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Soliton pairs in two-dimensional nonlocal media
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We study the interaction of optical beams of different wavelengths, described by a two-component, two-
dimensional (2D) nonlocal nonlinear Schrödinger (NLS) model. Using a multiscale expansion method the NLS
model is asymptotically reduced to the completely integrable 2D Mel’nikov system, the soliton solutions of
which are used to construct approximate dark-bright and antidark-bright soliton solutions of the original NLS
model; the latter being unique to the nonlocal NLS system with no relevant counterparts in the local case. Direct
numerical simulations show that, for sufficiently small amplitudes, both these types of soliton stripes do exist
and propagate undistorted, in excellent agreement with the analytical predictions. Larger amplitude of these
soliton stripes, when perturbed along the transverse direction, disintegrate either to filled vortex structures (the
dark-bright solitons) or to radiation (the antidark-bright solitons).
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I. INTRODUCTION

Solitons, namely, robust localized waveforms that can be
formed in nonlinear dispersive media, have been studied
extensively in a wide range of physical contexts [1] and in
applied mathematics [2]. Furthermore, the so-called vector
solitons that emerge in multicomponent settings have been an
active area of research due to their relevance in many physical
contexts, such as nonlinear optics [3,4], Bose-Einstein con-
densates (BECs) [5–7], plasmas [8], nematic liquid crystals
[9], and so on. One of the most prototypical models that
governs the dynamics of such multicomponent solitons is the
vector nonlinear Schrödinger (NLS) equation, composed of
nonlinearly coupled NLS equations. Variants of the vector
NLS have been used, e.g., in optics, to describe the interaction
between waves of different frequencies and of the same polar-
ization or of the same frequency but of different polarizations
[3]. Coupled NLS equations also appear in the study of BECs,
where they model interactions between different spin states of
the same atom species, or different Zeeman sub-levels of the
same hyperfine level [5,6].

Depending on the nature of inter- and intracomponent
interactions [i.e., attractive (focusing nonlinearity) or repul-
sive (defocusing nonlinearity)], various types of vector NLS
solitons may exist, such as bright-bright solitons for focusing
nonlinearities, as well as dark-dark or dark-bright solitons
for defocusing nonlinearities [3,4]. The latter, namely, dark-
bright solitons, are of particular interest, since they occur
in defocusing settings, where bright solitons do not exist as
solutions of the relative single NLS equation. Nevertheless,
the bright soliton component does emerge because of an
effective potential well created by the dark soliton through the
intercomponent interaction; as such, dark-bright solitons can
be thought of as “symbiotic” structures. Dark-bright solitons
have been studied extensively in optics, where they were first
predicted in the pioneering works Refs. [10,11], as well as
in BECs. In both cases, these states have also been observed

and studied in experiments (see the review Ref. [7] and
references therein), while they have also been predicted to
occur in nonlocal nonlinear media [12,13]. In optics, dark-
bright solitons have been proposed for applications, where
dark solitons could potentially serve as adjustable wave guides
for weak signals [3,4,7].

Regarding the type of individual solitons that may couple
to form a vector NLS soliton, an interesting possibility is the
following: One component of the vector soliton is an antidark
soliton, namely, a hump, instead of a dip, on top of the back-
ground wave. Antidark solitons where first predicted to occur
in single-component NLS models incorporating higher-order
effects [14,15] (see also the relevant works Refs. [16,17]), and
later they were also found in multicomponent systems. In such
settings, the antidark soliton component is usually coupled
with a dark soliton—see, e.g., Refs. [18,19] and [20,21] for
works in optics and BECs, respectively. However, there is still
another possibility, namely, the formation of a vector soliton
composed of an antidark and a bright soliton, as was shown
in optics [18] and BECs [22]. Notice that antidark-bright
solitons, along with dark-bright ones, were recently observed
experimentally in weakly birefringent cavity fiber lasers [23];
in this case, however, the experimental setting was relevant to
a nonconservative (non Hamiltonian), Ginzburg-Landau-type
model, rather than a conservative (Hamiltonian) one, as was
the case of the works quoted above.

In this work, we study the formation and dynamics of
vector solitons in nonlocal NLS equations, i.e., in a two-
component NLS model featuring a nonlocal nonlinearity.
Such nonlocal systems arise in a variety of physical settings,
including vapors [24,25] and liquid solutions [26,27] exhibit-
ing thermal nonlinearity (see also the review Refs. [28,29]),
plasmas [30,31], nematic liquid crystals [9,32–34], dipolar
BECs [35], and so on. The model under consideration is
generic and it may be used to describe the interaction between
two incoherently coupled beams, differing in wavelength (as
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in the case of Ref. [10]). Both defocusing and focusing non-
linearities are considered as, e.g., in the case of nematic liquid
crystals where the nonlinearity is generally of the focusing
type, but it can be made defocusing upon doping the nematic
liquid crystals, e.g., with azo dyes [36].

Considering a two-dimensional (2D) setting, we use a
multiscale expansion method to show that the system can
be reduced to a completely integrable system, namely, the
Mel’nikov system in (2 + 1)-dimensions [37]. This system,
which was originally introduced to describe the interaction
of long waves with short wavepackets [38–40], arises in
the description of vector solitons in optics [18] and BECs
[41,42]. In our 2D setup, the Mel’nikov system is composed
of a Kadomtsev-Petviashvili (KP) equation with a source
satisfying a linear Schrödinger equation, and possesses exact
analytical soliton solutions. The latter give rise to approximate
(small-amplitude) vector soliton solutions of the original non-
local NLS system, which are found to be of the following
type: (a) dark-bright solitons, which are supported in the
fully defocusing regime, i.e., when nonlinearities in both
components are of defocusing type, and (b) antidark-bright
solitons, occurring in the case where the components feature
nonlinearities of different types, i.e., defocusing (focusing) for
the antidark (bright) soliton component. Interestingly, the first
have local NLS counterparts, while the latter are unique to the
nonlocal system.

