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Ballistic resonance and thermalization in the Fermi-Pasta-Ulam-Tsingou chain at finite temperature
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We study conversion of thermal energy to mechanical energy and vice versa in an α-Fermi-Pasta-Ulam-
Tsingou (FPUT) chain with a spatially sinusoidal profile of initial temperature. We show analytically that
coupling between macroscopic dynamics and quasiballistic heat transport gives rise to mechanical vibrations
with growing amplitude. This phenomenon is referred to as ballistic resonance. At large times, these mechanical
vibrations decay monotonically, and therefore the well-known FPUT recurrence paradox occurring at zero
temperature is eliminated at finite temperatures.
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I. INTRODUCTION

Conversion of mechanical energy in solids to thermal
energy results in damping of mechanical vibrations, whereas
thermal expansion and heat transport lead to the opposite
conversion of thermal energy to mechanical. In macroscopic
continuum theories, the conversions are modeled by coupling
between the equations of momentum balance and of energy
balance (linear thermoviscoelasticity being an example [1]).
However, at micro- and nanoscales conventional macroscopic
constitutive relations may be inapplicable. For example, re-
cent theoretical [2–4] and experimental [5–9] studies show
that the Fourier law of heat conduction may be violated.
In particular, the ballistic regime of heat transport is ob-
served [10,11].

A well-known model of thermomechanical processes at
micro- and nanoscales is the Fermi-Pasta-Ulam-Tsingou
(FPUT) chain [12]. Despite the apparent simplicity of the
model, analytical description of macroscopic thermoelasticity,
heat transport, and energy conversion in the FPUT chain
remains a serious challenge for theoreticians.

Several anomalies of thermomechanical behavior have
been observed for the FPUT chain. The heat transport in it
is anomalous, i.e., the Fourier law is violated [13–15]. The
Maxwell-Cattaneo-Vernotte law also fails to describe the heat
transport in FPUT chains [16,17]. Harmonic approximation
allows one to derive equations [18,19] and closed-form so-
lutions [20,21] describing heat transport in chains. However,
the question arises whether the temperature field, obtained
in harmonic approximation, can be used for estimation of
thermoelastic effects, e.g., excitation of mechanical vibrations
due to thermal expansion. We address this issue below.

Conversion of mechanical energy to thermal energy is an
even more challenging issue. Studies of the conversion have
a long history, starting from the pioneering work of Fermi,
Pasta, Ulam, and Tsingou [12], where initial conditions,
corresponding to excitation of the first normal mode of the
chain, were considered. It was shown numerically that the
energy of this mode demonstrates almost periodic behavior,
i.e., the system does not reach thermal equilibrium. In the

literature this phenomenon is referred to as the Fermi-Pasta-
Ulam-Tsingou recurrence paradox (see, e.g., [22]). Recent
advances in understanding of the paradox are summarized,
e.g., in Refs. [22–24]. We note that in the original statement of
the FPUT problem the chain has zero initial temperature. The
conversion of mechanical energy to thermal energy at finite
temperature has not been studied systematically. Thus, in spite
of significant progress in the understanding of some particular
thermomechanical phenomena in the FPUT chain [12–17,22–
25], a comprehensive theory of macroscopic coupled thermo-
viscoelasticity for this system is yet to be developed.

In this paper we report thermomechanical phenomena
observed in the α-FPUT chain with a spatially sinusoidal
profile of initial temperature. First, we show analytically that
temperature oscillations, caused by quasiballistic heat trans-
port, and thermal expansion give rise to mechanical vibrations
with growing amplitude. This phenomenon is referred to as
ballistic resonance. Second, we show numerically that me-
chanical vibrations, excited by the ballistic resonance, decay
monotonically in time. Therefore, at finite temperatures the
FPUT recurrence paradox is eliminated.

II. EQUATIONS OF MOTION AND INITIAL CONDITIONS

We consider the α-FPUT chain [12] consisting of N iden-
tical particles of mass m, connected by nonlinear springs. The
dynamics of the chain is governed by the equation

mv̇n = C(un+1 − 2un + un−1)

+α[(un+1 − un)2 − (un − un−1)2], (1)

where un and vn are, respectively, the displacement and ve-
locity of the particle n, C is the stiffness, and α is a parame-
ter characterizing nonlinearity. Periodic boundary conditions
un = un+N are used.

We separate mechanical and thermal displacements of
particles as follows [26]. By definition, mechanical motion
is associated with the time evolution of the mathematical
expectation of particle displacement. The macroscopic dis-
placement field u(x, t ), corresponding to mechanical motion,
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is such that

u(na, t ) = 〈un〉, (2)

where a is the lattice constant and 〈· · ·〉 stands for mathe-
matical expectation (in computer simulations it is replaced by
the average over realizations with different initial condition).
Macroscopic mechanical energy is calculated using the dis-
placement field u(x, t ) [see formula (13)].

