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Spatiotemporal dynamics of a buoyancy-driven turbulent fire
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We numerically study the spatiotemporal dynamics and predictability of a buoyancy-driven turbulent fire. A
significant transition from order to disorder structures can be observed from the mean degree in the spatial
horizontal visibility graph. The gravitational term (baroclinic torque term) in the vorticity equation has a
significant impact on the formation of the order (disorder) structure in the near field (far field). The entropy
flow transport from temperature to flow velocity fluctuations is predominant near the interface between hot
combustion products and ambient air. The transfer entropy is an important measure for determining the
predictability of flow velocity fluctuations in the near field obtained by reservoir computing.
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I. INTRODUCTION

The complex coupling of hydrodynamic convective flow,
heat-mass diffusion, and a rapid chemical reaction generates
various remarkable flame front instabilities, leading to the
emergence of intriguing spatiotemporal chaos during com-
bustion. Buoyancy-driven flame puffing, which is widely ob-
served in fire dynamics, is an important class of flame front
instability in diffusion flames. A whole flow field forming
open diffusion flames predominately comprises two gases: hot
combustion products (low-density gas) behind the flame front
and cold ambient air (high-density gas). The buoyancy-driven
Kelvin–Helmholtz-type instability destabilizes the interface
between the two gases, resulting in the formation and trans-
port of a toroidal vortex [1–3]. The strong interference of the
toroidal vortex with the flame front deforms the flame con-
figuration and eventually produces self-sustained flame front
oscillations with large amplitudes owing to unstable density
stratification, i.e., the Rayleigh–Taylor instability mechanism
[4]. These processes significantly contribute to the onset,
growth, and development of a buoyancy-driven turbulent fire
[5]. Note that the formation of a nonlinear global mode, which
originates from a local absolute instability in the near field,
plays an important role in the dynamics of flame puffing
during a turbulent fire [6–8]. Thus far, many experimental and
numerical studies on buoyant plumes and pool fires have re-
vealed the spatial distributions of the instantaneous and time-
averaged flow velocity [9–15], vorticity [14,16,17], tempera-
ture [4,10–12,14–18], and turbulent statistics [10–12,15,19],
including the characterization of the dominant oscillation
mode based on the empirical correlation in terms of the
Strouhal number, the Froude number, the Richardson number,
and the Reynolds number [4,9,17,18,20–25].

Nonlinear time series analysis integrating chaos the-
ory and fractal theory makes it possible to distill the
determinism hidden in complex systems and provides an over-

*Corresponding author: gotoda@rs.tus.ac.jp

arching understanding and interpretation of the underlying
dynamics. It has been widely applied to the dynamic behavior
of various flame front instabilities [26–30] and thermoacoustic
combustion instabilities [31–40]. However, clarification of
the spatiotemporal dynamics of a buoyancy-driven turbulent
fire using nonlinear time series analysis still remains un-
certain. Our recent numerical computations of a buoyancy-
driven turbulent fire [41,42] have shown the formation of
two important dynamical states in flow velocity and tempera-
ture fluctuations in the near and far fields. The former state
is a low-dimensional deterministic chaos state in the near
field dominated by the unstable motion of toroidal vortices,
whereas the latter state is a high-dimensional chaos state in
the far field forming a well-developed turbulent plume. The
existence of these dynamical states was clearly shown by
the multiscale entropy-causality plane [43] in terms of sta-
tistical complexity. We have also demonstrated the suitability
of permutation entropy [44] in terms of symbolic dynamics
for quantifying the randomness of flow velocity fluctuations,
proposing an empirical correlation consisting of the mean
permutation entropy and the Froude number [45].

Our main interests in this study are threefold: (i) deeper
understanding of the spatiotemporal dynamics during a
buoyancy-driven turbulent fire gained from graph networks,
(ii) elucidation of the mutual interaction of flow velocity and
temperature fluctuations on the basis of information theory,
and (iii) prediction of flow velocity fluctuations using machine
learning. These points are challenging subjects and have yet
to be tackled in the field of fire physics and science. Graph
networks consisting of vertexes and edges, which appear in
real-world complex systems, are useful for understanding the
topological structures in complex spatiotemporal dynamics.
We first adopt the spatial horizontal visibility graph [46]
for flow velocity fluctuations, and we attempt to clarify the
physical link between the mean degree in the networks and
the buoyancy-driven terms in the vorticity equation. The trans-
fer entropy [47] incorporating directed information transport
enables us to quantify the mutual interactions between two
variables. We estimate the transfer entropy for flow velocity
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and temperature fluctuations. Machine learning is becoming
a useful method for solving various problems in physics. For
example, it has been used as a tool to develop new combustion
control technologies [48,49]. Recently, a machine learning
called reservoir computing has been introduced, which is
a new approach to recurrent neural networks. An effective
method of reservoir computing, i.e., echo state networks, has
been proposed by Jaeger and coworkers [50–52] and has been
applied to nonlinear time series prediction [53–55]. In the
final part of this paper, we explore the predictability of flow
velocity fluctuations using echo state networks.

This paper comprises four sections. A brief description
of the numerical computation and the methodological frame-
work of nonlinear time series analysis is given in Sec. II. We
present the numerical results and discussion in Sec. III. A
summary is provided in Sec. IV.

II. NUMERICAL COMPUTATION AND NONLINEAR
TIME SERIES ANALYSIS

A. Numerical computation

In this study, we adopt nonlinear time series analysis
for the numerical data of a spatiotemporal structure in a
buoyancy-driven turbulent fire obtained by large-eddy simula-
tion [41,42]. Note that the numerical data for 28 s are analyzed
after passing the initial transient in the numerical simula-
tion. The governing equations for describing the spatiotem-
poral structure in the turbulent fire, the discretization method
of the governing equations, and the boundary conditions
are the same as those in previous studies [41,42]. We consider
the mass conservation equation, the momentum conservation
equation, the energy conservation equation, and the chemical
species equations as the governing equations. The Smagorin-
sky subgrid-scale model is adopted for the viscous stress in
the momentum conservation equation. We also consider a
global single-step irreversible chemical reaction, a mixture
fraction combustion model, and a low-Mach-number flow.
The computational domains in the x, y, and z directions are set
to 2.0, 2.0, and 4.0 m, respectively. Methane gas is supplied
from a square center area with dimensions of 1 m × 1 m.