We also perform direct numerical simulations to test the
validity of our analytical investigations, and also investigate
the stability and dynamics of the derived vector solitons.
In particular, we find that small-amplitude solitons of both
types (dark-bright and antidark-bright) are quite robust and
propagate undistorted in the 2D nonlocal NLS setting, with
constant velocity which is correctly predicted by our analysis.
Thus, sufficiently weak solitons do exist and are accurately de-
scribed by our perturbative results. However, we numerically
investigate the dynamics of large-amplitude vector solitons,
which are perturbed along the transverse direction. We find
that, in this case, both soliton types are unstable and are
eventually destroyed. The soliton decay occurs earlier for a
weak nonlocality, while a stronger nonlocality does prolong
the solitons’ lifetimes but it is not able to completely suppress
the instability. Notice that in the case of dark-bright solitons,
the dark soliton component decays into a chain of vortex pairs,
filled by 2D, vorticity-free structures that are formed in the
bright soliton component. Contrarily, antidark-bright solitons
decay into small-amplitude waves.

The paper is organized as follows. In Sec. II, we introduce
the model and study the linear regime. In Sec. III, we use
a multiscale expansion technique to reduce the model to the
Mel’nikov system and derive approximate soliton solutions.
In Sec. IV we present our numerical results. Finally, in Sec. V,
we summarize our findings and present our conclusions.

II. MODEL AND LINEAR REGIME

We consider the propagation of two incoherently coupled
optical beams—generated by different wavelengths, neglect-
ing generation of new frequencies (as, e.g., in the case of
Ref. [10])—in a nonlinear medium. Let u and v be the com-

plex electric field envelopes of the two light beams, and the
real function n be the nonlinear, generally nonlocal, medium’s
response, assumed to obey a diffusion-type equation. Then,
beam evolution is governed by the dimensionless equations,

iut + d1

2
�u − 2g1nu = 0, (1)

ivt + d2

2
�v − 2g2nv = 0, (2)

ν�n − 2qn + 2(g1|u|2 + g2|v|2) = 0, (3)

where subscripts denote partial derivatives. Here, t denotes
the propagation distance (taken to be along the z direction),
� ≡ ∂2

x + ∂2
y is the transverse Laplacian, the coefficients d1,2

and g1,2 characterize, respectively, the diffraction and nonlin-
earity for the two wavelengths. Notice that (for d1,2 > 0) the
cases with g1,2 < 0 or g1,2 > 0 correspond, respectively, to a
focusing or a defocusing nonlinearity.

The above system may find applications in a variety of
nonlocal media. These include thermal media, such as atomic
vapors [24,25] and liquid solutions [26,27] (in this case n
is the light intensity-dependent nonlinear change of the re-
fractive index), plasmas (with n being the relative electron
temperature perturbation) [30,31], as well as nematic liquid
crystals (in this case, n represents the perturbation of the opti-
cal director angle from its static value due to the light beams)
[9,34]. In this latter context of liquid crystals, the parameter
q is related to the square of the applied static field which
pretilts the nematic dielectric [32,33]. Finally, the parameter
ν describes the strength of nonlocality: large ν corresponds to
a highly nonlocal response, while for ν = 0 one obtains the
following vector NLS with local cubic nonlinearity:

iut + d1

2
�u − 2g1

q
(g1|u|2 + g2|v|2)u = 0, (4)

ivt + d2

2
�v − 2g2

q
(g1|u|2 + g2|v|2)v = 0. (5)

Below, for the purposes of our analysis, we assume that all
parameters involved in Eqs. (1)–(3) are positive; an exception
refers to the nonlinearity coefficients g1,2, which will be
allowed to take either positive or negative values, so as to
study both the defocusing and the focusing scenarios.

Furthermore, as we are interested in finding solutions of
the above system in the form of dark-bright or antidark-bright
solitons, we assume—without loss of generality—that the u-
(v-)component supports the dark/antidark (bright) soliton. We
thus supplement the system Eqs. (1)–(3) with the following
boundary conditions:

u → ρ0eiφ0t , v → 0, n → n0, as |x|, |y| → ∞,

(6)

where ρ0, φ0, and n0 are real constants.
To proceed with our analysis, we introduce the Madelung

transformation for the field u, namely, u = √
ρ exp(iφ), where

real functions ρ = ρ(x, y, t ) and φ = φ(x, y, t ) denote the
amplitude and phase, respectively. Then, Eqs. (1)–(3) reduce
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to the following hydrodynamic-type form:

ρt + d1∇ · (ρ∇φ) = 0, (7)

φt + 2g1n + d1

2
(|∇φ|2 − ρ−1/2�ρ1/2) = 0, (8)

ivt + d2

2
�v − 2g2nv = 0, (9)

ν�n − 2qn + 2(g1ρ + g2|v|2) = 0, (10)

where ∇ = (∂x, ∂y) is the gradient operator. It can now be
observed that the simplest nontrivial solution of the above
system, satisfying the boundary conditions Eq. (6), reads

