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Bifurcation analysis of a density oscillator using two-dimensional hydrodynamic simulation
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A density oscillator exhibits limit-cycle oscillations driven by the density difference of the two fluids. We
performed two-dimensional hydrodynamic simulations with a simple model and reproduced the oscillatory flow
observed in experiments. As the density difference is increased as a bifurcation parameter, a damped oscillation
changes to a limit-cycle oscillation through a supercritical Hopf bifurcation. We estimated the critical density
difference at the bifurcation point and confirmed that the period of the oscillation remains finite even around the
bifurcation point.
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I. INTRODUCTION

Limit-cycle oscillations often appear in various systems
with energy gain and dissipation. Heartbeat, circadian rhythm,
and firefly flashing are the famous examples in biological
systems [1–3]. Cyclic phenomena are also found in fluid sys-
tems such as geysers, thermohaline circulations, and the solar
cycle [4,5]. These limit-cycle oscillations in nature are often
complex because many factors are cooperated, and thus it is
difficult to understand the underlying mechanism. Therefore,
it should be a good approach to first understand the essential
mechanism of ideal systems and then address more complex
systems.

A density oscillator is an example of limit-cycle oscillators
in fluid systems, first reported by Martin in 1970 [6]. The
system consists of two different-density fluids put in two
fixed containers. The inner and outer containers are for the
higher- and lower-density fluids, respectively. The small hole
at the bottom wall of the inner container connects the two
fluids. In this system, the upstream of the lower-density fluid
and the downstream of the higher-density fluid alternately
occur through the hole in appropriate conditions. Owing to
the simplicity of the setup, a density oscillator has been in-
vestigated mainly in experiments [7–23]. In previous studies,
it has been reported that a density oscillator shows typical
characteristics of a limit-cycle oscillation such as orbital sta-
bility and synchronization among several oscillators [15–19].
In addition, some studies proposed theoretical models by
adopting the Navier-Stokes equation for each of the upstream
and the downstream in the hole. Steinbock and coauthors
derived the theoretical description of the critical water level
in the inner containers for the reversal of the downstream in
a two-dimensional system [20]. Kano and Kinoshita focused
on the intrusion of the different-density fluid in the hole
and proposed a model which explained the processes of the
upstream, the downstream, and the switching between them
in a unified manner [21,22].

In spite of intensive studies on the dynamics of the flow,
bifurcation structure by the change in parameters such as
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the hole size, the density difference between the two fluids,
and the viscosity of the fluids has not been investigated in
detail. To understand the dynamics of nonlinear systems,
it is important to interpret the dynamics qualitatively from
the viewpoint of bifurcation, where the qualitative behavior
of the system changes with a bifurcation parameter. Our
recent experiment suggested that the density oscillator shows
a supercritical Hopf bifurcation between the resting and os-
cillatory states depending on the density difference between
the two fluids [23]. However, we could not definitely iden-
tify the bifurcation class only from the experimental results
because the measurement of a small-amplitude oscillation
around a bifurcation point suffered from relatively large
error.

In order to address the identification of the bifurcation
structure, numerical simulation is useful since one can accu-
rately quantify the dynamics in various conditions. In general,
hydrodynamic simulation for a density oscillator has not been
performed because it is difficult to treat the free surface
which changes with time except for few studies: Okamura
and Yoshikawa carried out a three-dimensional hydrodynamic
simulation for a density oscillator with the free surface by
adopting the volume of fluid method [24]. In their study, they
considered essential factors in the system, e.g., the gradients
of pressure, viscosity, and gravity, and proposed that the
oscillation follows the Rayleigh equation. The simulation
parameters were fixed to perform costly calculations, and
the bifurcation structure remains as an open question. Using
such ordinary differential equations as the Rayleigh equation,
which were obtained by the reduction of the hydrodynamic
equation, mathematical analyses were performed and the type
of bifurcation was discussed [25,26]. However, the bifurcation
analysis directly based on the hydrodynamic equation has
not been performed so far, which should be important to
understand the actual dynamics of the density oscillator and
to discuss the validity of such reductions.

