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Synchronization is a very generic phenomenon which can be encountered in a large variety of coupled
dynamical systems. Being able to synchronize chaotic systems is strongly dependent on the nature of their
coupling. Few attempts to explain such a dependency using observability and/or controllability were not fully
satisfactory and synchronizability yet remained unexplained. Synchronizability can be defined as the range of
coupling parameter values for which two nearly identical systems are fully synchronized. Our objective is here to
investigate whether synchronizability can be related to the main rotation necessarily required for structuring any
type of attractor, that is, whether synchronizability is significantly improved when the coupling variable is one
of the variables involved in the main rotation. We thus propose a semianalytic procedure from a single isolated
system to discard the worst variable for fully synchronizing two (nearly) identical copies of that system.
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I. INTRODUCTION

In electronics, the phenomenon of synchronization has
been investigated since at least the 1920s in coupling nearly
identical valves [1], triodes [2], Audions [3–5], or feedback
oscillator circuit driven by oscillations with a frequency close
to the natural frequency of the former [6,7]. It was later
extended to microwave oscillators [8]. Such a phenomenon
became the subject of an other types of works when Pecora
and Carrol considered the synchronization of two identical
coupled chaotic systems [9]. Synchronization then became
a topic in itself [10–13], and many applications of this phe-
nomenon were investigated in various fields [14–17].

In Pecora and Caroll’s paper, it was noted that two Lorenz
systems were synchronized when they were bidirectionnally
coupled by variables x or y [9]. They also obtained synchro-
nized Rössler systems when they coupled them via variable
y. The fact that the stability of the synchronous dynamics—as
assessed by the master stability function [18]—was strongly
dependent on the coupling variable led to the introduction of
different classes of synchronization [19] as we will discuss
later. When two nearly identical oscillators are coupled, there
is a range in their parameter values for which the two fre-
quencies are exactly the same (this was already defined in
these terms in Ref. [4]): They are synchronized. The larger
the range, the easier it is to synchronize the systems.

The easiness or the robustness to reach synchronization
is strongly dependent on the nature of the coupling between
the systems. In general words, such a synchronizability would
characterize (quantify?) our ability to get a synchronous dy-
namics. If there are many ways to characterize the synchro-
nization quality [11,20–22], then it is still an open question to
explain why some coupling variables provide a better “syn-
chronizability” than others. It was shown that observability,
that is, assessing the possibility to distinguish different states

of the original state space by using a space reconstructed
from some measured variables, could contribute to explain
synchronizability [23] but it was recently shown that it cannot
fully explain it [24] and neither can controllability [25].

Our aim was thus to develop a way to assess the synchro-
nizability directly from a single system (without prior numer-
ical simulations requiring coupled systems) whose governing
equations (the ordinary differential equations in the present
work) are known. More specifically, we will propose a method
to discard the variable not providing a robust synchronization.
Since the phase is known to be one of the main ingredients
for getting a good synchronization [23,26–28], it constitutes
a natural “dynamical component” to consider for explaining
why some variables are better than other for synchronizing
dynamical systems. The idea is thus to look for the variables
associated with the main rotation structuring the (chaotic) at-
tractor which are strongly related to the phase of the dynamics.
We will also investigate whether the symbolic observability
coefficients as introduced in Refs. [29,30] are useful for
preselecting the optimal variable for synchronizing systems.
Since we showed that synchronization only weakly depends
on parameter values (see Fig. 2 in the work by Letellier
and Aguirre [23]), the results here obtained for a specific set
of parameter values remain valid for a large domain of the
parameter space.

The subsequent part of this paper is organized as follows.
Section II introduces how we identify the plane associated
with the main rotation. Symbolic observability coefficients
and master stability functions are then briefly introduced. Five
three-dimensional systems (Lorenz 63, Lorenz 84, Rössler 76,
Rössler-Ortoleva, and Hindmarsh-Rose) are explicitly treated
in Sec. III. In Sec. IV, the relationship between synchroniz-
ability and observability is investigated. It show also how the
numerical procedure performs with respect to the analytical
one. Section V provides some conclusions.

2470-0045/2020/101(4)/042215(11) 042215-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3603-394X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.042215&domain=pdf&date_stamp=2020-04-29
https://doi.org/10.1103/PhysRevE.101.042215


CHRISTOPHE LETELLIER PHYSICAL REVIEW E 101, 042215 (2020)

II. THEORETICAL BACKGROUND

A. The main rotation

Let us assume a dynamical system

ẋ = f p(x), (1)

where x ∈ Rm is the state vector and f p(x) the vector field
depending on a set of parameters p. We will consider in
this paper two identical systems coupled by a bidirectional
dissipative linear coupling, that is,

ẋ1 = fx(x1) + ρx(x2 − x1)

ẏ1 = fy(x1) + ρy(y2 − y1)

ż1 = fz(x1) + ρz(z2 − z1)

ẋ2 = fx(x2) + ρx(x1 − x2)

ẏ2 = fy(x2) + ρy(y1 − y2)

ż2 = fz(x2) + ρz(z1 − z2), (2)

where a single coupling coefficient ρc (c ∈ {x, y, z}) is
nonzero. Our objective is to discard the variable providing the
most difficult full synchronization.