B. Nonlinear time series analysis

The horizontal visibility graph proposed by Luque et al.
[56] serves as a bridge between the dynamical state in time
series and networks and has been utilized to treat nonlin-
ear dynamics of various flame front instabilities [29,42] and
thermoacoustic combustion instabilities [57–59]. Lacasa and
Iacovacci [46] have recently proposed a methodolgoy for
constructing a horizontal visibility graph in an instantaneous
two-dimensional spatial field. In this study, we focus on
the spatial horizontal visibility graph as a possible way of
extracting the topological structure hidden in flow velocity
fluctuations from the viewpoint of graph networks. The trans-
formation from the spatial data to the networks follows the
original horizontal visibility graph algorithm [56]. Two nodes,
w(xi, zi ) and w(x j, z j ), in the networks are connected by links

if the following geometrical criterion is satisfied:

w(xi, zi ),w(x j, z j ) > w(xn, zn) (i < n < j). (1)

Here, w(x, z) is the streamwise flow velocity on the x-z plane.
Except for the target grid i, grid j corresponds to any of the
grids along the horizontal, vertical, and diagonal directions in
the two-dimensional spatial field. In this study, we estimate
the mean degree 〈k〉 in the x direction.

Recurrence plots [60], which are constructed on the basis
of distances between all pairs of points in a phase space, are
two-dimensional representations suitable for extracting hid-
den order and disorder pattern structures in the phase space,
and capture the dynamical changes to chaos via bifurcations.
Thus far, various recurrence plots (e.g., cross recurrence plots
and joint recurrence plots) have been proposed, and a compre-
hensive overview of recurrence plots is given by Marwan et al.
[61], including recurrence quantification analysis. Recurrence
plots incorporating rank-order patterns in time series on the
basis of Bandt and Pompe’s concept [44], referred to as
symbolic recurrence plots (SRPs), are very useful for dealing
with the similarity of two dynamical states in relation to
synchronization phenomena [62]. We examine the similarity
of flow velocity and temperature fluctuations using SRPs. The
adjacency matrix of SRPs consisting of Ri j is obtained as

Ri j =
{

1 πD
w′ (ti ) = πD

T ′ (t j ),
0 otherwise.

(2)

Here, πD
w′ (ti ) [πD

T ′ (t j )] denotes the rank-order patterns of w′
(T ′) and D is the embedding dimension. In this study, we
estimate the recurrence rate SRR representing the density on
the diagonal in SRPs:

SRR = 1

N − (D − 1) − |τ |
N−(D−1)−|τ |∑

i=1

Ri j, (3)

where j is set to i + τ for the estimation of SRR in the diagonal
direction. SRR starts to increase as w′ and T ′ reach similar
dynamical states.

The transfer entropy proposed by Schreiber [47] is a
useful measure for quantifying the directed information flow
between two variables in spatially extended systems. We
estimate the transfer entropy to clarify the mutual interaction
of flow velocity and temperature fluctuations. The quantity of
information flowing from T ′ to w′ with time delay τ , denoted
as SE ,T ′→w′ , is defined as Eq. (4) using the Kullback–Leibler
divergence:

SE ,T ′→w′ =
N−τ∑
i=1

p
[
w′(ti+τ ), wk

i , Tl
i

]
log

p
[
w′(ti+τ )

∣∣wk
i , Tl

i

]
p
[
w′(ti+τ )

∣∣wk
i

] ,

(4)

where SE ,T ′→w′ (SE ,w′→T ′) is the transfer entropy in the
direction from T ′ to w′ (w′ to T ′); wk

i = [w′ (ti ),w′
(ti−1), . . . , w′ (ti−k+1)] and Tl

i = [T ′(ti), T ′(ti−1), . . .,
T ′(ti−l+1)]; p[w′(ti+τ ), wk

i , Tl
i ] is the joint probability of

w′(ti+1), wk
i , and Tl

i ; and p[w′(ti+τ )|wk
i ] is the conditional

probability of w′(ti+τ ) given wk
i . As in a previous study [63],
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we set k = l = 1 and τ = 1. p[w′(ti+1), wk
i , Tl

i ] is expressed
by the joint probability using the kernel estimation [47]:

p[w′(ti+1),w′(ti ), T ′(ti )]

= 1

N − 1

N−1∑
i′=1

�

⎡⎣r −
∣∣∣∣∣∣
w′(ti′+1) − w′(ti+1)

w′(ti′ ) − w′(ti)
T ′(ti′ ) − T ′(ti )

∣∣∣∣∣∣
⎤⎦, (5)

�(z) =
{

1 (z � 0),
0 (z < 0).

(6)

Here, � is the Heaviside function.
Reservoir computing has recently attracted much attention

as a sophisticated and promising model-free predictor [54].
We introduce reservoir computing with the aim of predicting
complex streamwise flow velocity fluctuations. A reservoir
computer consists of three layers: an input layer, a reservoir,
and an output layer. We employ echo state networks as the
simplest form of the reservoir, and we update the reservoir
state r(ti ) during the training phase of the reservoir computer
using

r(ti + �t ) = (1 − α)r(ti ) + α tanh[Wr(ti ) + Winu(ti )]. (7)

Here, u(ti ) is the input vector, Win is the weighted matrix
between the input layer and the reservoir, and W is the
Dr × Dr adjacency matrix of the reservoir network. The initial
states of the weighted matrix are given by a random matrix.
The matrix elements of W range from −1 to 1 subject to
a uniform distribution, and Dr is set to 1000. W includes a
sparse random matrix with 200 000 nonzero components. α

is the leakage rate corresponding to the update speed of the
reservoir dynamics and is varied from zero to unity [64]. After
updating the reservoir, the output vector v(ti ) is obtained by
linear mapping of r and u:

v(ti ) = Wout

(
u(ti )
r(ti )

)
. (8)

Here, Wout is the weighted matrix between the output layer
and the reservoir. This process is repeated for the learn-
ing steps, where 0 � i � n. Tikhonov–Arsenin regularization
[65] is employed to optimize Wout so as to minimize the error
between v(ti ) and the training data vd (ti ):

Ŵout = vd sT (ssT + βI)−1. (9)

Here, s is the matrix that is represented as follows:

s =
(

u(t0) u(t0 + �t ) · · · u(tn)
r(t0) r(t0 + �t ) · · · r(tn)

)
. (10)

β is a regularization coefficient and I is the identity
matrix. We set u(ti ) = [b; T ′(ti ); w′(ti )], vd (ti ) = [T ′(ti +
�t ); w′(ti + �t )], and β = 1 × 10−6. In accordance with a
recent study [66], we adopt u(ti ) = [b; T ′(ti ); w′

predict (ti )] for
the prediction steps, and we finally obtain v(ti ) = [T ′

predict (ti +
�t ); w′

predict (ti + �t )]. Note that, as in Ref. [66], b is set to
unity.