The thermal motion is defined as the difference between
the total displacement and the mechanical one. Then thermal
displacements ũn are calculated as

ũn = un − 〈un〉. (3)

Note that, in contrast to mechanical displacements, the ther-
mal displacements are random. Similar separation is carried
out for particle velocities. Then the kinetic temperature Tn of
particle n is defined as

kBTn = m
〈
ṽ2

n

〉
, (4)

where kB is the Boltzmann constant. Note that the proper
choice of a definition for temperature in nonequilibrium sys-
tems remains an open question. We use the definition (4),
because it has a clear physical meaning (kinetic energy per
particle) and it is easy to compute. A comprehensive discus-
sion of various definitions of temperature is presented, e.g., in
Ref. [27].

Using the definitions (2)–(4), we introduce the initial
conditions, corresponding to the spatially sinusoidal kinetic
temperature profile, zero initial fluxes, and no macroscopic
mechanical motion

un = 0, vn = ξn

√
2kB

m

(
Tb + �T sin

2πn

N

)
,

〈ξn〉 = 0,
〈
ξnξm

〉 = δnm, (5)

where ξn are uncorrelated random numbers with zero mean
and unit variance, δnm is the Kronecker delta, Tb is the average
(background) temperature, and �T is the amplitude of the
initial temperature profile. Note that in real experiments,
similar initial conditions can be realized in the framework of
the transient thermal grating technique [7–9].

Heat transfer in harmonic, αβ-FPUT, and β-FPUT chains
with initial conditions (5) was investigated in Refs. [16,17,28].
However, in these works thermoelastic effects and thermaliza-
tion were not considered.

Note that the initial conditions used in the original FPUT
problem [12] significantly differ from the initial conditions in
(5). In Ref. [12], deterministic initial conditions, correspond-
ing to excitation of the first mode of mechanical vibrations at
zero temperature, were considered. In contrast, initial condi-
tions (5) are stochastic. The temperature and thermal energy
of the chain are finite, while initial mechanical motion is ab-
sent. The consequences of this difference in initial conditions
are discussed in Sec. V.

III. THEORY OF BALLISTIC RESONANCE

We present a continuum model, describing the macro-
scopic linear thermoelasticity of the α-FPUT chain (1).

FIG. 1. Oscillations of temperature caused by quasiballistic heat
transport from the analytical solution (9) (line) and results of numer-
ical integration of equations of motion (1) for αa/C = −0.25 (red
squares) and −1 (blue circles).

Using the model, we describe an unexpected resonance phe-
nomenon.

A. Sinusoidal initial temperature profile

We assume that macroscopic mechanical motion of the
chain is described by the equation of linear thermoelastic-
ity [26], while the behavior of temperature (heat transfer) is
described by the ballistic heat equation [18,19]. Conversion
of mechanical energy to thermal energy is neglected. Then
the macroscopic behavior of the chain in the continuum limit
is described by the equations

ü = c2
s (u′′ − βT ′), (6)

T̈ + 1

t
Ṫ = c2

s T ′′. (7)

Here u(x, t ) is the displacement field, T (x, t ) is the temper-
ature field, the prime stands for the spatial derivative, cs =√

E/ρ is the speed of sound, E is Young’s modulus, ρ is
the density, and β is the thermal expansion coefficient. The
relation between macroscopic and microscopic parameters of
the chain is given by formulas (2), (4), and (16).

We note that both macroscopic equations (6) and (7) are
derived from the equations of motion (1). Anharmonic effects
are taken into account only in Eq. (6). Equation (7) is derived
using harmonic approximation [18,19] and therefore it corre-
sponds to the purely ballistic heat transport regime. However,
it is shown below that this equation describes the evolution
of temperature with acceptable accuracy, at least for some
time, depending on the nonlinearity parameter αa/C (see, e.g.,
Fig. 1).

Periodic boundary conditions and the initial conditions

T = Tb + �T sin(λx), Ṫ = 0, u = 0, v = 0, (8)
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corresponding to microscopic conditions (5)1, are used, where
λ = 2π/L and L is the chain length. The solution of the
ballistic heat equation (7) with initial conditions (8) has the
form [18]

T = Tb + A(t ) sin(λx), A(t ) = �T J0(ωt ), (9)

where ω = λcs and J0 is the Bessel function of the first kind.
Formula (9) shows that temperature oscillates in time (see
Fig. 1).

Substituting the expression (9) into the dynamics equa-
tion (6), we obtain

ü = c2
s u′′ − λc2

s β�T J0(ωt ) cos(λx). (10)

It can be seen that the temperature acts as an external force,
exciting the first normal mode of mechanical vibrations. From
properties of the Bessel function J0 it follows that the external
force oscillates with frequency ω and decays as 1/

√
t . Note

that the frequency coincides with the first eigenfrequency of
mechanical vibrations.