In most of the cases, an attractor is structured, in the
state space, around singular points of the saddle-focus type,
the focus being unstable. When there is no singular point,
it was shown that a singularity was present, with a trans-
verse stability associated with an unstable singular point [31].
Chaotic attractors are always structured by a spiralling struc-
ture combined with a switch mechanism, even when there
is no singular point [32]. An obvious example is provided
by homoclinic chaos [33–35]. In this case, there is clearly
a two-dimensional (unstable or stable) manifold associated
with a spiralling structure. This would correspond to a pair
of singular points with complex conjugated eigenvalues with
positive real parts. In that case, the spiral diverges from
the singular point but there are few exceptions as the cord
attractor [36].

Since the phase is a key characteristics for assessing
the type of synchronization, our objective is to investigate
whether the osculating plane of the spiral structuring the
attractor coud be useful to discriminate various qualities of
synchronizability offered by the variables of the system. By
definition, the two variables spanning this plane must have the
information about the phase of the dynamics, an information
which is required for a full synchronization [23,26–28,37].
These two variables should be then preferred for coupling
the systems to synchronize. When two rotations are involved
for structuring the attractor, as observed in the Rössler sys-
tem when the dynamics is non phase-coherent [38], there is
one primary rotation acting during most—if not all—of the
revolution in the attractor while the secondary one (associ-
ated with the reinjection mechanism required for producing
chaotic dynamics [32]) is only active during a fraction of this
revolution (this will be more detailed in Sec. III A with the
Rössler system).

For three-dimensional systems, it is therefore required to
choose among the three possible planes (x-y, x-z, or y-z)
the one that is the most parallel to the osculating plane of
the primary rotation. We would like to do this by analytical
computations, directly from the algebraic structure of the

governing equations. When the algebraic complexity of the
system becomes too large for these computations, we will
propose a numerical evaluation.

Let us start with the analytical approach for identifying the
variables spanning the main rotation. It is based on the set
of 1-regular points introduced for describing the structure of
systems without any singular point [31]. For m-dimensional
dynamical systems, the 1-regular points are defined by van-
ishing m − 1 derivatives. Let designate by Si the set of 1-
regular points for which only the ith derivative is nonzero.
Along set Si, a stability analysis based on the Jacobian matrix
is performed in the plane defined by the null derivatives
to determine the “transverse” stability. Rotation and torsion
are associated with a set of complex conjugated eigenvalues.
The main torsion will be associated with the set Si whose
most of it has a transverse stability characterized by complex
eigenvalues.

When the algebraic structure of the system is too compli-
cated (high-dimensional, high-order nonlinearity or rational
terms), this analytical approach quickly leads to inextricable
computations. In this case, we propose to use a simple numer-
ical technique to determine the main plane of rotation and thus
to discard the variable not providing a good synchronizability.
A possible way to characterize a spiral (roughly a circular
motion with a drifting radius) is to consider that the distance
between the trajectory and the singular point surrounded by
the attractor is more or less constant. Let be

r(t ) =
√

(u j − u∗
j )

2 + (uk − u∗
k )2 (3)

the radius of the spiral evaluated in the two-dimensional plane
u j-uk where the singular point surrounded by the attractor
has coordinates u∗

j and u∗
k . We assumed that when the plane

u j-uk is the best approximation of the rotation plane, the cor-
responding mean derivative ṙ is the smallest. The numerical
derivative ṙ is computed at each time step (using a Euler
scheme) and averaged along a trajectory made of at least 20
revolutions. It thus allows to select the plane associated with
the main rotation.

B. Symbolic observability coefficients

Since it was previously attempted to make a link between
synchronizability and observability [23], we will investigate
whether these two concepts are actually related. In order to
do that, we will use the symbolic observability coefficients ηi.
Observability is related to the possibility to distinguish differ-
ent states in the original state space by only measuring some
of its variables [39]. In short, the coordinate transformation �s

between the original state space R3(x) and the “reconstructed”
space R3(X ) spanned by the “measured” variable s and its first
two derivatives provides a full observability of R3(x) when

Det J�s (x) �= 0 (∀x ∈ R3) (4)

(see Refs. [39,40] for more details). The “yes-or-no” answer
provided by such a criterion was extended by introducting
observability coefficients [41] which can be computed using
a symbolic approach (see Refs. [29,30] for more details).
These observability coefficients can be viewed as the prob-
ability that the trajectory representative of the system evolu-
tion is out of the neighborhood of the singular observability
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manifold defined by DetJ�s (x) = 0 [42]. When the symbolic
observability coefficient ηs = 1, there is a full observability
(the determinant DetJ�s (x) never vanishes). Contrary to this,
when ηs = 0, no state of the original state space can be
observed. Typically, a good observability is provided when
ηs > 0.75 [24].