In the present study, we carry out a two-dimensional hydro-
dynamic simulation for a density oscillator. In the simulation,
we set the calculation area inside the fluid and associate the
change in the water levels with the pressure at the calculation-
area boundaries. Using this simple model, we obtain the time
series of the density profile and the water level. Then we
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investigate the detailed bifurcation structure depending on the
density difference between the two fluids.

II. MODEL

We carried out a two-dimensional hydrodynamic simula-
tion for a density oscillator. For the incompressible viscous
fluid, we use the Navier-Stokes equation and the equation of
continuity as governing equations,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + μ∇2v + ρg, (1)

∇ · v = 0, (2)

where ρ(r, t ) is the fluid density, v(r, t ) = (vx(r, t ), vy(r, t ))
is the fluid velocity, p(r, t ) is the pressure, μ is the fluid
viscosity, and g is the acceleration of gravity. Here r = (x, y)
is a positional vector. For a miscible two-phase fluid, we
define a normalized concentration c(r, t ) (0 � c � 1), where
c = 0 and c = 1 correspond to the lower- and higher-density
fluids, respectively. The density is described using c as

ρ(r, t ) = ρhigh + (ρlow − ρhigh )[1 − c(r, t )], (3)

where ρlow and ρhigh are the densities of the lower- and higher-
density fluids. The normalized concentration c satisfies an
advection-diffusion equation as

∂c

∂t
+ ∇ · (cv) = D∇2c, (4)

where D is a diffusion coefficient. We set D to be small, so
that the fluids hardly mix with each other [23].

Figure 1 shows the schematic drawing of a density oscilla-
tor, where the calculation area is set inside the fluid. We set the
origin of the Cartesian coordinates at the center of the hole and
define the area for the hole as −a � x � a,−b � y � b. The
calculation area is defined as −W � x � W,−b − Hlower �
y � b + Hupper. Inside it, the areas −W � x < −a,−b < y <

b and a < x � W,−b < y < b correspond to the bottom wall
of the inner container. We assume that the pressures at the
upper and lower boundaries of the calculation area, pupper (t )
and plower (t ), are determined by the water levels in the inner
and outer containers, yin and yout, as

pupper (t ) = ρhighg[yin(t ) − b − Hupper], (5a)

plower (t ) = ρlowg[yout (t ) + b + Hlower], (5b)

where g = |g|. Here we set the atmospheric pressure to be
zero. The change in the water level is determined by the
amount of the fluid flowing through the hole per unit time
Q(t ), which is calculated as

Q(t ) =
∫ a

−a
vy(x, b, t ) dx. (6)

Due to the incompressibility, the change in the water levels
can be directly obtained from Q as

dyin

dt
= Q

din
, (7a)

dyout

dt
= − Q

dout
, (7b)
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dout / 2
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FIG. 1. Schematic drawing of a density oscillator when an up-
stream occurs. The calculation area is denoted with the broken
rectangle, and the hatched area corresponds to the bottom wall of the
inner container. pupper (t ) and plower (t ) are the pressures at the upper
and lower boundaries of the calculation area, respectively. Q(t ) is the
amount of the fluid flowing through the hole per unit time. yin (t )
and yout (t ) are the water levels in the inner and outer containers,
respectively.

where din and dout are the widths of the inner and outer
containers, respectively, as shown in Fig. 1.