ρ = ρ0, φ = −2g1n0t, v = 0, n = n0 = g1

q
ρ0, (11)

where ρ0 = const. This solution, which has the form of a
continuous wave in component u and the trivial state in
component v, will serve as a “background” on top of which we
will seek soliton solutions. The stability analysis of the above
background solution can be performed upon introducing to
Eqs. (7)–(10) the perturbation ansatz:

ρ = ρ0 + ερ̃, φ = −2g1n0t + εφ̃,

v = εṽ, n = n0 + εñ, (12)

where ε is a formal small parameter (0 < ε � 1), and pertur-
bations ρ̃, φ̃, ṽ, ñ are ∼ exp[i(k · r − ωt )] [here, k ≡ (kx, ky)
and ω are the wave vector and frequency of the perturbation,
respectively, and r ≡ (x, y)]. Substitution of Eq. (12) into
Eqs. (7)–(10) yields—to leading-order in ε—the following
results.

First of all, Eqs. (7), (8), and (10), which decouple from
Eq. (9), lead to the dispersion relation

ω2 = 4d1g2
1ρ0

2q + νk2
k2 + d2

1

4
k4, (13)

where k2 = k2
x + k2

y . The above equation shows that if d1 > 0,

then ω ∈ R∀k ∈ R, i.e., the solution ρ = ρ0, φ = −2g1n0t ,
n = n0 is always stable. In this case, and in the long-
wavelength limit corresponding to (ν/2q)k2 � 1, the disper-
sion relation Eq. (13) simplifies to a Bogoliubov-type form:

ω2 = c2k2 + d2
1

4
αk4, c2 = 2

q
d1g2

1ρ0, (14)

where c is the “speed of sound,” i.e., the propagation speed of
small-amplitude long waves propagating on top of the solution
Eq. (11), while parameter α is given by

α = 1 − 4g2
1νρ0

d1q2
. (15)

As we will see below, the sign (and magnitude) of this
parameter controls the type of solitons that can be supported
by the system.

Finally, in the same context of the linear regime, Eq. (9)
leads to a linear Schrödinger-type dispersion relation,

ω − d2

2
k2 − 2g2n0 = 0. (16)

Obviously, here too, ω ∈ R, ∀k ∈ R, implying that v = 0 is
stable. We can thus conclude that, as long as d1 > 0, solution
Eq. (11) is stable.

III. NONLINEAR REGIME—SOLITON SOLUTIONS

We now proceed by analyzing Eqs. (7)–(10) by means of a
multiscale expansion method. This will lead to the derivation
of an effective Mel’nikov system [37], the solutions of which
will be exploited for the construction of soliton solutions for
the original system Eqs. (1)–(3).

Seek small-amplitude solutions on top of the background
solution Eq. (11) in the form of the following asymptotic
expansions in ε:

ρ = ρ0 + ερ1 + ε2ρ2 + · · · , (17)

φ = −2g1n0t + ε1/2φ1 + ε3/2φ2 + · · · , (18)

v = εQ exp[i(kxx + kyy − ωt )], (19)

n = n0 + εn1 + ε2n2 + · · · , (20)

where the unknown fields ρ j , φ j , n j (with j = 1, 2, . . .) and
Q depend on the slow variables:

X = ε1/2(x − ct ), Y = εy, T = ε3/2t, (21)

where c is the speed of sound [see Eq. (14)]. Notice that,
according to the original boundary conditions Eq. (6), the
unknown fields must satisfy ρ j, φ j, n j, Q → 0 as X,Y →
±∞. Substituting expansions Eqs. (17)–(20) into Eqs. (7)–
(10), and using variables Eqs. (21), we obtain the following
results. First, Eq. (7) yields

O(ε3/2) : −cρ1X + d1ρ0φ1XX = 0, (22)

O(ε5/2) : ρ1T − cρ2X + d1[(ρ1φ1X )X

+ ρ0φ1YY + ρ0φ2XX ] = 0. (23)

From Eq. (8),

O(ε) : −cφ1X + 2g1n1 = 0, (24)

O(ε2) : φ1T − cφ2X + 2g1n2

+ d1

2

(
φ2

1X − 1

2ρ0
ρ1XX

)
= 0, (25)

and Eq. (10) leads to

O(ε) : −qn1 + g1ρ1 = 0, (26)

O(ε2) : νn1XX − 2qn2 + 2(g1ρ2 + g2|Q|2) = 0. (27)

Using Eq. (26), it is readily seen that the compatibility condi-
tion of the leading-order Eqs. (22) and (24) yields the speed
of sound given in Eq. (14). In addition, the compatibility
conditions of the nonlinear Eqs. (23) and (25) can be found
as follows. Multiply Eq. (23) by 2g2

1/q; substitute n2 from
Eq. (27) into Eq. (25), multiply by c and differentiate once
with respect to X . Then, adding the resulting equations, and
using the definition of the speed of sound, as well as the auxil-
iary equation φ1X = (2g2

1/qc)ρ1 [obtained from Eqs. (24) and
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(26)], we find that the compatibility condition of Eqs. (23) and
(25) is the following nonlinear equation:(