III. RESULTS AND DISCUSSION

Figure 1 shows the temporal evolution of the mean degree
〈k〉 in the spatial horizontal visibility graph. 〈k〉 periodically

FIG. 1. Temporal evolution of the mean degree 〈k〉 in the spatial
horizontal visibility graph.

fluctuates with a frequency of approximately 2 Hz at z ∼
0.5 m corresponding to the near field, accompanying the emer-
gence of the primary hub in the networks. Unstable toroidal
vortex rings are periodically produced in the continuous flame
zone in the near field owing to the buoyancy-driven hydro-
dynamic shear layer instability between the hot combustion
products and the cold surrounding air [41]. The dominant
frequency of 〈k〉 corresponds to that of the unstable vortex
rings. This indicates that the appearance of the order structure
in 〈k〉 can be attributed to the formation of the unstable vortex
rings. As the unstable vortex rings travel downstream owing to
the upward buoyant force, they become significantly distorted
and break down into vortices with various scales and strengths
in an intermittent luminous zone [5], leading to the loss of
the periodic structure in 〈k〉. The coalescence and breakdown
of the vortices aperiodically occur in the far field forming a
fully developed turbulent plume [41]. The periodic structure in
〈k〉 vanishes at z ∼ 3.0 m, corresponding to the far field. The
complex and strong vortex interaction in the far field generates
irregularity in the links in the networks, resulting in the ap-
pearance of the disorder structure in 〈k〉. The important point
to emphasize here is that the buoyancy-driven hydrodynamic
shear layer instability and the subsequent Rayleigh–Taylor
instability give rise to an interesting transition from an order
to disorder structure in the links in the networks constructed
from streamwise flow velocity fluctuations. These results also
show that the mean degree in the spatial horizontal visibility
graph is a useful network measure for understanding the subtle
dynamic behavior of a turbulent fire.

The vorticity transport gives us a physical understanding
and interpretation of the dynamics of vortical structures dur-
ing buoyant jet diffusion flames, and its importance has been
numerically studied using the vorticity equation [67]. We here
discuss the order and disorder structures in the mean degree
in the networks during a buoyancy-driven turbulent fire by
examining the vorticity transport using the following vorticity
equation:

Dω

Dt
= (ω · ∇)v − ω(∇·v) + 1

ρ2
(∇ρ × ∇p)

+ 1

ρ2

ρa

Fr
(∇ρ × g) + ∇ ×

(
1

ρ
∇ · τ

)
. (11)
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FIG. 2. Spatial distribution of mean values of (a) the baroclinic
torque term and (b) the gravitational term estimated from the cross-
streamwise vorticity.

Here, ω is the vorticity field, v is the flow velocity field,
p is the pressure, ρ is the density, ρa is the density of the
ambient air, g is the gravity vector, τ is the shear stress,
and Fr is the Froude number. A toroidal vortex ring (spiral
vortex) contains the cross-streamwise x and y components
(streamwise z component) of the vorticity. The right-hand
side of Eq. (11) includes two important vortex production
terms driven by the density gradient: the baroclinic torque
term [= (1/ρ2)(∇ρ × ∇p)] and the gravitational term [=
ρa/(ρ2Fr )(∇ρ × g)]. These terms determine the promotion of
buoyancy-dominated flow vorticity. On this basis, we focus
on the baroclinic torque and gravitational terms in this study.
Figure 2 shows the spatial distribution of the mean values of
the baroclinic torque and gravitational terms estimated from
the cross-streamwise vorticity. The gravitational term takes
high values in the continuous flame zone and the intermittent
luminous zone, particularly in the near field forming the
unstable toroidal vortex rings. The interaction of the density
gradient and gravity dominates the generation of the vorticity
in the near field. The magnitude of the gravitational term
decreases in the far field, indicating a decrease in vorticity
generation. As shown in Fig. 1, a periodic structure of 〈k〉
emerges in the near field and becomes lost in the far field.
This means that the gravitational term is the significant source
for the periodic formation of the mean degree in the networks.
In contrast, the magnitude of the baroclinic torque term sig-
nificantly increases as the periodic structure of 〈k〉 begins to
collapse, and takes high values in the far field. The baroclinic
torque term plays an important role in the aperiodic formation
of the mean degree in the networks during a buoyancy-driven
turbulent fire.

Figure 3 shows the variation in SRR as a function of τa for
different z. Note that τa corresponds to the actual delay time
(=τ�t , where �t is the time resolution of flow velocity and
temperature fluctuations). SRR takes high values at z ∼ 0.5 m,
indicating that the temperature and flow velocity fluctuations
are synchronized with each other. It periodically changes
in terms of τa in the near field, indicating the presence of
in-phase and antiphase states between the two fluctuations.
Above the intermittent luminous zone, SRR significantly de-
creases with increasing z and reaches approximately 0.28 in

FIG. 3. Variation in the symbolic recurrence rate SRR as a func-
tion of delay time τa for different z.

a wide range of τa at z � 2.5 m. We previously reported that
the randomness of flow velocity and temperature fluctuations
is high in the far field owing to the formation of high-
dimensional chaos [41,42]. On this basis, it is conceivable that
the flow velocity and temperature fluctuations in the far field
are not synchronized with each other. The spatial distribution
of �SE [= �SE ,T ′→w′ − �SE ,w′→T ′] is shown in Fig. 4. We
clearly observe that except for the region near the centerline
of the fire source, �SE takes significantly high positive values
near the shear layer region between hot combustion products
and ambient air. The entropy transfer from the combustion-
driven temperature to buoyancy-driven flow velocity fluctua-

FIG. 4. Spatial distribution of the entropy difference �SE .
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FIG. 5. Temporal evolution of the streamwise flow velocity fluc-
tuations w′ extracted from region (A) with a high entropy difference
�SE .

tions is predominant in this region. Many previous studies on
the dynamics of flame flickering and puffing fires [1–4,10–
16,18–21,23,24] did not reveal the directional dependence
between flow velocity and temperature fields. The direction
of the mutual interaction between two physical quantities
has recently been studied by one of the authors [63] for
a different system using the transfer entropy. The transfer
entropy has potential use in extracting the driving region of
a turbulent fire, in the sense that it considers the direction of
the mutual interaction between flow velocity and temperature
fluctuations.