In this way, we associate the change in the water levels
with the pressure at the calculation-area boundaries and obtain
a simple model, where the free surface need not be directly
dealt with. A nonslip boundary condition for the velocity,
v = 0, and the Neumann boundary condition for the density,
∇⊥ρ = 0, are set for the surfaces of the bottom wall, where
∇⊥ represents the derivative in the normal direction. The
pressure at the surfaces of the bottom wall is determined so
that it satisfies the Navier-Stokes equation in Eq. (1). The
pressure at the upper and lower boundaries of the calculation
area follows Eqs. (5a) and (5b). The velocity, the pressure,
and the density at the other calculation-area boundaries also
follow the Neumann condition. At the initial state, the two
fluids are stationary (v = 0) and not mixed, where the concen-
tration is set as c = 0 (y < b) and c = 1 (y � b). The initial
pressure of the lower- and higher-density fluids, plow,0(x, y)
and phigh,0(x, y), are given as

plow,0(x, y) = ρlowg(yout (0) − y), (8a)

phigh,0(x, y) = ρhighg(yin(0) − y), (8b)

where yout (0) and yin(0) are the initial water levels in
the outer and inner containers, respectively. yin(0) is de-
termined by the gravitational equilibrium as yin(0) = b +
(ρlow/ρhigh )[yout (0) − b]. In the simulation, we represent the

042216-2



BIFURCATION ANALYSIS OF A DENSITY OSCILLATOR … PHYSICAL REVIEW E 101, 042216 (2020)

t = 43.5

bottom wall

(a)

)c()b(

c = 1

c = 0

44.5 45.5 46.5 t = 60 61 62 63

t = 42 46 50 54 58 62 66 70 74 78

)e()d(

FIG. 2. Snapshots of density profile (a–c) and velocity field (d, e) for �ρ = 0.2. (a) Typical time series of the oscillatory flow. (b, d)
Detailed time series of downstream. (c, e) Detailed time series of upstream. The hatched area corresponds to the bottom wall of the inner
container. The corresponding video named “density_oscillator.mp4” is available in the Supplemental Material [29].

surface height of the fluid in the outer container defined as

h(t ) = yout (t ) − yout (0), (9)

where the initial water level in the outer container yout (0) is
not relevant to the behavior of the fluid because only the time
derivatives of the water levels are included in the governing
equations in Eqs. (7a) and (7b).

To solve the Navier-Stokes equation [Eq. (1)] and the
equation of continuity [Eq. (2)], we used the Marker
and Cell method and calculated the velocity and the
pressure on a staggered grid [27,28]. We used an ex-
plicit method for the advection-diffusion equation [Eq. (4)]
to calculate the time evolution of c. Here we set the
time step dt = 0.0002, the spatial mesh dx = dy = 0.005,
and the parameters for the calculation area W = 0.4,
Hupper = Hlower = 0.55. The simulation parameters were set
as follows: μ = 1/300, D = 0.0001, g = 10, a = 0.03, b =
0.05, din = dout = 4.8, and yout (0) = 10.05. To investigate
the bifurcation structure, we changed the density difference
�ρ (= ρhigh − ρlow) as a bifurcation parameter, where we
fixed ρlow = 1 and varied ρhigh.

III. SIMULATION RESULTS

The snapshots of the density profile and the velocity field
for the density difference �ρ = 0.2 are shown in Fig. 2.
In one period, the downstream occurs (t = 43.5) and passes
through the lower boundary of the calculation area (t = 46.5).
After a while, the downstream becomes weaker and changes
to the upstream (t = 60). Then the upstream grows and passes
through the upper boundary of the calculation area (t = 63).
The upstream becomes weaker and changes to the down-
stream again. In this way the limit-cycle oscillation consisting

of the upstream and the downstream occurs with a period of
∼30.