ρ1T − d2
1 α

8c
ρ1XXX + 3c

2ρ0
ρ1ρ1X

)
X

+ c

2
ρ1YY + cg2

2g1
(|Q|2)XX

= 0, (28)

where α is given by Eq. (15). Next, we proceed with Eq. (9).
To leading-order [i.e., at O(ε)], this equation yields the linear
dispersion relation Eq. (16), while at O(ε3/2) one obtains kx =
−c/d2. Finally, at O(ε2), we derive the equation

iQY + 1

2ky
QXX − 2g1g2

qd2ky
ρ1Q = 0. (29)

Equations (28) and (29) constitute the Mel’nikov system in
(2 + 1)-dimensions [37], which is composed of a KP equation
with a self-consistent source, which satisfies a Schrödinger
equation. This system possesses soliton solutions of the form

ρ1 = −A sech2 ξ, (30)

ξ ≡ KX X + KY Y + �T,

Q = Bei� sech ξ,

� = −KY ky

KX
X +

(
K4

X − K2
Y k2

y

2K2
X ky

)
Y, (31)

where the soliton amplitude A is given by

A = 1

c2
d2

1 K2
X ρ0α, ρ0 = d1q2

4νg2
1

(1 − α), (32)

with the requirement α < 1 so that ρ0 > 0. In addition, the
real parameters KX , KY , and �, as well as the (generally
complex) amplitude parameter B are connected through the
equation

−c
(
cK2

Y + 2KX �
) + d2

1 α

(
K4

X + 4ρ0B2 g1g3
2

d2
2 q2

)
= 0. (33)

The solution Eqs. (30) and (31) of the Mel’nikov system
can now be used to construct solitons of the nonlocal system
Eqs. (1)–(3). Indeed, approximate soliton solutions, valid up
to order O(ε), can be found upon using at first Eqs. (24) and
(26) to express n1 and φ1 in terms of ρ1:

n1 = g1

q
ρ1, φ1 = 2g2

1

qc

∫
ρ1(X ′)dX ′. (34)

Then, the approximate soliton solution of Eqs. (1)–(3) reads

u ≈ (ρ0 − εA sech2 ξ )1/2

× exp

[
−2i

(
g1n0t + ε1/2 g2

1

qcKX
A tanh ξ

)]
, (35)

v ≈ εB sech ξ exp[i(kxx + kyy − ωt + �)], (36)

n ≈ n0 − g1

q
εA sech2 ξ . (37)

It can readily be observed that Eq. (36) describes a sech-
shaped bright soliton, while Eq. (35) describes two different
types of solitons, namely, dark or antidark ones, for A > 0
and A < 0, respectively: indeed, if A > 0 (A < 0), then the

solution has the form of a density dip (hump) on top of
the background solution (u, v) = [ρ1/2

0 exp(−2ig1n0t ), 0]. It
is important to point out that the sign of A depends on the
sign (and magnitude) of the parameter α. In particular, as
indicated by Eq. (32), if 0 < α < 1 the soliton in the u-
component is dark, while for α < 0 or α > 1 it is antidark.
These requirements are satisfied as long as g2 > 0 and g2 < 0,
respectively, which means that the dark-bright solitons are
formed for g1 > 0 and g2 > 0, while antidark-bright ones
are supported when g1 > 0 and g2 < 0 (see also discussion
below).

It is also relevant, at this point, to discuss the role of
nonlocality on the type of the vector solitons that can be
formed. For this purpose, let us consider the local limit, with
ν → 0. In this case, according to Eq. (15), the parameter
α becomes independent of ν, and takes only the constant
value α = 1. Then, the dark soliton component’s amplitude
is given by the first of Eqs. (32) (the second of Eqs. (32) is
now an identity), while the amplitude B of the bright soliton
component is given by Eq. (33), with α = 1 and with ρ0 being
a free parameter. Thus, in the local limit, one has always
A = (1/c2)d2

1 K2
X ρ0 > 0, regardless of the sign of g2; this

means that, in this limit, only dark-bright solitons are possible.
Hence, antidark-bright solitons can only be supported by the
nonzero nonlocality, i.e., ν = 0, and are unique to this system
without any local counterparts.

IV. NUMERICAL SIMULATIONS

We have also performed direct numerical simulations to
investigate the validity of our analytical predictions. In par-
ticular, we have used a high-accuracy spectral method [43]
to numerically integrate the nonlocal NLS Eqs. (1)–(3), us-
ing initial conditions in the form of the dark-bright and
antidark-bright soliton solutions in Eqs. (35)–(37) for t =
0. In both cases, the initial condition for the u-component
which carries the dark or the antidark soliton (and is thus
characterized by nontrivial conditions at x, y → ∞) was taken
to be u(x, y, 0) = ub(x, y)us(x, y, 0). Here, us(x, y, 0) is the
initial profile of the soliton and ub(x, y) is an almost flat
background of finite extent (in the infinite system, this would
be ub(x, y) = 1), namely, a very broad super-Gaussian of
the form ub(x, y) = exp[−(x/0.8L)12 − (y/0.8L)12], where
x, y ∈ [−L, L]; here, L denotes the size of the computational
domain, taken to be sufficiently large (e.g., of the order of
103). Notice that the use of a background of finite extent is
more realistic, since dark (or antidark) solitons are always
created on top of a finite background in real experiments (see,
e.g., Ref. [23]).