Figure 5 shows the temporal evolution of w′ extracted from
the high-�SE region (A) (see Fig. 4). Intermittent behavior
clearly appears in streamwise flow velocity fluctuations. In-
termittent phenomena that suddenly alternate between two
dynamical states are of much interest in current nonlinear
science and physics. Intermittency is mainly classified into
various types including Pomeau–Manneville intermittency
types I, II, and III [68], crisis-induced intermittency [69],
and on-off intermittency [70–73]. Some types can appear in
hydrodynamical systems. In fact, irregularly distributed turbu-
lent bursts and laminar phases alternately appear in a Lorenz
system describing the global dynamics of Rayleigh–Benard
convection [74] as one of the representative intermittent phe-
nomena. On-off intermittency can be generally characterized
by power-law scaling with a universal exponent of −3/2 in
the probability distribution of laminar phase duration and has
relatively recently been discovered in a turbulent Couette flow
[75] and mercury flow in a heated pipe [76]. In this study,
we consider the small-amplitude fluctuations in w′ as the
laminar phase to estimate the probability distribution. Figure 6
shows the probability distribution P(td ) of the time intervals
td exhibiting small-amplitude fluctuations. Note that td is
estimated similarly to that in Refs. [77,78]. The threshold of
the discriminant function [78] is set to 10 m/s2 in this study.
P(td ) has a clear scaling power law with γ = −3/2, indicating
the possible presence of on-off intermittency, where γ is the
scaling exponent. Irregular alternation between turbulent and
nonturbulent regimes occurs in the flow velocity fluctuations
in a turbulent jet and wake, which accompany bulges and
indentations of the interface [79]. This irregular alternating
motion exhibits intermittency. w′ exhibits behavior similar to
that in Ref. [79]. Although our physical setting is different
from that in Ref. [79], the irregular alternation between turbu-
lent combustion products and nonturbulent ambient air may

FIG. 6. Probability distribution P(td ) of the time intervals td

exhibiting small-amplitude fluctuations.

be related to the onset of temporal on-off intermittency in w′.
Note that on-off intermittency also occurs in the high-�SE

region in the far field.
Figure 7 shows the variation in the correlation coefficient C

between the predicted values and the corresponding reference
values of w′ as a function of x for different z. Two peaks
with high C (∼ 0.75) are observed at z = 0.7 m, showing
the high predictability of flow velocity fluctuations. The x-z
locations where these two peaks appear correspond reason-
ably well to the formation region of the intermittent flow
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FIG. 7. Variation in the correlation coefficient C between the
predicted values and the corresponding reference values of stream-
wise flow velocity fluctuations w′ as a function of x for different z.
(a) z = 0.7 m, (b) z = 2.0 m, and (c) z = 3.0 m.
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velocity fluctuations. The results shown in Figs. 4 and 5
indicate that the high predictability in the near field is strongly
associated with high entropy transfer from temperature to flow
velocity fluctuations. At z = 3.0 m, the two peaks disappear
and C reaches approximately 0.4. The irregularity of the
streamwise flow velocity fluctuations significantly increases
at z = 3.0 m owing to the coalescence and breakdown of
vortices with various scales and strengths. This results in
the disappearance of the twin peaks in the distribution of
C. In other words, the formation of high-dimensional chaos
[41] causes a significant decrease in the predictability in the
far field. Turbulent flow exhibits multiscale and multifractal
structures in the spatiotemporal flow velocity fluctuations.
They are important characteristics of high-dimensional chaos.
In our previous study [41], the exponential sensitivity to
initial conditions, i.e., the orbital instability, was investigated
using the scale-dependent Lyapunov exponent method [80],
whereas the multifractal structure has not been explored.
In this study, we provide an additional result on the frac-
tality in w′ using the detrended-fluctuation analysis-based
multifractal formulation [81]. Figure 8 shows the qth-order
statistical moment F (q, s) as a function of s at q = 2, together
with the singularity spectrum f (α) at z = 3.0 m. F (q, s) is
estimated as

F (q, s) =
{

1

Ns

Ns∑
v=1

[
F 2(s, v)

]q/2

}1/q

, (12)

F 2(s, v) = 1

s

s∑
i=1

[w′
cs(t(v−1)s+i ) − w′

v (t(v−1)s+i )]
2, (13)

where w′
cs(t ) = ∑i

k=1 w′(tk ), s is the length of the segment,
and w′

v (t ) is the fitting polynomial in the segment. After
F (q, s) is scaled with sH , f (α) is obtained by the Legendre
transformation:

f (α) = q(α − H ) + 1, (14)

where α is the singularity strength. The log2F (q, s) versus
log2s plot exhibits a linear correlation with a clear scaling law.
A unimodal and downward concave is formed by the curve
of f (α). This clearly shows the presence of a multifractal
structure exhibiting various self-similarities in the far field.
The variation in �SE as a function of x for different z is
shown in Fig. 9. The distributions of �SE in terms of x
in the near field correspond reasonably well to those of C
shown in Fig. 7. This result clearly shows that the entropy
transfer from temperature to flow velocity fluctuations plays
an important role in the predictability of flow velocity fluctu-
ations in the near field. The transfer entropy is an important
measure for determining the predictability of flow velocity
fluctuations in the near field obtained by reservoir computing.
A low-dimensional Lorenz system with 3 degrees of freedom
is widely used to explain nonlinear dynamical mechanisms
appearing in buoyancy-driven irregular convective flows. A
recent numerical study [66] on reservoir computing reported
that the short-term prediction of X is feasible by using Y in the
Lorenz equation, where X (Y ) corresponds to the flow convec-
tive strength (temperature fluctuations). The low-dimensional
deterministic chaos produced by the Lorenz equation does not
represent the spatiotemporal dynamics of flow velocity in this

(a)

(b)

FIG. 8. (a) Variation in the qth-order statistical moment F (q, s)
as a function of s at q = 2, together with (b) the singularity spectrum
f (α) at z = 3.0 m.

study, but the finding by Weng et al. [66] sufficiently supports
our result of the predictability of flow velocity fluctuations in
the near field. In an echo state network, sparsely coupled reser-
voir nodes, the activating functions of which are usually given
as hyperbolic tangent or sigmoid functions, form a recurrent
network that generates evanescent library patterns with long
short-term memory in response to current input data. Predic-
tions are made at the output node as the weighted sum of the
library patterns. Once the weight coefficients for coupling the
input and reservoir nodes and those between reservoir nodes
have been appropriately determined irrespective of learning
examples, the weight coefficients for coupling the reservoir
and the output nodes to generate the superposition of the
library patterns are optimized using a supervised learning
algorithm. In this sense, reservior computing can be said to
be a promising simulator of chaotic dynamics.