Figure 3 shows the changes in the surface height in the
outer container h. Figure 3(a) shows a relaxation oscilla-
tion in which h asymptotically approaches the two heights
alternately. As the density difference decreases, the wave-
form around the peaks changes as shown in Fig. 3(b).
The system does not exhibit a relaxation oscillation but
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FIG. 3. Time series of h for (a) �ρ = 0.2, (b) �ρ = 0.1,
(c) �ρ = 0.05, and (d) �ρ = 0.025.
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FIG. 4. Trajectories in a phase space of h and Q for (a) �ρ =
0.2 (0 � t � 200), (b) �ρ = 0.1 (0 � t � 200), (c) �ρ =
0.05 (0 � t � 600), and (d) �ρ = 0.025 (0 � t � 600).

exhibits a harmonic-like oscillation as shown in Fig. 3(c).
In addition to the waveform change, the amplitude of the
oscillation decreases, and the period increases. For the smaller
density difference, the oscillation gets damped as shown in
Fig. 3(d). Figure 4 shows the trajectories in a phase space of
h and the flow rate through the hole Q, which corresponds
to −doutdh/dt . For �ρ = 0.2, 0.1, and 0.05, the trajectory
converges to a closed orbit, suggesting that the system exhibits
a limit-cycle oscillation as shown in Figs. 4(a)–4(c). For
�ρ = 0.025, the trajectory converges to a fixed point, and
the system shows a damped oscillation as shown in Fig. 4(d).
These results reveal that a density oscillator shows bifurcation
from the resting to oscillatory states depending on the density
difference �ρ.

To obtain the amplitude and the period of the oscillation of
h for each �ρ, we detected the instances with Q = 0 and set
the ith instance as ti (i = 1, 2, . . . ). t0 was set to be 0 since
Q = 0 in the initial condition. The nth period was defined as
Tn = t2n − t2n−2 and the nth amplitude was defined as An =
[|h(t2n−1) − h(t2n−2)| + |h(t2n−1) − h(t2n)|]/4 (n = 1, 2, . . . ).
Then we defined the amplitude A and the period T as A =
(A4 + A5)/2 and T = (T4 + T5)/2, since An and Tn for n =
1, 2, and 3 were not used to avoid the initial value dependence.
Figure 5 shows the amplitude A and the period T of the
oscillation of h for 0.02 � �ρ � 0.2. It should be noted that
the system for �ρ = 0.025 exhibits a damped oscillation as
shown in Figs. 3(d) and 4(d), and thus the region of �ρ plotted
in Fig. 5 reflects the behaviors for �ρ in the both sides of the
bifurcation point. With a decrease in the density difference,
the amplitude steeply decreases to zero for �ρ � 0.03, which
suggests the existence of a bifurcation point �ρc as shown in
Fig. 5(a). The period is large especially around the bifurcation
point, while it clearly remains finite and does not diverge as
shown in Fig. 5(b). Since the resting state changes to the oscil-
latory state with a finite period according to the increase in the
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FIG. 5. Bifurcation diagram of the density oscillator. (a) Ampli-
tude A and (b) period T of the oscillation of h depending on �ρ.
Each inset shows the expanded area from �ρ = 0.02 to �ρ = 0.04.

density difference as a bifurcation parameter, the bifurcation
is classified into the supercritical Hopf bifurcation.

IV. DISCUSSION

The simulation results show that a density oscillator ex-
hibits the supercritical Hopf bifurcation with the change in
the density difference as a bifurcation parameter. In Fig. 5(a)
we evaluated the amplitude from the finite-time behaviors. In
general, the convergence to a fixed point or a limit cycle takes
long time around the bifurcation point. Thus, the amplitude
A calculated only from A4 and A5 could have a larger value
than the amplitude of a limit cycle for �ρ � �ρc and 0 for
�ρ � �ρc. Here we investigate the behavior of the amplitude
and the period around the bifurcation point in detail, and we
estimate the critical density difference at the bifurcation point
�ρc. Figures 6(a)–6(d) show the changes in the surface height
in the outer container h for �ρ = 0.027, 0.028, 0029, and
0.03 around the bifurcation point. Due to the slow conver-
gence, we could not determine whether the system shows a
limit-cycle oscillation or a damped oscillation only from the

0060

0060

0060

0060

t

t

t

t

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

10
3  h

(a)

(b)

(c)