C. Master stability functions

In order to investigate the synchronizability of dynamical
systems, Pecora and Caroll introduced the concept of master
stability function (MSF) [18] which gives a necessary (but
not sufficient) condition under which a specific coupling
(network) configuration leads to a synchronous evolution for
a particular (local) oscillator dynamics. Typically, two iden-
tical systems ẋ = f (x) can be synchronized when the largest
Lyapunov exponent �s characterizing the variational equation

ζ̇ = [J f (xs) − μJh(xs)]ζ (5)

is negative. In Eq. (5), ζ are the eigenvectors of the coupling
matrix, J f is the Jacobian matrix of the system considered, Jh

is the Jacobian matrix of the measurement function h, and μ

is the normalized coupling parameter [18]. which is related to
ρs according to ρs = μ

2 when two system are coupled. From
the number of zeros of the master stability functions, three
classes of synchronization were introduced [19]. As discussed
in Ref. [24], these classes can be defined as follows:

(i) Class I (one zero) corresponds to a MSF remaining
negative for any μ > μm, meaning that the networked systems
can be synchronized for any coupling strength greater than a
threshold value μm;

(ii) Class II (two zeros) corresponds to a MSF being nega-
tive within a range μ ∈ [μm; μM], meaning that there is a finite
interval for the coupling strength for which the networked
systems can be synchronized;

(iii) Class III (no zero) corresponds to a MSF remaining
positive for any μ value, meaning that the networked systems
can never be synchronized for any coupling strength.

The three classes are thus numbered from the easiest
configuration for getting synchronzation (class I) to the most
difficult one (class III).

III. RESULTS

Five three-dimensional systems whose dynamics are very
different were used for testing our procedure for discarding
the worst coupling variable to fully synchronize dynamical
systems. We only reported the analysis of the set of 1-regular
points which can be associated with rotation.

A. The Rössler system

The Rössler 76 system [43],

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c), (6)

produces a chaotic attractor characterized by a one-
dimensional three-modal map for a = 0.520, b = 2, and
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FIG. 1. Three-modal chaotic attractor produced by the Rössler
system. The sets Sy (red) and Sz (blue) are also plotted in the x-y
and y-z planes, respectively. Parameter values: a = 0.520, b = 2, and
c = 4.

c = 4 (Fig. 1). It is structured around two singular points

S± =

∣∣∣∣∣∣∣

x± = az±
y± = −z±

z± = c±√
c2−4ab
2a

. (7)

S− is the point at the center of the divergent spiral associated
with the main rotation of the attractor: its eigenvalues are

λ− =
∣∣∣∣∣
0.190 ± 0.962i

−3.580 .
(8)

The second singular point S+ is not surrounded by the attrac-
tor and is characterized by the pair of complex conjugated
eigenvalues

λ+ =
∣∣∣∣∣
−0.092 ± 2.842i

0.425
. (9)

It is active during the nonlinear switch [38].
The set Sx—defined by ẏ = ż = 0 and ẋ �= 0—is associ-

ated with the eigenvalues λ1 = a and λ2 = x − c. The y-z
plane cannot therefore be associated with the main rotation.
The set

Sy =
∣∣∣∣∣
x = c + b

y

z = −y
(10)

is associated with the eigenvalues

λ± = b +
√

b2 + 4y3

y
, (11)

which are complex conjugated when y3 < b2

4 , that is, when
y < −1 for b = 2. This spiralling structure of the flow is
clearly associated with the auxiliary rotation responsible for
the nonlinear switch. The set

Sz =
∣∣∣∣
x = a

z = −y
(12)

is associated with the eigenvalues

λ± = a + √
a2 − 4

2
(13)
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FIG. 2. Master stability functions �s(μ) versus the normalized
coupling parameter μ computed for Rössler 76 systems successively
coupled via each of their three variables. Same parameter values as
in Fig. 1.

which are complex conjugated when |a| < 2, a condi-
tion always holding when there is a chaotic attractor (a ∈
[0.386; 0.556] with b = 2 and c = 4 as detailed in Ref. [38]).
The x-y plane is nearly parallel to the main spiralling structure
of the flow, that is, to the two-dimensional unstable man-
ifold of the saddle-focus point around which is structured
this attractor [38]. Variable z should therefore be discarded
for synchronizing Rössler systems since it does not contain
information on the phase of the main rotation.