The solution of Eq. (10) yields an exact expression for
displacements

u(x, t ) = z(t ) cos(λx), z(t ) = −β�T ωtJ1(ωt )/λ. (11)

At large times (ωt → ∞), the amplitude of displacement z has
the asymptotic behavior

z(t ) ≈ −
√

2

π

β�T

λ

√
ωt cos(ωt − 3π/4). (12)

Formula (12) shows that the amplitude grows in time as
√

t .
The corresponding mechanical energy E is calculated via

E = 1

2L

∫ L

0
(ρv2 + Eu′2)dx = E∗ω2t2

[
J2

0 (ωt ) + J2
1 (ωt )

]
,

(13)

where E∗ = Eβ2�T 2/4 is proportional to the potential energy
of the system due to thermal expansion in the case of uniform
temperature profile �T . At large times, the energy grows
linearly, i.e., E ≈ 2E∗ωt/π .

Thus the coincidence of a frequency of temperature os-
cillations with the first eigenfrequency of the chain leads to
excitation of mechanical vibrations with growing amplitude.
This phenomenon is referred to as ballistic resonance.

B. Periodic initial temperature profile

We generalize the presented results for the case of an ar-
bitrary periodic initial temperature profile T0(x) = T0(x + L).

1Note that initial temperature in (8) is twice smaller than in (5).
This is due to the fact that a half of kinetic energy of the chain is
converted to potential energy. This fast transient process, occuring
at short times, is disregarded by formula (7). See Refs. [18–21] for
further discussions.

Fourier series expansion of the profile yields

T0 = a0

2
+

∞∑
k=1

[ak cos(λkx) + bk sin(λkx)], λk = kλ,

ak = 2

L

∫ L

0
T0(x) cos(λkx)dx,

bk = 2

L

∫ L

0
T0(x) sin(λkx)dx. (14)

The solution of Eqs. (6) and (7), corresponding to the tem-
perature profile (14), is derived using formula (11) and the
superposition principle

u = βcst
∞∑

k=1

J1(ωkt )[ak sin(λkx) − bk cos(λkx)], (15)

where ωk = kω = kλcs. Formula (15) shows that all eigen-
modes, included in the expansion of the function T0, resonate.
The amplitudes of these modes grow in time as

√
t . However,

since the Fourier coefficients ak and bk decay with increasing
k,2 the main contribution to growth of displacements is given
by long-wavelength harmonics (small k). Thus the ballistic
resonance occurs for any periodic distribution of the initial
temperature.

IV. NUMERICAL RESULTS FOR BALLISTIC RESONANCE

We compare the predictions of the presented continuum
theory with the results of the numerical solution of the discrete
equations of motion (1). The macroscopic length, density,
Young modulus, speed of sound, and thermal expansion
coefficient are related to the microparameters of the chain
as [26]

L = Na, ρ = m

a
, E = Ca,

cs = a

√
C

m
, β = −αkB

aC2
. (16)

Here the thermal expansion coefficient is calculated as β =
γ kB/Ea, where γ = −αa/C is the Grüneisen parameter (see,
e.g., [26,29]).

To compute macroscopic mechanical characteristics, e.g.,
z and E , we consider Nr realizations of the chain (1) with
random initial conditions (5). For each realization, the equa-
tions of motion are solved numerically using the fourth-order
symplectic integrator [30] with optimized parameters [31]. In
our simulations the total energy is conserved with an accuracy
of order of 0.001%.

The amplitudes of mechanical vibrations z and mechanical
energy E were computed via

z ≈ − 1

π

N−2∑
n=0

〈un+1 − un〉r sin
2πn

N
,

ż ≈ 2

N − 1

N−1∑
n=0

〈vn〉r cos
2πn

N
, E = m

4a
(ż2 + ω2z2). (17)

Here 〈· · ·〉r represents averaging over the realizations.

2This statement holds at least for all differentiable functions.
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FIG. 2. Growth of amplitude of mechanical vibrations due to
ballistic resonance for the analytical solution (11) (solid line) and
numerical results for αa/C = −0.25 (circles) and −1 (squares).

To investigate the influence of anharmonic effects, we fix
the background temperature Tb and change the parameter of
nonlinearity αa/C in the interval [−1; 0]. For the remaining
parameters, the following values were used:

�t = 0.05τ∗, tmax = 1.4 × 104τ∗, τ∗ = 2π
√

m/C,

�T = 0.5Tb, v0 = 0.1cs, N = 103, Nr = 104. (18)

Here v0 is the amplitude of random initial velocities, corre-
sponding to background temperature 2Tb.