In this work, we carried out a numerical study to clar-
ify the nonlinear dynamics of a buoyancy-driven turbulent
fire on the basis of graph networks and information theory,
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(c)

(b)

(a)

0

FIG. 9. Variation in the entropy difference �SE as a function of
x for different z. (a) z = 0.7 m, (b) z = 2.0 m, and (c) z = 3.0 m.

including the prediction of the dynamics by a machine-
learning approach. The most interesting and important find-
ings in this study are the following.

(i) The gravitational term (baroclinic torque term) in the
vorticity equation has a significant impact on the formation
of order (disorder) patterns in the mean degree in the spatial
visibility graph.

(ii) The directional entropy transfer from temperature to
flow velocity fluctuations is predominant near the shear layer
between hot combustion products and ambient air.

(iii) The transfer entropy is significantly related to the
predictability of flow velocity fluctuations in the near field
obtained by reservoir computing.

To the best of our knowledge, these points have not yet
been clarified in the treatment of a buoyancy-driven turbulent
fire. Our results are expected to provide a deeper understand-
ing and interpretation of nonlinear dynamics in a turbulent
fire.

IV. SUMMARY

We have numerically studied the spatiotemporal dynamics
of a buoyancy-driven turbulent fire on the basis of graph
networks and information entropy, including the predictabil-
ity of the dynamics by the machine-learning approach. A
significant transition from order to disorder structures can
be observed from the mean degree in the spatial horizontal
visibility graph constructed from the streamwise flow veloc-
ity fluctuations. The order structure is formed in the near
field dominated by the unstable motion of toroidal vortex
rings, whereas the disorder structure is formed in the far
field exhibiting high-dimensional deterministic chaos. The
gravitational term (baroclinic torque term) in the vorticity
equation has a significant impact on the formation of the
order (disorder) structure in the near field (far field). The
directional entropy flow transport from the combustion-driven
temperature to the buoyancy-driven turbulent velocity field,
which is quantified by the transfer entropy, is predominant
near the interface between hot combustion products and am-
bient air. Reservoir computing enables the prediction of the
intermittent flow velocity fluctuations in the near field. The
transfer entropy is an important measure for determining the
predictability of flow velocity fluctuations in the near field
obtained by reservoir computing.

ACKNOWLEDGMENTS

This research is partially supported by the Private Univer-
sity Research Branding Project (2017–2021) from the Min-
istry of Education, Culture, Sports, Science and Technology.
We thank Mr. Kentaro Kubota (Tokyo University of Science)
for his support with the computations on the spatial horizontal
visibility graph.

[1] L. D. Chen, J. P. Seaba, W. M. Roquemore, and L. P. Goss, Proc.
Combust. Inst. 22, 677 (1989).

[2] V. R. Katta and W. M. Roquemore, Combust. Flame 92, 274
(1993).

[3] H. Gotoda, S. Kawaguchi, and Y. Saso, Exp. Therm. Fluid Sci.
32, 1759 (2008).

[4] A. F. Ghoniem, I. Lakkis, and M. Soteriou, Proc. Combust. Inst.
26, 1531 (1996).

[5] D. Drysdale, An Introduction to Fire Dynamics (Wiley, New
York, 1994).

[6] A. Lingens, M. Reeker, and M. Schreiber, Exp. Fluids 20, 241
(1996).

[7] K. H. Luo, Eur. J. Mech. B/Fluids 23, 443 (2004).
[8] M. P. Juniper, L. K. B. Li, and J. W. Nicholos, Proc. Combust.

Inst. 32, 1191 (2009).
[9] B. M. Cetegen and K. D. Kasper, Phys. Fluids 8, 2974 (1996).

[10] E. J. Weckman and A. B. Strong, Combust. Flame 105, 245
(1996).

[11] S. R. Tieszen, T. J. O’Hern, R. W. Schefer, E. J. Weckman, and
T. K. Blanchat, Combust. Flame 129, 378 (2002).

[12] S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer,
Combust. Flame 139, 126 (2004).

[13] P. E. DesJardin, T. J. O’Hern, and S. R. Tieszen, Phys. Fluids
16, 1866 (2004).

[14] Y. Xin, J. P. Gore, K. B. McGrattan, R. G. Rehm, and H. R.
Baum, Combust. Flame 141, 329 (2005).

[15] Y. Xin, S. A. Filatyev, K. Biswas, J. P. Gore, R. G. Rehm, and
H. R. Baum, Combust. Flame 153, 499 (2008).

[16] R. W. Davis, E. F. Moore, W. M. Roquemore, L. D. Chen,
V. Vilimpoc, and L. P. Goss, Combust. Flame 83, 263 (1991).

[17] H. Sato, G. Kushida, K. Amagai, and M. Arai, Proc. Combust.
Inst. 29, 1671 (2002).

