by

SAP[D] = D2 − D
2

D
2 . (35)

Here, as before, the bar X denotes an average of X over
different realization of the quenched local disorder. The SAP
of the dimension was calculated for 500 disorder realizations
{bi} and a varying number of spins N and is presented in a
semi-log plot in Fig. 14. We find, that the SAP approaches
zero also roughly exponentially for N → ∞; hence, the sys-
tem shows self-averaging with respect to the box counting and
the Kaplan-Yorke dimension of the attractors. This means that
for a small number of spins the fractal dimension strongly
depends on the realization of the local disorder, whereas for a
large number of spins, this dependence vanishes. Thus, fractal
dimensions are self-averaging quantities and can be calculated
from one typical disorder realization of a large system.

E. Magnetization

Besides the investigation of the dynamic properties of
the system, the behavior of the magnetization of the RFIM
shows some interesting behavior. We numerically calculated
the variance of the magnetization

VAR[M] =
(

1

N

∑
i

〈σi〉
)2

− M
2

(36)

over 500 disorder realizations for two typical chaotic at-
tractors with C = 2.9 and C = 3.5. Here 〈σi〉 denotes the
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FIG. 15. For the attractor at C = 3.5 the variance of the magne-
tization goes algebraically to zero with N−1 for increasing number of
spins similar to Independent and Identically Distributed (iid) input of
the RFIM. In contrast, for C = 2.9 the variance does not vanish for a
large number of spins.

time-average of the configuration of the ith spin and M
denotes the average of the magnetization of the system over
the disorder realizations. In our case due to the symmetry in
the distribution of the disorder with respect to the oscillator
equilibrium, we have M = 0. The resulting variance is pre-
sented in Fig. 15. We found that for the attractor at C = 3.5
the variance vanishes for an increasing number of spins (green
circles). This is similar to the behavior, which can be found for
independent and identically distributed input of the RFIM (red
squares), which decreases algebraically to zero with N−1; this
is fully in accordance to the expected behavior of the variance
within the central limit theorem. In contrast, the magnetization
does not show self-averaging for the attractor at C = 2.9 (blue
triangles). In this case, the variance does not vanish for a
large number of spins. The reason for that can be explained
as follows. For C = 2.9, in general, many different attractors
show up, and it depends on the specific disorder realization,
which asymptotic state is reached by the system. For an
increasing number of spins the system mainly ends up in one
of two symmetric attractors, which are illustrated in Fig. 16
for N = 20 000. The time average of the magnetization for
the blue attractor ( ) is greater than zero, while the time

FIG. 16. (a): For C = 2.9 and N = 20 000 there exist two dif-
ferent typical attractors of the system illustrated by the red ( )
and blue ( ) dots. This explains the non-self-averaging behavior
of the magnetization. (b): The non-self-averaging behavior of the
magnetization is also reflected in the corresponding histogram by the
two main bars at M = ±0.2.

average of the red attractor ( ) is smaller than zero. The
distribution of the magnetization is roughly symmetric and
has two maxima at the positive and negative magnetization
corresponding to the blue and red attractors (see Fig. 16). As a
consequence, the variance of the magnetization does not go to
zero even for a large number of spins and, in general, depends
on the actual dynamics of the system.

V. CONCLUSION

Motivated by the phenomenon of complex hysteresis in
many dynamical systems, we studied the exemplary system of
a harmonic oscillator coupled to a simplified RFIM, where the
input and output of the RFIM is the oscillator position and the
magnetic force from the RFIM, respectively. We focused on
the piecewise-smooth character of the system and neglected
spin-spin interactions in the RFIM. In this case, each spin flips
at a fixed oscillator position, which is determined by the local
disorder parameter of the spins. These positions correspond to
parallel boundaries in the phase space. At the boundaries the
magnetic force jumps, whereas between the boundaries the
force remains constant and the system is smooth.

The dynamics of the system with only a small number of
spins is dominated by different grazing bifurcation scenarios,
which are typical for piecewise-smooth systems. Chaotic so-
lutions and multistability can be found already for the oscil-
lator coupled to only one spin. For a large number of spins,
the grazing bifurcation scenarios vanish, and the dynamic
behavior of the piecewise-smooth system is very similar to the
dynamic behavior of the smooth system in the thermodynamic
limit with infinitely many spins. This is not obvious because
the number of discontinuities increases. However, on the
other hand the changes of the magnetization per spin flip
decrease. As a result, the system becomes smoother, and in
the thermodynamic limit the system can be described by a
harmonic oscillator with a smooth nonlinear magnetic force.
The smooth system is also able to show chaos. The typical
box counting and the typical Kaplan-Yorke dimension of the
chaotic attractors of the piecewise-smooth system converge
to the corresponding dimensions of the smooth system in its
thermodynamic limit. The variance of the attractor dimension
vanishes for an increasing number of spins. This does not hold
for the magnetization because there is a bistability between
two symmetric attractors with a positive or negative average
magnetization.

In future work we will focus on the case which includes
spin-spin interactions. In this case hysteresis is possible in the
RFIM, that is, the internal state of the RFIM is not necessarily
determined only by the instantaneous oscillator position but
also by past values of the input. This means that the system
can still be treated as a piecewise-smooth dynamical system,
but the boundaries in phase space, which are associated with
the discontinuities due to a spin flip, are no longer fixed but
become a history-dependent dynamic quantity.
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