As discussed above, the type of the vector soliton depends
on the sign of the amplitude A, which in turn is controlled by
the sign and magnitude of α. In the simulations, we fixed d1 =
2d2 = g1 = g2 = q = 8ν = 1 and d1 = 2d2 = g1 = −g2 =
q = 8ν/3 = 1 for the case of dark-bright and antidark-
bright solitons, respectively. This choice leads to a back-
ground density ρ0 = 1. Furthermore, dark-bright (antidark-
bright) solitons are characterized by α = 1/2 (α = −1/2),
and amplitudes A = 1/2 (A = −1/2). Other parameter values
that were used [or found consistently from our analysis—
see, e.g., Eq. (33)] are as follows: KX = √

2, KY = 1,
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ky = √
2, as well as c = √

2 and n0 = 1. Finally, kx = −2
√

2
and B = 1/

√
2 (B = 1) for the dark-bright (antidark-bright)

soliton.
Regarding the choice of the signs of g1 and g2, it is

clear that dark-bright solitons exist when the nonlinearities of
both components are of the defocusing type, while antidark-
bright solitons exist when the component carrying the antidark
(bright) soliton features a defocusing (focusing) nonlinearity.

The above parameter values lead to initial conditions,
expressed in terms of the original variables and a sole free
parameter, namely, the small parameter ε. In particular, for
the dark-bright soliton, we get

u(x, y, 0) =
[

1 − 1

2
ε sech2(ε1/2

√
2x + εy)

]1/2

× exp

[
− i

2
ε1/2 tanh(ε1/2

√
2x + εy)

]
, (38)

v(x, y, 0) = 1√
2
ε sech(ε1/2

√
2x + εy)

× exp
[
−i(2

√
2 + ε1/2)x + i

√
2
(

1 + ε

4

)
y
]
,

(39)

n(x, y, 0) = 1 − 1

2
ε sech2(ε1/2

√
2x + εy), (40)

while for the antidark-bright soliton, we have

u(x, y, 0) =
[

1 + 1

2
ε sech2(ε1/2

√
2x + εy)

]1/2

× exp

[
i

2
ε1/2 tanh(ε1/2

√
2x + εy)

]
, (41)

v(x, y, 0) = ε sech(ε1/2
√

2x + εy)

× exp

[
i(2

√
2 − ε1/2)x + i

√
2

(
1 + ε

4

)
y

]
, (42)

n(x, y, 0) = 1 + 1

2
ε sech2(ε1/2

√
2x + εy). (43)

In both cases, we have used the value ε = 0.1. Figures 1
and 2 present results for the dark-bright and antidark-bright
solitons, respectively, depicting three-dimensional plots of the
initial conditions (top panels) and contour plots, showing the
evolution of the solutions’ modulus (bottom panels). As seen,
both soliton pairs remain stable, traveling undistorted with a
constant velocity, up to t = 50, in excellent agreement with
our analytical predictions.

To test the validity of our analytical approximations, we
may compare the numerical and analytical values of the
solitons’ velocities. For instance, in the case of the dark-bright
soliton, the numerically obtained soliton velocity vnum can be
found by the equation

vnum = �x

�t
cos

[
tan−1

(
K̃Y

K̃X

)]
, (44)

where K̃X = (2ε)1/2 and K̃Y = ε, i.e., K̃Y /K̃X = (ε/2)1/2,
while �x is the distance (in x) traveled by the soliton in time
�t . Using �x/�t ≈ 1.346, as found from the simulations,
as well as ε = 0.1, we obtain vnum ≈ 1.313. However, the

FIG. 1. The initial condition, t = 0 (top panels), and the time
evolution, up to t = 50 (bottom panels), of a dark-bright soliton pair;
left (right) panels correspond to the dark (bright) soliton component.
The initial condition shown in the top panels is given by Eqs. (38)–
(40), for ε = 0.1.

analytical prediction for the soliton velocity, van, is

van = �̃

|K̃| , (45)

where |K̃| ≡
√

K̃2
X + K̃2

Y = [ε(ε + 2)]1/2 and the parameter �̃

results from the soliton solution as: �̃ = ε1/2(2 − ε). Using
ε = 0.1, we find van = 1.311, which is in excellent agreement
with the numerical result.

Similar results were obtained for larger values of ε, up to
ε ≈ 0.5 (results not shown here), showing that our analytical
approach is even able to describe soliton pairs of moderate
amplitudes. Nevertheless, in this case, solitons are destroyed,
via emission of radiation, showing smaller lifetimes. This
effect can not be captured by our analytical approach which
is valid only for sufficiently small values of ε. The effects
these values play and the general instability dynamics of these
solitons are further analysed below.

Furthermore, we also investigated the role of nonlocal-
ity on the evolution of the vector solitons. We found that,
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FIG. 2. Similar to Fig. 1, but now for a antidark-bright soliton
pair; left (right) panels correspond to the antidark (bright) soliton
component. In this case, the initial condition shown in the top panels
is given by Eqs. (41)–(43), again for ε = 0.1.

for values of ν of order O(1), qualitatively similar results
were obtained, while if ν becomes significantly larger, then
it obviously attains a scale in terms of ε, and the pertur-
bation theory fails; in this case, the vector solitons of the
analytically found form of Eqs. (35)–(37) decay faster to
radiation. However, close to the local limit (i.e., for small
ν), we found that dark-bright solitons do exist and evolve
according to our analytical predictions (see discussion in
the end of Sec. III), while antidark-bright ones—which are
not supported in the local limit—are almost immediately
destroyed.