We consider the behavior of the kinetic temperature of
the chain. The analytical solution (9) suggests that the tem-
perature profile remains sinusoidal. Using this information,
we compute the amplitude A(t ) of the temperature profile
[see formula (9)]. In numerical simulations, the temperature
is calculated by the definition (4). It can be shown that the
contribution of 〈vn〉 to the amplitude A is negligible. There-
fore, in formula (4) the total particle velocity vn is used instead
of ṽn. The amplitudes for αa/C = −0.25 and −1 are shown
in Fig. 1. For both values of α the temperature oscillates
in time. These oscillations are responsible for the ballistic
resonance. For αa/C = −0.25 the oscillations are described
by the analytical solution (9) with high accuracy. Deviations
from the analytical solution for αa/C = −1 are caused by
anharmonic effects, neglected in the derivation of the ballistic
heat equation (7).

The time dependence of the amplitude of mechanical vi-
brations z(t ) is presented in Fig. 2. It can be seen that the
amplitude grows in time. The initial growth is accurately
described by the analytical solution (11). Over time, an ana-
lytical solution deviates from the numerical solution. The rate
of deviation increases with increasing absolute value of the
nonlinearity coefficient αa/C.

The growth of amplitude of mechanical vibrations is due to
the partial conversion of thermal energy to mechanical energy.

FIG. 3. Time dependence of mechanical energy E for the analyti-
cal solution (13) (solid line) and numerical results for αa/C = −0.25
(dotted line), −0.5 (dashed line), −0.75 (dash-dotted line), and −1
(dash–double-dotted line).

The conversion can be clearly seen in Fig. 3. The figure
shows that initially the mechanical energy grows with time
as predicted by the analytical solution (13). Since the total
energy of the system is conserved, the growth of mechanical
energy is associated with a decrease of thermal energy. Thus
the phenomenon of ballistic resonance, predicted by contin-
uum theory [Eqs. (6) and (7)], is observed in direct numerical
simulations.

V. THERMALIZATION

Numerical simulations show that mechanical vibrations,
excited by the ballistic resonance, decay in time (see Fig. 4).

FIG. 4. Decay of amplitude of mechanical vibrations for long
times (numerical results for αa/C = −1).
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FIG. 5. Maximum mechanical energy Emax excited by the bal-
listic resonance for different values of the nonlinearity coefficient
αa/C. Here H0 is the total energy of the chain.

The decay is caused by thermalization, i.e., conversion of me-
chanical energy to thermal energy. This process is not covered
by our continuum model (6) and (7). Decay of mechanical
energy can be clearly seen in Fig. 3. The energy reaches the
maximum value, depending on nonlinearity coefficient αa/C,
and then monotonically tends to zero.

The maximum mechanical energy Emax excited by the
ballistic resonance, normalized by the total energy of the chain
H0, is shown in Fig. 5. Here Emax increases with increasing
absolute value of the nonlinearity coefficient αa/C. For all
considered values of αa/C, the maximum mechanical energy
is several orders of magnitude less than the thermal energy.
We note that in the original FPUT problem [12] the situation
is the opposite, because thermal energy is equal to zero, while
the mechanical energy is finite.

3Reference [32] considered decay of the first normal mode of
mechanical vibrations at finite background temperature.

Thus, under the considered initial conditions, the me-
chanical energy of the chain is monotonically converted into
thermal energy. This fact is in agreement with the results of
numerical simulations carried out in Ref. [32] with different
initial conditions.3 Therefore, the FPUT recurrence paradox is
eliminated by finite thermal motion.

VI. CONCLUSION

We have shown that excitation of a periodic, e.g., si-
nusoidal, initial temperature profile in the α-FPUT chain
leads to mechanical resonance. The temperature of the chain
oscillates in time due to the quasiballistic (wave) nature of
heat transport. Nonuniform distribution of temperature causes
thermal expansion, which plays the role of a periodic force,
exciting macroscopic mechanical vibration. The frequency of
this “force” coincides with the eigenfrequency of mechanical
vibrations leading to the resonance.

A continuum model of the ballistic resonance has been
developed. It was shown that the predictions of the model
are in good agreement with the results of numerical simula-
tions. Note that, in contrast to the conventional mechanical
resonance, the ballistic resonance occurs in the closed system
without any external excitation.

We expect that ballistic resonance may be observed in
two- and three-dimensional crystals. However, since in the
d-dimensional case the sinusoidal temperature profile decays
as 1/t d/2 [21], the effect of ballistic resonance will be weaker.

It was shown that mechanical vibrations, caused by the
ballistic resonance, decay monotonically. Therefore, the well-
known FPUT recurrence paradox is eliminated by adding a
finite thermal motion. In our simulations the energy of me-
chanical vibrations is much smaller than the thermal energy.
This fact appears to be a necessary condition for monotonic
decay of mechanical vibrations. However, further work is
needed to prove this statement rigorously.
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