The master stability functions (Fig. 2) are such as variable
y provides a class I synchronization, variable x a class II

synchronization and variable z a class III synchronization.
Our analysis thus correctly rejected the worst variable for
synchronizing Rössler systems.

B. The Lorenz 84 system

In 1984 Edward Lorenz proposed a simple model for the
global atmospheric circulation [44]. It is governed by the set
of three differential equations

ẋ = −y2 − z2 − ax + aF

ẏ = xy − bxz − y + G

ż = bxy + xz − z (14)

producing the chaotic attractor (Fig. 3) with a toroïdal struc-
ture. This system is weakly dissipative [45]. This attractor is
structured around a single singular point S whose coordinates
are x = 8, y = −0.007, and z = 0.03. This is a saddle-focus
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FIG. 3. Chaotic attractor produced by the Lorenz 84 system (14).
The set Sx is plotted as a thick red curve in the x-y plane. The y-z
plane projection evidences the main rotation driving the dynamics.
Parameter values: a = 0.28, b = 4, F = 8, and G = 1.

FIG. 4. Master stability functions for identical Lorenz 84 system
successively coupled by each of their three variables. Same parame-
ter values as in Fig. 3.

point characterized by the eigenvalues

λ =
∣∣∣∣∣
7.00 ± 31.99 i

−0.280
. (15)

The singular set

Sx =
∣∣∣∣∣
y = − G(x−1)

(x−1)2+b2x2

z = − bGx
(x−1)2+b2x2

(16)

is always defined since (x − 1)2 + b2x2 never vanishes. The
corresponding eigenvalues λ± = x − 1 ± i bx are complex
conjugated until x �= 0. This means that the flow is always
rotating in the y-z plane with the exception of the plane
defined by x = 0 which corresponds to the plane where the
rotation is inverted (clockwise for x < 0 and anticlockwise for
x > 0). The main rotation is therefore associated with the y-z
plane and variable x has no information about its phase. It
should be avoided for synchronizing Lorenz 84 systems. Due
to the large number (n = 6) of nonlinear terms, the Lorenz 84
system has singular sets Sy and Sz, which are too complicated
to be easily investigated here.

According to the master stability functions (Fig. 4), all
variables provide class II synchronization. Nevertheless, the
more negative the master stability function, the easier the
synchronization. In the case of a coupling via variable x, the
master stability function is only slightly negative compared
to the two other ones. Lorenz 84 systems do not present
robust synchronization against noise contamination or dif-
ferences between the two systems. Contrary to this, when
ρy ∈ [2.1; 7.9] and ρz ∈ [2.1; 8.9], the master stability func-
tion is strongly negative (class II synchronization) and a full
synchronization is easily obtained in both cases. These master
stability functions thus confirm our rejection of variable x for
synchronizing Lorenz 84 systems.

C. The Lorenz 63 system

We now consider the Lorenz 63 system [46]

ẋ = σ (y − x)

ẏ = Rx − y − xz

ż = −bz + xy, (17)

which is equivariant under a Rz rotation symmetry around the
z axis [47]. This global property of the system is crucial to
consider for synchronization because symmetries are known
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FIG. 5. Chaotic attractor produced by the Lorenz 63 system (17).
The singular set Sx is plotted as a thick red line in the two plane
projections. Parameter values: σ = 10, b = 8/3, and R = 28.

to be responsible for a lack of synchronization [23]. Indeed,
variable z is left invariant under the rotation symmetry and
cannot allow a full synchronization, mainly because it has no
information about the wing which is visited.

The Lorenz attractor is structured around three singular
points, the origin of the state space S0 and two symmetry-
related singular points,

S± =

∣∣∣∣∣∣∣∣

±√
b(R − 1)

±√
b(R − 1)

R − 1

, (18)

which are saddle-focus points associated with eigenvalues

λ± =
∣∣∣∣∣
0.094 ± 10.19i

−13.85
(19)

for the parameter values R = 28, σ = 10, and b = 8
3 . In this

case, the so-called Lorenz attractor is obtained (Fig. 5). These
two saddle-focus points are the two points surrounded by the
flow.

The singular set

Sx ≡
∣∣∣∣∣
y = bRx

b+x2

z = xy
b

(20)

is associated with the eigenvalues

λ± = −(b + 1) ±
√

(b − 1)2 − 4x2

2
, (21)

which are complex conjugated when |x| > b−1
2 , that is, for

|x| > 1.154. Most of the attractor is therefore associated with
a spiralling structure in the y-z plane. The domain for which
there is no rotation corresponds to the switch from one wing
to the other. When the trajectory remains in a given wing, it is
mainly driven by this rotation. The singular set Sy and Sz are
associated with real eigenvalues and cannot induce a spiralling
structure.