(d)

31 52 4

0.03 0.027

0

0.8

0.4

n

|A
n -

 A
n+

1| 
/ A

n

(f)

(e)

n

10
4  A

n

200 400

200 400

200 400

200 400

0 2 4 6 8 10
0

2

4

6

0

0.028
0.029

0.025
0.026

10
3  h

10
3  h

10
3  h

FIG. 6. Time series of h for (a) �ρ = 0.03, (b) �ρ = 0.029,
(c) �ρ = 0.028, and (d) �ρ = 0.027. (e) Change in the amplitude
An plotted against n for �ρ = 0.03 (•; black), 0.029 (◦; red), 0.028
(�; green), 0.027 (�; cyan), 0.026 (�; blue), and 0.025 (�; magenta).
(f) Damping rate |An − An+1|/An plotted against n for each �ρ. The
symbols correspond to those in (e).
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and the period around �ρc. (a) Squared amplitude A2 depending on
�ρ and linear fitting with the three values �ρ = 0.03, 0.031, and
0.032. (b) Period T depending on �ρ − �ρc.

apparent waveforms within a finite duration. To judge the
types of the oscillation, we check the time evolution of the nth
amplitude An for each �ρ as shown in Fig. 6(e). An should
converge to a nonzero value for a limit-cycle oscillation and
to 0 for a damped oscillation as a long-time behavior. We also
evaluate a damping rate |An − An+1|/An as shown in Fig. 6(f).
It should converge to 0 for a limit-cycle oscillation and to a
nonzero value for a damped oscillation under the following
assumption; if we assume the amplitude of a linear damped
oscillation represented by A(t ) = A(0)e−γ t , a damping rate
is calculated as |An − An+1|/An = 1 − e−γ T , where γ is a
damping coefficient. A damping rate converges to a nonzero
value between 0 and 1 because the period T has a constant
value. The results shown in Figs. 6(e) and 6(f) suggest that the
system exhibits a limit-cycle oscillation for �ρ � 0.03 and a
damped oscillation for �ρ � 0.027, and there is a bifurcation
point between them.

It is known that the amplitude of the oscillation for the
supercritical Hopf bifurcation follows the scaling of (�ρ −
�ρc)1/2 [30]. Figure 7(a) shows the squared amplitude A2

plotted against �ρ and the linear fitting by a least squares
method with the three values �ρ = 0.03, 0.031, and 0.032,
which belong to �ρ for a limit-cycle oscillation close to the
bifurcation point. For �ρ � 0.033, the values of A2 gradually
deviate from the linear fitting. The region of the linear fitting
close to the bifurcation point means that the amplitude A
increases from 0 with the scaling of (�ρ − �ρc)1/2. We
estimate �ρc = 0.0288 from the intersection of the linear
fitting and A2 = 0. Figure 7(b) shows the period T plotted
against �ρ − �ρc, where �ρc is estimated in Fig. 7(a). The
slope of the period changes at around the bifurcation point
�ρ = �ρc, and the period has finite values for �ρ � �ρc as
well as �ρ � �ρc, which corresponds to the behavior of the
supercritical Hopf bifurcation.

The simulation result agrees well with our previous ex-
perimental result, where pure water and a sodium chloride
aqueous solution were adopted as the lower and higher den-
sity solutions, respectively [23]. Actually, we obtained the
bifurcation diagram in Fig. 5 qualitatively consistent with that
obtained from the experiment, where the amplitude increased,
and the period decreased, according to the increase in the
density difference above the bifurcation point. The ampli-
tude increased from the bifurcation point approximately with
the scaling of (�ρ − �ρc)1/2 both in the simulation and in

the experiment. Leaving the region close to the bifurcation
point, these systems exhibited slightly different behaviors. In
Fig. 7(a) the values of the squared amplitude A2 gradually
deviated downward from the linear fitting with an increase in
the density difference, whereas they deviated upward in the
experimental result. Despite the difference in the behaviors far
from the bifurcation point, it is notable that the simulation and
experimental results exhibited the same bifurcation structure
in the region around the bifurcation point.