To further investigate the dynamics and stability prop-
erties of the dark-bright and antidark-bright solitons in the
2D setting, we have also performed simulations where the
initial states were transversely perturbed. This is done to
establish connections with well-known results regarding the
transverse instability of NLS soliton stripes in the 2D setting
(see, e.g., the review Ref. [44] for scalar settings, as well
as Refs. [45–47] for works in multicomponent systems). We
have thus used the following initial condition, corresponding

FIG. 3. Contour plots showing the evolution of the spatial pro-
files of the perturbed dark-bright solitons’ moduli for ν = 1 (close to
the local NLS limit). Shown are the profiles at t = 0 (initial condi-
tion, top panels), t = 50 (middle panels), and t = 75 (bottom panels).
Left (right) panels depict the modulus of the dark (bright) soliton
component. The dark-bright solitons decay into 2D waveforms, as
observed in the middle and bottom panels.

to a dark- bright soliton located along the y direction, and
traveling along the x direction:

u =
√

1 − w2 tanh(
√

1 − w2x) + iw, (46)

v = v0 + δv0x cos(κ0y), (47)

where u is the dark soliton component, on top of a background
of unit amplitude, and v is the bright soliton component.
Here, w and 1 − w2 denote the dark soliton velocity and
amplitude, respectively [with εA = 1 − w2, as per Eq. (35)].
Furthermore, we have assumed that w is modulated along
the transverse (y) direction as: w = w0[1 + δ cos(κ0y)], where
w0 and δ are the unperturbed value of w and the modulation
strength, respectively, and κ0 is the perturbation wave number.
Furthermore, regarding the bright soliton component, we have
used v0 = b sech(bx) exp(iw0x), with b being the inverse soli-
ton width. In the simulations, we used the following parameter
values: w0 = 0.3, δ = 0.1, κ0 = 3, and b = 0.9. A similar
initial condition was also used for the antidark-bright soliton
pair, namely,

u =
√

1 − w2 sech(
√

1 − w2x) + iw, (48)

v = b sech(bx) exp(iwx), (49)

where u (v) denotes the antidark (bright) soliton component.
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FIG. 4. Similar to Fig. 3, but for the case ν = 10 (stronger
nonlocality). Notice that, for t = 50, although the stripes undergo
a rather strong undulation, they have not decayed as was the case
of the weaker nonlocality. However, in this case too, the dark-bright
solitons eventually decay into 2D structures.

First, we present results pertaining to dark-bright solitons.
To investigate the role of nonlocality, we have performed
simulations for two different values of the nonlocality param-
eter: for ν = 1, corresponding to a weaker nonlocality [close
to the local NLS limit—see Eqs. (4) and (5)], and for ν =
10, corresponding to a stronger nonlocality. Corresponding
results are shown in Figs. 3 and 4, respectively. It is observed
that, in both cases, the solitons are prone to transverse in-
stability and eventually decay. It is worth noticing, however,
that nonlocality can partially suppress the instability; indeed,
comparing Figs. 3 and 4, it is seen that, at time t = 50, the
dark-bright soliton pair has already destroyed in the case
ν = 1, while for ν = 10 undergoes a strong undulation, but
they have not decayed yet.

It is also relevant to focus on the structures emerging
from the onset of the transverse instability. As seen in both
Figs. 3 and 4, and as expected from relevant theoretical results
for the local NLS [44], the dark soliton stripe decays into
a chain of 2D structures, which are vortex-antivortex pairs
(oppositely charged vortices). This can be readily verified in
the left panels of Fig. 5, showing a zoom of the modulus (top)
and phase (bottom) of the dark component, at t = 100, in
the case of ν = 10. The 2D density dips, and especially the
phase profile, which is characteristic of a vortex-antivortex
pair, justify, indeed, the formation of vortex pairs in the dark
soliton component. However, the associated bright soliton
component, shown in the right panels of Fig. 5, is obviously

FIG. 5. Similar to Fig. 4, but for t = 100, where a zoom depict-
ing the density (top panels) and phase (bottom panels) of a pair of
2D structures is shown. Left (right) panels correspond to the dark
(bright) soliton components. The observed state has the form of a
filled vortex pair.

a vorticity-free 2D structure which “fills” the vortex in the
dark component. This filled vortex state is reminiscent to a
vortex-bright soliton structure that has been predicted to occur

FIG. 6. Similar to Fig. 4, but for a perturbed antidark-bright
soliton pair (for ν = 10)—see text. In this case, the solitons decay
to radiation and the instability does not give rise to the formation of
2D structures.
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in two-component BECs [48] (see also the review Ref. [7] and
references therein).

Hence, we can infer that relatively large-amplitude dark-
bright soliton stripes decay, as a result of the onset of trans-
verse instability, into filled vortex-antivortex pairs—or a chain
of vortex-bright solitons. Nevertheless, this is not the case
with antidark-bright solitons. Indeed, as shown in Fig. 6,
perturbed such states are eventually destroyed, via decay into
radiation, under the action of the perturbation.

V. CONCLUSIONS

In conclusion, we have studied the formation and dynamics
of vector soliton stripes in a two-component 2D nonlocal
NLS model. The considered model describes the interaction
between two incoherently coupled optical beams, of different
wavelengths, in nonlocal settings such as thermal media, plas-
mas, and nematic liquid crystals. We have employed a mul-
tiscale expansion method to find solutions which asymptote
to a continuous wave background in the one component, and
to the trivial solution in the other component. We have thus
derived an integrable system in 2D, namely, the Mel’nikov
system, which was introduced some time ago to describe the
interaction between a long wave and a short wave packet.