The set Sx is associated with the main rotation and variable
x must be therefore avoided for synchronizing Lorenz 63 sys-
tems. Variable z can be discarded with symmetry arguments.
Variable y is thus the best one for synchronizing Lorenz 63
systems. The master stability functions for identical Lorenz 63
systems are shown in Fig. 6. Variable z is the worst coupling

FIG. 6. Master stability functions �s(μ) versus the normalized
coupling parameter μ computed for Lorenz systems successively
coupled via each of their three variables.

variable (class II synchronization with a very small negativity)
for synchronizing Lorenz 63 systems. Variable x provides a
class I synchronization but with a small negativity: The syn-
chronization is therefore not robust. If it is actually possible to
synchronize through variable x two identical Lorenz systems,
this is not the case when there is a parameter mismatch
as shown in Fig. 7. This result shows that variable x does
not provide a robust synchronization and is clearly not a
recommendable choice.

This confirms our rejection of variable x for coupling
Lorenz 63 systems since it does not have information about
the main rotation of the flow. In addition to that, variable
z is rejected for symmetry reasons. Variable y is associated
with a class I synchronization with a strongly negative master
stability function.

D. The Hindmarsh-Rose system

Another atypical system is the Hindmarsh-Rose system.
Originated from the Hodgkin-Huxley model [48] that Richard
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FIG. 7. Two different Lorenz systems coupled through variable
x (a) and y (b). R1 = 28 and R2 = 91, σ = 10, and b = 8

3 . The
synchronization is partial (only the coupled variables are fully syn-
chronized, the two others do not fluctuate within the same range) in
case (a) while there is a full synchronization in case (b).
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2 ,

r = 0.001, and I = 3.318.

FitzHugh replaces with a second-order differential equation
[49], Hindmarsh and Rose added a third equation to limit the
neuron firing [50]. The resulting model is

ẋ = I + y − z + bx2 − ax3

ẏ = c − y − dx2

ż = r[s(x − Xc) − z], (22)

where x is the membrane potential, y the recovery variable
(quantifying the transport of sodium and potassium through
fast ion channels), and z an adaptation current which gradually
hyperpolarizes the cell (it corresponds to the transport of
other ions through slow channels). A chaotic attractor can be
(Fig. 8) produced by system (22). With the parameter values
used in Fig. 8, there is a single singular point

S =

∣∣∣∣∣∣∣

−0.563

−0.586

4.219

, (23)

which is characterized by real eigenvalues. It is neither sur-
rounded by the attractor nor associated with complex conju-
gated eigenvalues. It is therefore not associated with the main
rotation.

The set Sx is associated with real eigenvalues. The second
singular set,

Sy =
∣∣∣∣
y = ax3 − bx2 + s(x − Xc) − I

z = s(x − Xc)
, (24)

is associated with the eigenvalues

λy = 2bx − 3ax2 − r ±
√

(2bx − 3ax2 + r)2 − 4rs

2
, (25)

which are complex conjugated when |x| < 0.021 with the
parameter values used in Fig. 8, that is, far from the attractor
[since z > 6 according to Eq. (24)]: It cannot be responsible
for the main rotation. The last singular set,

Sz =
∣∣∣∣
y = c − dx2

z = −ax3 + (b − d )x2 + c + I
, (26)

FIG. 9. Master stability functions �s(μ) versus the normalized
coupling parameter μ for the Hindmarsh-Rose systems successively
coupled via each of their three variables. Parameter values as in
Fig. 8.

is associated with the eigenvalues

λz = 2bx − 3ax2 − 1 ±
√

(2bx − 3ax2 + 1)2 − 8dx

2
, (27)

which are complex conjugated when 0.036 < x < 1.353, that
is, during most of the main oscillation (left panel in Fig. 8).
This singular set is therefore responsible for the main rotation
which is thus parallel to the x-y plane. Variable z can be there-
fore discarded for synchronizing Hindmarsh-Rose systems as
confirmed by the master stability functions (Fig. 9) since �z

is always positive.