042214-7

https://doi.org/10.1016/S0082-0784(89)80075-X
https://doi.org/10.1016/S0082-0784(89)80075-X
https://doi.org/10.1016/S0082-0784(89)80075-X
https://doi.org/10.1016/S0082-0784(89)80075-X
https://doi.org/10.1016/0010-2180(93)90039-6
https://doi.org/10.1016/0010-2180(93)90039-6
https://doi.org/10.1016/0010-2180(93)90039-6
https://doi.org/10.1016/0010-2180(93)90039-6
https://doi.org/10.1016/j.expthermflusci.2008.05.005
https://doi.org/10.1016/j.expthermflusci.2008.05.005
https://doi.org/10.1016/j.expthermflusci.2008.05.005
https://doi.org/10.1016/j.expthermflusci.2008.05.005
https://doi.org/10.1016/S0082-0784(96)80375-4
https://doi.org/10.1016/S0082-0784(96)80375-4
https://doi.org/10.1016/S0082-0784(96)80375-4
https://doi.org/10.1016/S0082-0784(96)80375-4
https://doi.org/10.1007/BF00192668
https://doi.org/10.1007/BF00192668
https://doi.org/10.1007/BF00192668
https://doi.org/10.1007/BF00192668
https://doi.org/10.1016/j.euromechflu.2003.10.008
https://doi.org/10.1016/j.euromechflu.2003.10.008
https://doi.org/10.1016/j.euromechflu.2003.10.008
https://doi.org/10.1016/j.euromechflu.2003.10.008
https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/10.1063/1.869075
https://doi.org/10.1063/1.869075
https://doi.org/10.1063/1.869075
https://doi.org/10.1063/1.869075
https://doi.org/10.1016/0010-2180(95)00103-4
https://doi.org/10.1016/0010-2180(95)00103-4
https://doi.org/10.1016/0010-2180(95)00103-4
https://doi.org/10.1016/0010-2180(95)00103-4
https://doi.org/10.1016/S0010-2180(02)00352-8
https://doi.org/10.1016/S0010-2180(02)00352-8
https://doi.org/10.1016/S0010-2180(02)00352-8
https://doi.org/10.1016/S0010-2180(02)00352-8
https://doi.org/10.1016/j.combustflame.2004.08.006
https://doi.org/10.1016/j.combustflame.2004.08.006
https://doi.org/10.1016/j.combustflame.2004.08.006
https://doi.org/10.1016/j.combustflame.2004.08.006
https://doi.org/10.1063/1.1689371
https://doi.org/10.1063/1.1689371
https://doi.org/10.1063/1.1689371
https://doi.org/10.1063/1.1689371
https://doi.org/10.1016/j.combustflame.2004.07.001
https://doi.org/10.1016/j.combustflame.2004.07.001
https://doi.org/10.1016/j.combustflame.2004.07.001
https://doi.org/10.1016/j.combustflame.2004.07.001
https://doi.org/10.1016/j.combustflame.2008.01.013
https://doi.org/10.1016/j.combustflame.2008.01.013
https://doi.org/10.1016/j.combustflame.2008.01.013
https://doi.org/10.1016/j.combustflame.2008.01.013
https://doi.org/10.1016/0010-2180(91)90074-L
https://doi.org/10.1016/0010-2180(91)90074-L
https://doi.org/10.1016/0010-2180(91)90074-L
https://doi.org/10.1016/0010-2180(91)90074-L
https://doi.org/10.1016/S1540-7489(02)80205-X
https://doi.org/10.1016/S1540-7489(02)80205-X
https://doi.org/10.1016/S1540-7489(02)80205-X
https://doi.org/10.1016/S1540-7489(02)80205-X


TOKAMI, HACHIJO, MIYANO, AND GOTODA PHYSICAL REVIEW E 101, 042214 (2020)

[18] W. E. Mell, K. B. McGrattan, and H. R. Baum, Proc. Combust.
Inst. 26, 1523 (1996).

[19] X. Zhou, K. H. Luo, and J. J. R. Williams, Combust. Flame 129,
11 (2002).

[20] A. Hamins, J. C. Yang, and T. Kashiwagi, Proc. Combust. Inst.
24, 1695 (1992).

[21] B. M. Cetegen and T. A. Ahmed, Combust. Flame 93, 157
(1993).

[22] B. M. Cetegen, Y. Dong, and M. C. Soteriou, Phys. Fluids 10,
1658 (1998).

[23] B. M. Cetegen and Y. Dong, Exp. Fluids 28, 546 (2000).
[24] L. Hu, J. Hu, and J. L. de Ris, Combust. Flame 162, 1095

(2015).
[25] H. Abe, A. Ito, and H. Torikai, Proc. Combust. Inst. 35, 2581

(2015).
[26] H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81,

026211 (2010).
[27] H. Gotoda, T. Ikawa, K. Maki, and T. Miyano, Chaos 22,

033106 (2012).
[28] L. K. B. Li and M. P. Juniper, Proc. Combust. Inst. 34, 947

(2013).
[29] H. Kinugawa, K. Ueda, and H. Gotoda, Chaos 26, 033104

(2016).
[30] H. Gotoda, H. Kobayashi, and K. Hayashi, Phys. Rev. E 95,

022201 (2017).
[31] L. Kabiraj, A. Saurabh, P. Wahi, and R. I. Sujith, Chaos 22,

023129 (2012).
[32] V. Nair and R. I. Sujith, Chaos 23, 033136 (2013).
[33] V. Nair, G. Thampi, and R. I. Sujith, J. Fluid Mech. 756, 470

(2014).
[34] K. Kashinath, I. C. Waugh, and M. P. Juniper, J. Fluid Mech.

761, 399 (2014).
[35] H. Gotoda, Y. Okuno, K. Hayashi, and S. Tachibana, Phys. Rev.

E 92, 052906 (2015).
[36] L. Kabiraj, A. Saurabh, N. Karimi, A. Sailor, E. Mastorakos,

A. P. Dowling, and C. O. Paschereit, Chaos 25, 023101 (2015).
[37] S. Balusamy, L. K. B. Li, Z. Han, M. P. Juniper, and

S. Hochgreb, Proc. Combust. Inst. 35, 3229 (2015).
[38] J. Tony, E. A. Gopalakrishnan, E. Sreelekha, and R. I. Sujith,

Phys. Rev. E 92, 062902 (2015).
[39] S. Suresha, R. I. Sujith, B. Emerson, and T. Lieuwen, Phys. Rev.

E 94, 042206 (2016).
[40] R. Sampath, M. Mathur, and S. R. Chakravarthy, Phys. Rev. E

94, 062209 (2016).
[41] K. Takagi, H. Gotoda, I. T. Tokuda, and T. Miyano, Phys. Rev.

E 96, 052223 (2017).
[42] K. Takagi, H. Gotoda, I. T. Tokuda, and T. Miyano, Phys. Lett.

A 382, 3181 (2018).
[43] L. Zunino, M. C. Soriano, and O. A. Rosso, Phys. Rev. E 86,

046210 (2012).
[44] C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102

(2002).
[45] K. Takagi and H. Gotoda, Phys. Rev. E 98, 032207 (2018).
[46] L. Lacasa and J. Iacovacci, Phys. Rev. E 96, 012318 (2017).
[47] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
[48] T. Kobayashi, S. Murayama, T. Hachijo, and H. Gotoda, Phys.

Rev. Appl. 11, 064034 (2019).
[49] T. Hachijo, S. Masuda, T. Kurosaka, and H. Gotoda, Chaos 29,

103123 (2019).

[50] H. Jaeger, German National Research Center for Information
Technology GMD Report No. 148, 2001.

[51] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert,
Neural Networks 20, 335 (2007).

[52] M. Lukosevicius and H. Jaeger, Comput. Sci. Rev. 3, 127
(2009).

[53] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Chaos 27,
121102 (2017).

[54] J. Pathak, B. Hunt, M. Girvan, Z. X. Lu, and E. Ott, Phys. Rev.
Lett. 120, 024102 (2018).