The soliton solutions of the Mel’nikov system were then
used for the construction of approximate vector soliton so-
lutions of the original nonlocal NLS model. These solutions
turned out to be of two different types: dark-bright soliton
stripes and antidark-bright ones, which are supported in the
system featuring, respectively, defocusing-defocusing or a

defocusing-focusing nonlinearity in each of the two compo-
nents; the latter being unique to the nonlocal system, with no
counterpart in the local case. We have also performed direct
numerical simulations to test the validity of our analytical
approach and also study the dynamics of the obtained soliton
states. We found that small-amplitude states of both types
are indeed supported by the system, as it was shown that
they propagate undistorted with a constant velocity, which
was analytically predicted quite accurately. However, large-
amplitude solitons turned out to be unstable and, typically,
decay into radiation.

We have also studied the transverse instability of the de-
rived vector soliton states. It was found that both dark-bright
and antidark-bright solitons are prone to the transverse insta-
bility, with the nonlocality only partially arresting it: the onset
of the instability takes place at later times in the case where
nonlocality is stronger. We have also found that the transverse
instability of dark-bright solitons, results in the formation of
filled vortex states—reminiscent to vortex-bright solitons that
were predicted to occur in two-component Bose-Einstein con-
densates. However, perturbed antidark-bright solitons were
always found to decay into radiation.

Our analysis and results pave the way for a number of in-
teresting future investigations. For instance, it would be inter-
esting to investigate if other, quasi one-dimensional states—
having, e.g., the form of ring solitons (see, e.g., Ref. [49])—or
purely 2D soliton states, such as lumps (see, e.g., Ref. [50])
can be supported in multi-component nonlocal media. Such
investigations are currently in progress, and relevant results
will be reported elsewhere.
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Nonlinear Dyn. 97, 471 (2019).
[20] I. Danaila, M. A. Khamehchi, V. Gokhroo, P. Engels, and P. G.

Kevrekidis, Phys. Rev. A 94, 053617 (2016).
[21] H. Kiehn, S. I. Mistakidis, G. C. Katsimiga, and P. Schmelcher,

Phys. Rev. A 100, 023613 (2019).
[22] P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, B. A.

Malomed, and R. Carretero-González, Eur. Phys. J. D 28, 181
(2004).

[23] J. Guo, X. Hu, Y. F. Song, G. D. Shao, L. M. Zhao, and D. Y.
Tang, Phys. Rev. A 99, 061802(R) (2019).

[24] D. Suter and T. Blasberg, Phys. Rev. A 48, 4583 (1993).
[25] C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon,

Phys. Rev. Lett. 95, 213904 (2005).
[26] N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev.

Lett. 99, 043903 (2007).
[27] C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo,

Phys. Rev. Lett. 102, 083902 (2009).
[28] W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller,

J. J. Rasmussen, and D. Edmundson, J. Opt. B: Quantum
Semiclass. Opt. 6, S288 (2004).

[29] D. Mihalache, Rom. Rep. Phys. 59, 515 (2007).

042208-8

https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1016/j.revip.2016.07.002
https://doi.org/10.1016/j.revip.2016.07.002
https://doi.org/10.1016/j.revip.2016.07.002
https://doi.org/10.1016/j.revip.2016.07.002
https://doi.org/10.1103/PhysRevLett.97.153903
https://doi.org/10.1103/PhysRevLett.97.153903
https://doi.org/10.1103/PhysRevLett.97.153903
https://doi.org/10.1103/PhysRevLett.97.153903
https://doi.org/10.1364/OL.13.000871
https://doi.org/10.1364/OL.13.000871
https://doi.org/10.1364/OL.13.000871
https://doi.org/10.1364/OL.13.000871
https://doi.org/10.1016/0375-9601(88)90511-7
https://doi.org/10.1016/0375-9601(88)90511-7
https://doi.org/10.1016/0375-9601(88)90511-7
https://doi.org/10.1016/0375-9601(88)90511-7
https://doi.org/10.1364/OE.15.008781
https://doi.org/10.1364/OE.15.008781
https://doi.org/10.1364/OE.15.008781
https://doi.org/10.1364/OE.15.008781
https://doi.org/10.1103/PhysRevA.94.053805
https://doi.org/10.1103/PhysRevA.94.053805
https://doi.org/10.1103/PhysRevA.94.053805
https://doi.org/10.1103/PhysRevA.94.053805
https://doi.org/10.1103/PhysRevA.43.1677
https://doi.org/10.1103/PhysRevA.43.1677
https://doi.org/10.1103/PhysRevA.43.1677
https://doi.org/10.1103/PhysRevA.43.1677
https://doi.org/10.1016/0375-9601(91)90793-8
https://doi.org/10.1016/0375-9601(91)90793-8
https://doi.org/10.1016/0375-9601(91)90793-8
https://doi.org/10.1016/0375-9601(91)90793-8
https://doi.org/10.1103/PhysRevA.44.R1446
https://doi.org/10.1103/PhysRevA.44.R1446
https://doi.org/10.1103/PhysRevA.44.R1446
https://doi.org/10.1103/PhysRevA.44.R1446
https://doi.org/10.1088/0305-4470/29/13/028
https://doi.org/10.1088/0305-4470/29/13/028
https://doi.org/10.1088/0305-4470/29/13/028
https://doi.org/10.1088/0305-4470/29/13/028
https://doi.org/10.1016/S0375-9601(01)00380-2
https://doi.org/10.1016/S0375-9601(01)00380-2
https://doi.org/10.1016/S0375-9601(01)00380-2
https://doi.org/10.1016/S0375-9601(01)00380-2
https://doi.org/10.1007/s11071-019-04992-w
https://doi.org/10.1007/s11071-019-04992-w
https://doi.org/10.1007/s11071-019-04992-w
https://doi.org/10.1007/s11071-019-04992-w
https://doi.org/10.1103/PhysRevA.94.053617
https://doi.org/10.1103/PhysRevA.94.053617
https://doi.org/10.1103/PhysRevA.94.053617
https://doi.org/10.1103/PhysRevA.94.053617
https://doi.org/10.1103/PhysRevA.100.023613
https://doi.org/10.1103/PhysRevA.100.023613
https://doi.org/10.1103/PhysRevA.100.023613
https://doi.org/10.1103/PhysRevA.100.023613
https://doi.org/10.1140/epjd/e2003-00311-6
https://doi.org/10.1140/epjd/e2003-00311-6
https://doi.org/10.1140/epjd/e2003-00311-6
https://doi.org/10.1140/epjd/e2003-00311-6
https://doi.org/10.1103/PhysRevA.99.061802
https://doi.org/10.1103/PhysRevA.99.061802
https://doi.org/10.1103/PhysRevA.99.061802
https://doi.org/10.1103/PhysRevA.99.061802
https://doi.org/10.1103/PhysRevA.48.4583
https://doi.org/10.1103/PhysRevA.48.4583
https://doi.org/10.1103/PhysRevA.48.4583
https://doi.org/10.1103/PhysRevA.48.4583
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.95.213904
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.102.083902
https://doi.org/10.1103/PhysRevLett.102.083902
https://doi.org/10.1103/PhysRevLett.102.083902
https://doi.org/10.1103/PhysRevLett.102.083902
https://doi.org/10.1088/1464-4266/6/5/017
https://doi.org/10.1088/1464-4266/6/5/017
https://doi.org/10.1088/1464-4266/6/5/017
https://doi.org/10.1088/1464-4266/6/5/017