E. The Rössler-Ortoleva system

With Peter Ortoleva, Rössler proposed the system [51]

ẋ = ax + by − cxy − (dz + e)x

x + K1

ẏ = f + gz − hy − jxy

y + K2

ż = k + lxz − mz, (28)

producing a chaotic attractor [Fig. 10(a)] which has a very
different topological structure than the previous ones. It is
characterized by a unimodal map with a cusp at its maximum
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FIG. 10. Unimodal torn chaotic attractor produced by the
Rössler-Ortoleva system (28). The three singular points in the neigh-
borhood of the attractor are also shown (red points). Parameter
values: a = 33, b = 150, c = 1, d = 3.5, e = 4815, f = 410, g =
0.59, h = 4, j = 2.5, k = 2.5, l = 5.29, m = 750, K1 = 0.010, and
K2 = 0.010.
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FIG. 11. Master stability functions �s(μ) versus the normalized
coupling parameter μ computed for Rössler-Ortoleva systems suc-
cessively coupled via each of their three variables. Parameter values
as in Fig. 10.

[Fig. 10(b)]. This is a characteristic signature of an attractor
with a tearing mechanism (and not a folding, as observed in
the Rössler attractor) [52]. For the parameter values used in
Fig. 10, there are seven singular points, but only three of them
are in the neighborhood of the attractor. They are

S1 =

∣∣∣∣∣∣∣

141.83

12.61

−8.93

, S2 =

∣∣∣∣∣∣∣

143.16

13.04

−0.34

, and S3 =

∣∣∣∣∣∣∣

118.02

28.77

0.02

. (29)

Their corresponding eigenvalues are

λ1 =

∣∣∣∣∣∣∣

25.9

−2.4

−6.9

, λ2 =

∣∣∣∣∣∣∣

19.7

6.8

−3.3

, and λ3 =
∣∣∣∣∣
0.1 ± 7.9i

−125.7
, (30)

respectively. Point S3 is the single one being surrounded by
the flow: It is a saddle-focus point.

The two rational terms in the first two equations of system
(28) prevent a successful analysis of the singular sets of
1-regular points, the equations being too complicated to be
handled. We therefore need to use the numerical approach
based on the computation of the radial derivatives ṙ. We
retained point S3 as the center for computing them. The mean
radial derivatives in the plane projections are ṙxy = 108, ṙxz =
551, and ṙyz = 502. The smallest one is clearly ṙxy, which thus
indicates that the x-y plane is nearly parallel to the main rota-
tion [confirmed by Fig. 10(a)]. Variable z should be therefore
avoided for synchronizing Rössler-Ortoleva systems.

This is in agreement with the master stability functions
(Fig. 11) since variable z offers a class III synchronization,
contrary to variable x and variable y which offer class I and
class II synchronization, respectively. We therefore correctly
discarded the worst variable (variable z). According to the
master stability function, variable x should be preferred for
synchronizing Rössler-Ortoleva systems.

IV. SYNCHRONIZABILITY VERSUS OBSERVABILITY

The symbolic observability coefficients were computed
according to the procedure developed in Refs. [30,53] and
reported in Table I with the mean radial derivative. The
variable discarded for each system, either according to the
analytical procedure and/or the numerical one, is also pro-
vided. First, there is a perfect agreement between the analyt-
ical and the numerical procedures, with the exception of the

TABLE I. Mean radial derivatives for the five systems here
investigated. The values in bold correspond to the main rotation
plane when determined using the singular set of 1-regular points.
The analytical procedure was not possible for the Rössler-Ortoleva
system. Discarded variable and symbolic observability coefficients
ηX are also reported.

System Discarded ṙ ηX

Rössler 76 ṙyz = 2.03 ηx3 = 0.88
ṙxz = 2.78 ηy3 = 1.00

z ṙxy = 1.18 ηz3 = 0.44

Lorenz 84 x ṙyz = 0.88 ηx3 = 0.78
ṙxz = 1.08 ηy3 = 0.36
ṙxy = 1.05 ηz3 = 0.36

Lorenz 63 x ṙyz = 20.2 ηx3 = 0.78
ṙxz = 42.4 ηy3 = 0.36
ṙxy = 34.7 ηz3 = 0.36

Hindmarsh-Rose ṙyz = 0.25 ηx3 = 0.25
ṙxz = 0.11 ηy3 = 0.56

z ṙxy = 0.25 ηz3 = 1.00

Rössler-Ortoleva ṙyz = 502 ηx3 = 0.36
ṙxz = 551 ηy3 = 0.46

z ṙxy = 108 ηz3 = 0.56

Hindmarsh-Rose system for which the variability in the os-
cillations is poorly seen in the x-z plane due to the tiny
range in which evolve variable z. Second, in most of the
cases, the variable providing the greatest observability must be
discarded for synchronizing systems. This feature completes
our result: A good synchronizability is not necessarily, if not
rarely, associated with a full observability. This means that
distinguishing different states is very different from determin-
ing the phase of the main rotation.