[55] A. Shinozaki, K. Shiozawa, K. Kajita, T. Miyano, and Y. Horio,
in 2019 International Joint Conference on Neural Networks,
Paper N-20022, 2019.

[56] B. Luque, L. Lacasa, F. J. Ballesteros, and A. Robledo, Chaos
22, 013109 (2012).

[57] M. Murugesan and R. I. Sujith, J. Fluid Mech. 772, 225 (2015).
[58] H. Gotoda, H. Kinugawa, R. Tsujimoto, S. Domen, and

Y. Okuno, Phys. Rev. Appl. 7, 044027 (2017).
[59] Y. Guan, L. K. B. Li, B. Ahn, and K. T. Kim, Chaos 29, 053124

(2019).
[60] J. Eckmann, S. O. Kamphorst, and D. Ruelle, Europhys. Lett.

4, 973 (1987).
[61] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep.

438, 237 (2007).
[62] A. Groth, Phys. Rev. E 72, 046220 (2005).
[63] T. Hashimoto, H. Shibuya, H. Gotoda, Y. Ohmichi, and

S. Matsuyama, Phys. Rev. E 99, 032208 (2019).
[64] M. Lukosevicius, Neural Networks: Tricks of the Trade, Lecture

Notes in Computer Science Vol. 659 (Springer, New York,
2012).

[65] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed
Problems (Winston & Sons, Washington, D.C., 1977).

[66] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, Phys. Rev. E
99, 042203 (2019).

[67] X. Jiang and K. H. Luo, Combust. Flame 133, 29 (2003).
[68] P. Manneville and Y. Pomeau, Phys. Lett. A 75, 1 (1979).
[69] C. Grebogi, E. Ott, F. Romeiras, and J. A. Yorke, Phys. Rev. A

36, 5365 (1987).
[70] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. Lett. 70, 279

(1993).
[71] J. F. Heagy, N. Platt, and S. M. Hammel, Phys. Rev. E 49, 1140

(1994).
[72] E. Ott and J. C. Sommerer, Phys. Lett. A 188, 39 (1994).
[73] P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D.

Lee, Phys. Rev. Lett. 73, 1095 (1994).
[74] S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus,

Philadelphia, PA, 1994).
[75] R. Raynaud and E. Dormy, Phys. Rev. E 87, 033011 (2013).
[76] I. A. Belyaev, D. A. Biryukov, D. N. Gerasimov, and E. I. Yurin,

Chaos 29, 083119 (2019).
[77] T. B. Hedley and J. F. Keffer, J. Fluid Mech. 64, 625 (1974).
[78] O. Terashima, Y. Sakai, K. Nagata, Y. Ito, K. Onishi, and

Y. Shouji, Exp. Therm. Fluid Sci. 75, 137 (2016).
[79] D. J. Tritton, Physical Fluid Science (Oxford University,

Oxford, 1988).
[80] J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, Phys. Rev. E 74,

066204 (2006).
[81] J. B. Gao, Y. H. Cao, W. W. Tung, and J. Hu, Multiscale Analysis

of Complex Time Series (Wiley, New York, 2007).