Here we discuss the validity of the two-dimensional simu-
lation compared with the three-dimensional experimental sys-
tem. It is expected that the fluid amount flowing through the
hole and the resistance inside the hole in the two-dimensional
system are quantitatively different from those in the three-
dimensional system. In spite of these quantitative differences,
bifurcation structures in the both systems can be discussed in
the same framework as follows. The existence of a critical
density difference is interpreted from the competition between
the diffusion and advection of the solute. To evaluate the
critical density difference �ρc in the experiment, we con-
sidered the Rayleigh number Ra = (gL3�ρ/ρ)/(νD), where
L is a characteristic length, and ν = μ/ρ is the kinematic
viscosity of the fluid. We adopted Ra ∼ 103, which is typical
for Rayleigh-Bénard instability, and the estimated value of
�ρc agreed well to the experimental result [23]. The critical
density difference is estimated also by the simulation param-
eters: g = 10, L ∼ 0.1, μ = 1/300, and D = 0.0001. Here
we use the length scale of the hole size as L. The estimated
value �ρc ∼ 0.03 approximately agrees with the order of the
estimation by the simulation result in Fig. 7(a). The above
discussion from the viewpoint of the transport phenomenon
suggests that the bifurcations between the resting and oscilla-
tory states originate from the same mechanism, regardless of
the difference in dimensionality.

In previous studies, the ordinary differential equations
reduced from a hydrodynamic equation were often adopted
as simple mathematical models for the density oscillators,
and the detailed bifurcation structures for the mathematical
model have been investigated. For example, Aoki proposed a
model with a nonlinear frictional term and claimed that the
system has three fixed points. He investigated the stability
of each point depending on the bifurcation parameter, which
accelerates the fluid velocity around the orifice, and discussed
the bifurcation structure [25]. Kenfack et al. also derived the
piecewise-smooth ordinary differential equations and claimed
that the system exhibits the nonconventional Hopf bifurca-
tion by varying the resistance coefficient, determined by the
viscosity and the geometry of the orifice, as a bifurcation
parameter [26,31]. It is difficult to directly discuss the cor-
respondence between their models and our simulation result
because their bifurcation parameters are essentially different
from ours, i.e., the density difference. We guess that their
results on the detailed bifurcation structure may come from
the assumption or approximation in the reduction processes.

In an actual density oscillator, the higher- and lower-
density fluids mix, and the amplitude and the equilibrium
height changes with time. In our model, we assume that the
density in the outside of the calculation area is constant.
Strictly, it should not be constant because the different-density
fluid goes through the calculation boundaries. Considering
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that only the derivative of yout (t ) is important and the absolute
value of yout (t ) does not matter owing to Eqs. (7a) and (7b),
the size outside of the calculation area can be set arbitrarily.
Therefore, our model can be regarded as an ideal system in
which the mixing effect between the higher- and lower-density
fluids is negligible independently of the choice of yout (0).

V. CONCLUSION

We carried out a two-dimensional hydrodynamic simu-
lation for a density oscillator using a simple model asso-
ciating the change in the water levels with the pressure at
the calculation-area boundaries. Using this simulation, we
clarified that a density oscillator shows supercritical Hopf
bifurcation between a damped oscillation and a limit-cycle
oscillation depending on the density difference �ρ. We con-
firmed that the amplitude increases from 0 with the scaling
of (�ρ − �ρc)1/2, and the period has a finite value at the

bifurcation point estimated from the scaling of the amplitude.
The simulation of a density oscillator can be useful for the
investigation of other phenomenon in density oscillators such
as synchronizations and phase responses. The present study
will contribute to further understanding of the nonlinear phe-
nomenon in oscillators in fluidic systems, as well as a density
oscillator.
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