V. CONCLUSION

It is still an open question to determine what were the
main ingredients for synchronizability. We here checked that
the variables spanning the main rotation of the attractor were
the best to use for getting a full synchronization. For three-
dimensional systems, we proposed here two possible proce-
dures for discarding the variable which does not provide easily
a full synchronization between (nearly) identical systems. The
first procedure is purely analytical and is based on the concept
of singular sets of 1-regular points whose transverse stability
is associated with complex conjugated eigenvalues when they
are driving the main rotation of the flow. The corresponding
plane is thus spanned by the variables having information
about the phase of the dynamics. The relevant role of the sets
of 1-regular points in the structure of attractors is also here
confirmed; they appear as a very useful and complementary
concept to singular points.

For the 5 three-dimenisonal systems we investigated, we
correctly discarded the worst variable from the candidate
variables for synchronizing systems. For the four algebraically
simple three-dimensional systems, this was performed using
the analytical approach. The complexity of the fifth system,
imposed to use a numerical procedure based on the estimation
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of the radial derivative (the derivative along the curvature
axis). When the system has a single timescale (when this is
not a slow-fast system), the numerical procedure was reliable
for discarding the worst variable for synchronizing oscillators.
All these results were in agreement with the master stability
functions and showed that information about the phase is the
key ingredient for synchronizing systems. In the Appendix,
we applied our procedures to 2 four-dimensional systems. The
numerical approach seems to have strong limitations when
there are more than one single rotation or when the main rota-
tion is investigated in a higher-dimensional space. When there
are not too many nonlinearities in the governing equations, the
analytical approach remains valid. As for three-dimensional
systems, too many nonlinear terms prevent successful applica-
tion. Nevertheless, when it is possible to perform the analysis,
we confirmed that the information about the phase associated
with the main rotation is the key ingredient indeed.

Observability provided by the coupling variable is in fact
a marginal property for assessing the synchronizability of
coupled systems. As observed for observability, assessing
synchronizability does not depend too much on the dynamics
but is rather a structural property mainly depending on the
algebraic structure of the governing equations. Rather than the
present yes-or-no approach, it would be useful to develop an
index in the unit range for assessing synchronizability. This is
currently under consideration.

The synchronizability of discrete system is very different in
nature and would require a very specific procedure. Typically,
a discrete system can be considered as the first-return map to
a Poincar section of a continuous flow: The main rotation is
therefore removed from the problem. Consequently, a specific
approach has to be designed for discrete systems.
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APPENDIX: TWO FOUR-DIMENSIONAL SYSTEMS

To provide some indications about the potential applicabil-
ity of our technique to higher-dimensional models, we here
investigate two very different four-dimensional systems.

1. The Tang system

Let us start with the Tang system [54]

ẋ = a(y − x) + yz

ẏ = b(x + y) − xz

ż = cx − dz + yw

ẇ = ey − f w + xz, (A1)

which has four nonlinear terms. For the retained parameter
values, ths system is not hyperchaotic since its attractor is
characterized by a single Lyapunov exponent [55]. This is
confirmed by the six plane projections of the attractor (Fig. 12)
and the first-return map to a Poincaré section which is a
slightly foliated bimodal map (not shown).

x

y

x

z

x

w

y

z

y

w

z

w

FIG. 12. The six plane projections of the attractor produced by
the Tang system (A1). Parameter values: a = 55, b = 25, c = 40,
d = 13, e = 23, and f = 8. Initial conditions: x0 = 0, y0 = 1, z0 =
0, and w0 = 1.

This system has two singular points,

S0 =

∣∣∣∣∣∣∣∣∣

x0 = 0

y0 = 0

z0 = 0

w0 = 0

and S∗ =

∣∣∣∣∣∣∣∣∣

x∗ = 1.03

y∗ = 52.77

z∗ = 1301.53

w∗ = 319.85

. (A2)

Point S∗ is too far from the attractor to have any influence on
its structure. Point S0 is associated with the eigenvalues

λ0 =

∣∣∣∣∣∣∣

12.30 ± i 1316

−7.27

−13.32

; (A3)

this is a saddle focus which could govern the main rotation.
We computed the sets of 1-regular points but most of them

were too complicated to be correctly investigated. Only the set
Sz leads to eigenvalues with quite simple expression, that is,

�z =
∣∣∣∣∣∣

b±
√

4[ab+(b−a−z) z]+b2

2

− f
. (A4)

These eigenvalues are not associated with a rotation when
ρ− < z < ρ+ where

ρ± = b − a ±
√

(a + b)2 + b

2
.

With the parameter values here retained, this means that this
set Sz is associated with a complex conjugated eigenvalues
when z /∈ [56.9; 26.9]. This set cannot be associated with the
main rotation.