042214-8

https://doi.org/10.1016/S0082-0784(96)80374-2
https://doi.org/10.1016/S0082-0784(96)80374-2
https://doi.org/10.1016/S0082-0784(96)80374-2
https://doi.org/10.1016/S0082-0784(96)80374-2
https://doi.org/10.1016/S0010-2180(01)00368-6
https://doi.org/10.1016/S0010-2180(01)00368-6
https://doi.org/10.1016/S0010-2180(01)00368-6
https://doi.org/10.1016/S0010-2180(01)00368-6
https://doi.org/10.1016/S0082-0784(06)80198-0
https://doi.org/10.1016/S0082-0784(06)80198-0
https://doi.org/10.1016/S0082-0784(06)80198-0
https://doi.org/10.1016/S0082-0784(06)80198-0
https://doi.org/10.1016/0010-2180(93)90090-P
https://doi.org/10.1016/0010-2180(93)90090-P
https://doi.org/10.1016/0010-2180(93)90090-P
https://doi.org/10.1016/0010-2180(93)90090-P
https://doi.org/10.1063/1.869683
https://doi.org/10.1063/1.869683
https://doi.org/10.1063/1.869683
https://doi.org/10.1063/1.869683
https://doi.org/10.1007/s003480050415
https://doi.org/10.1007/s003480050415
https://doi.org/10.1007/s003480050415
https://doi.org/10.1007/s003480050415
https://doi.org/10.1016/j.combustflame.2014.10.001
https://doi.org/10.1016/j.combustflame.2014.10.001
https://doi.org/10.1016/j.combustflame.2014.10.001
https://doi.org/10.1016/j.combustflame.2014.10.001
https://doi.org/10.1016/j.proci.2014.05.080
https://doi.org/10.1016/j.proci.2014.05.080
https://doi.org/10.1016/j.proci.2014.05.080
https://doi.org/10.1016/j.proci.2014.05.080
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1103/PhysRevE.81.026211
https://doi.org/10.1063/1.4731267
https://doi.org/10.1063/1.4731267
https://doi.org/10.1063/1.4731267
https://doi.org/10.1063/1.4731267
https://doi.org/10.1016/j.proci.2012.06.022
https://doi.org/10.1016/j.proci.2012.06.022
https://doi.org/10.1016/j.proci.2012.06.022
https://doi.org/10.1016/j.proci.2012.06.022
https://doi.org/10.1063/1.4941854
https://doi.org/10.1063/1.4941854
https://doi.org/10.1063/1.4941854
https://doi.org/10.1063/1.4941854
https://doi.org/10.1103/PhysRevE.95.022201
https://doi.org/10.1103/PhysRevE.95.022201
https://doi.org/10.1103/PhysRevE.95.022201
https://doi.org/10.1103/PhysRevE.95.022201
https://doi.org/10.1063/1.4718725
https://doi.org/10.1063/1.4718725
https://doi.org/10.1063/1.4718725
https://doi.org/10.1063/1.4718725
https://doi.org/10.1063/1.4821475
https://doi.org/10.1063/1.4821475
https://doi.org/10.1063/1.4821475
https://doi.org/10.1063/1.4821475
https://doi.org/10.1017/jfm.2014.468
https://doi.org/10.1017/jfm.2014.468
https://doi.org/10.1017/jfm.2014.468
https://doi.org/10.1017/jfm.2014.468
https://doi.org/10.1017/jfm.2014.601
https://doi.org/10.1017/jfm.2014.601
https://doi.org/10.1017/jfm.2014.601
https://doi.org/10.1017/jfm.2014.601
https://doi.org/10.1103/PhysRevE.92.052906
https://doi.org/10.1103/PhysRevE.92.052906
https://doi.org/10.1103/PhysRevE.92.052906
https://doi.org/10.1103/PhysRevE.92.052906
https://doi.org/10.1063/1.4906943
https://doi.org/10.1063/1.4906943
https://doi.org/10.1063/1.4906943
https://doi.org/10.1063/1.4906943
https://doi.org/10.1016/j.proci.2014.05.029
https://doi.org/10.1016/j.proci.2014.05.029
https://doi.org/10.1016/j.proci.2014.05.029
https://doi.org/10.1016/j.proci.2014.05.029
https://doi.org/10.1103/PhysRevE.92.062902
https://doi.org/10.1103/PhysRevE.92.062902
https://doi.org/10.1103/PhysRevE.92.062902
https://doi.org/10.1103/PhysRevE.92.062902
https://doi.org/10.1103/PhysRevE.94.042206
https://doi.org/10.1103/PhysRevE.94.042206
https://doi.org/10.1103/PhysRevE.94.042206
https://doi.org/10.1103/PhysRevE.94.042206
https://doi.org/10.1103/PhysRevE.94.062209
https://doi.org/10.1103/PhysRevE.94.062209
https://doi.org/10.1103/PhysRevE.94.062209
https://doi.org/10.1103/PhysRevE.94.062209
https://doi.org/10.1103/PhysRevE.96.052223
https://doi.org/10.1103/PhysRevE.96.052223
https://doi.org/10.1103/PhysRevE.96.052223
https://doi.org/10.1103/PhysRevE.96.052223
https://doi.org/10.1016/j.physleta.2018.08.030
https://doi.org/10.1016/j.physleta.2018.08.030
https://doi.org/10.1016/j.physleta.2018.08.030
https://doi.org/10.1016/j.physleta.2018.08.030
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevE.86.046210
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevE.98.032207
https://doi.org/10.1103/PhysRevE.98.032207
https://doi.org/10.1103/PhysRevE.98.032207
https://doi.org/10.1103/PhysRevE.98.032207
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevApplied.11.064034
https://doi.org/10.1103/PhysRevApplied.11.064034
https://doi.org/10.1103/PhysRevApplied.11.064034
https://doi.org/10.1103/PhysRevApplied.11.064034
https://doi.org/10.1063/1.5120815
https://doi.org/10.1063/1.5120815
https://doi.org/10.1063/1.5120815
https://doi.org/10.1063/1.5120815
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.3676686
https://doi.org/10.1063/1.3676686
https://doi.org/10.1063/1.3676686
https://doi.org/10.1063/1.3676686
https://doi.org/10.1017/jfm.2015.215
https://doi.org/10.1017/jfm.2015.215
https://doi.org/10.1017/jfm.2015.215
https://doi.org/10.1017/jfm.2015.215
https://doi.org/10.1103/PhysRevApplied.7.044027
https://doi.org/10.1103/PhysRevApplied.7.044027
https://doi.org/10.1103/PhysRevApplied.7.044027
https://doi.org/10.1103/PhysRevApplied.7.044027
https://doi.org/10.1063/1.5088735
https://doi.org/10.1063/1.5088735
https://doi.org/10.1063/1.5088735
https://doi.org/10.1063/1.5088735
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1103/PhysRevE.72.046220
https://doi.org/10.1103/PhysRevE.72.046220
https://doi.org/10.1103/PhysRevE.72.046220
https://doi.org/10.1103/PhysRevE.72.046220
https://doi.org/10.1103/PhysRevE.99.032208
https://doi.org/10.1103/PhysRevE.99.032208
https://doi.org/10.1103/PhysRevE.99.032208
https://doi.org/10.1103/PhysRevE.99.032208
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1016/S0010-2180(02)00539-4
https://doi.org/10.1016/S0010-2180(02)00539-4
https://doi.org/10.1016/S0010-2180(02)00539-4
https://doi.org/10.1016/S0010-2180(02)00539-4
https://doi.org/10.1016/0375-9601(79)90255-X
https://doi.org/10.1016/0375-9601(79)90255-X
https://doi.org/10.1016/0375-9601(79)90255-X
https://doi.org/10.1016/0375-9601(79)90255-X
https://doi.org/10.1103/PhysRevA.36.5365
https://doi.org/10.1103/PhysRevA.36.5365
https://doi.org/10.1103/PhysRevA.36.5365
https://doi.org/10.1103/PhysRevA.36.5365
https://doi.org/10.1103/PhysRevLett.70.279
https://doi.org/10.1103/PhysRevLett.70.279
https://doi.org/10.1103/PhysRevLett.70.279
https://doi.org/10.1103/PhysRevLett.70.279
https://doi.org/10.1103/PhysRevE.49.1140
https://doi.org/10.1103/PhysRevE.49.1140
https://doi.org/10.1103/PhysRevE.49.1140
https://doi.org/10.1103/PhysRevE.49.1140
https://doi.org/10.1016/0375-9601(94)90114-7
https://doi.org/10.1016/0375-9601(94)90114-7
https://doi.org/10.1016/0375-9601(94)90114-7
https://doi.org/10.1016/0375-9601(94)90114-7
https://doi.org/10.1103/PhysRevLett.73.1095
https://doi.org/10.1103/PhysRevLett.73.1095
https://doi.org/10.1103/PhysRevLett.73.1095
https://doi.org/10.1103/PhysRevLett.73.1095
https://doi.org/10.1103/PhysRevE.87.033011
https://doi.org/10.1103/PhysRevE.87.033011
https://doi.org/10.1103/PhysRevE.87.033011
https://doi.org/10.1103/PhysRevE.87.033011
https://doi.org/10.1063/1.5098538
https://doi.org/10.1063/1.5098538
https://doi.org/10.1063/1.5098538
https://doi.org/10.1063/1.5098538
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1016/j.expthermflusci.2016.02.007
https://doi.org/10.1016/j.expthermflusci.2016.02.007
https://doi.org/10.1016/j.expthermflusci.2016.02.007
https://doi.org/10.1016/j.expthermflusci.2016.02.007
https://doi.org/10.1103/PhysRevE.74.066204
https://doi.org/10.1103/PhysRevE.74.066204
https://doi.org/10.1103/PhysRevE.74.066204
https://doi.org/10.1103/PhysRevE.74.066204