We then computed the radial derivatives in each plane
projection and got

ṙxz = 2264 ṙyw = 1201

ṙxy = 1690 ṙxw = 1091

ṙzw = 1548 ṙxy = 706.

If we consider that the x-z plane projection can clearly not
correspond to the main rotation, then the two projections
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FIG. 13. Master stability functions �s(μ) versus the normalized
coupling parameter μ computed for the modified Rössler hyper-
chaotic systems successively coupled through each of their four
variables. Same parameter values as in Fig. 12.

offering the smallest radial derivatives are the plane x-w and
x-y (Fig. 12). The x-w plane projection does not provide a
clear representation of the main rotation as the y-z projection,
for instance. Consequently, the three plane projections for
which one of the coordinates is x can be rejected. We therefore
quite reliably discard variable x for synchronizing the Tang
system.

This is confirmed by the MSF plotted in Fig. 13: Variable
x is clearly a variable which cannot allow a full synchroniza-
tion. We have no argument for rejecting variable z. In fact,
a lag synchronization [56] (τ = 0.039 s) is obtained with
this variable, which could explain why this variable is not
easily discarded. From my point of view this variable has
information on the phase but it is delayed. Variable y and w

allows full synchronization.
Due to the four nonlinear terms, all variables are providing

a poor observability since

ηw4 = ηz4 = 0.20 > ηx4 = ηy4 = 0.15.

Such poor observability does not prevent a robust synchro-
nization through variable y.

2. The modified Rössler hyperchaotic system

The second four-dimensional system is the modified
Rössler hyperchaotic system [57]

ẋ = −y − z

ẏ = x + (a − 1)y + w

ż = b + xz

ẇ = x + (a − d − 1)y − cz + (d + 1)w , (A5)

which produces a hyperchaotic attractor (Fig. 14). For the
retained parameter values, the system has two singular points,

S± =

∣∣∣∣∣∣∣∣∣

x± = ±5.408

y± = ±0.555

z± = ∓0.555

w± = ∓4.992

. (A6)

Only the point S− is surrounded by the attractor. More or less
as for the three-dimensional Rössler system [38], the point
S− is responsible for the divergent spiral, and the point S+ is

x

y

x

z

x

w

y

z

y

w

z

w

FIG. 14. The six plane projections of the hyperchaotic attrac-
tor produced by the modified Rössler hyperchaotic system (A5).
Parameter values: a = 0.25, b = 3, c = 0.5, and d = 0.05. Initial
conditions: x0 = −10, y0 = −6, z0 = 0, and w0 = 10.1.

associated with the nonlinear switch. Their eigenvalues are

λ− =

∣∣∣∣∣∣∣

0.056 ± i 1.00

0.097

−5.573

and λ+ =

∣∣∣∣∣∣∣

0.043 ± i 0.97

5.268

0.109

,

respectively. Point S− is a saddle-focus point and point S+ is
an unstable node-focus point.

The set of 1-regular points are quite complicated but their
eigenvalues can be often extracted. The set Sx has real eigen-
values (d, x, a) which cannot be associated with a rotation.
Set Sy is associated with the eigenvalues

λy =
∣∣∣∣∣

x±√
x2−4z
2

d + 1
.

The first two can be complex conjugated when z > x2

4 : As
shown in Fig. 14 (x-z plane projection), this corresponds to the
domain where the nonlinear switch is active. These complex
conjugated eigenvalues are thus associated with the secondary
rotation [left part of the attractor shown in the x-z plane
projection. The set Sz of 1-regular points has for eigenvalues

λz =
∣∣∣∣∣

a±√
a2−4
2

d
,

FIG. 15. Master stability functions �s(μ) versus the normalized
coupling parameter μ computed for the modified Rössler hyper-
chaotic systems successively coupled through each of their four
variables. Same parameter values as in Fig. 14.
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which are always complex conjugated for the retained pa-
rameter values. This set is clearly associated with the main
rotation. The set Sw is too complicated to be treated.
The probability for having complex conjugated eigenval-
ues over the whole state is very low. This analysis there-
fore leads to associate set Sz with the main rotation and
to discard variable z for synchronizing them. The present
theory cannot do better than discarding the worst vari-
able. Radial derivatives, computed in the six plane pro-
jections, do not provide useful information; they are even
misleading.

Using the MSF shown in Fig. 15, variable z cannot allow
synchronizatin of two copies of this hyperchaotic system. For
now, there is no agreement to discard variables x and y which
cannot provide neither full synchronization nor any other
type of synchronization. As for the Rössler systems, there
is a relationship between synchronizability and observability
since

ηx4 = ηy4 = 0.79 > ηw4 = 0.50 > ηz4 = 0.44 ,

that is, the variable offering the poorest observability does not
allow us to synchronize two hyperchaotic systems (A5).
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