SOLITON PAIRS IN TWO-DIMENSIONAL NONLOCAL … PHYSICAL REVIEW E 101, 042208 (2020)

[30] A. G. Litvak, V. A. Mironov, G. M. Fraiman, and A. D.
Yunakovskii, Sov. J. Plasma Phys. 1, 60 (1975).

[31] A. I. Yakimenko, Y. A. Zaliznyak, and Y. S. Kivshar, Phys. Rev.
E 71, 065603(R) (2005).

[32] M. Peccianti and G. Assanto, Phys. Rep. 516, 147 (2012).
[33] G. Assanto, Nematicons: Spatial Optical Solitons in Nematic

Liquid Crystals (Wiley, New York, NY, 2012).
[34] B. D. Skuse and N. F. Smyth, Phys. Rev. A 79, 063806 (2009).
[35] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,

Rep. Prog. Phys. 72, 126401 (2009).
[36] A. Piccardi, A. Alberucci, N. Tabiryan, and G. Assanto, Opt.

Lett. 36, 1356 (2011).
[37] V. K. Mel’nikov, J. Math. Phys. 28, 2603 (1987).
[38] V. K. Mel’nikov, Lett. Math. Phys. 7, 129 (1983).
[39] V. K. Mel’nikov, Phys. Lett. A 118, 22 (1986).
[40] V. K. Mel’nikov, Phys. Lett. A 128, 488 (1988).
[41] M. Aguero, D. J. Frantzeskakis, and P. G. Kevrekidis, J. Phys.

A: Math. Gen. 39, 7705 (2006).

[42] F. Tsitoura, V. Achilleos, B. A. Malomed, D. Yan, P. G.
Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. A 87, 063624
(2013).

[43] A. Kassam and L. N. Trefethen, SIAM J. Sci. Comput. 26, 1214
(2005).

[44] Y. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117
(2000).

[45] Z. H. Musslimani, M. Segev, A. Nepomnyashchy, and Y. S.
Kivshar, Phys. Rev. E 60, R1170 (1999).

[46] Z. H. Musslimani and J. Yang, Opt. Lett. 26, 1981 (2001).
[47] D. Neshev, W. Krolikowski, D. E. Pelinovsky, G. McCarthy,

and Y. S. Kivshar, Phys. Rev. Lett. 87, 103903 (2001).
[48] K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev.

Lett. 105, 160405 (2010).
[49] T. P. Horikis and D. J. Frantzeskakis, Opt. Lett. 41, 583

(2016).
[50] T. P. Horikis and D. J. Frantzeskakis, Phys. Rev. Lett. 118,

243903 (2017).

042208-9

https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1103/PhysRevE.71.065603
https://doi.org/10.1016/j.physrep.2012.02.004
https://doi.org/10.1016/j.physrep.2012.02.004
https://doi.org/10.1016/j.physrep.2012.02.004
https://doi.org/10.1016/j.physrep.2012.02.004
https://doi.org/10.1103/PhysRevA.79.063806
https://doi.org/10.1103/PhysRevA.79.063806
https://doi.org/10.1103/PhysRevA.79.063806
https://doi.org/10.1103/PhysRevA.79.063806
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1364/OL.36.001356
https://doi.org/10.1364/OL.36.001356
https://doi.org/10.1364/OL.36.001356
https://doi.org/10.1364/OL.36.001356
https://doi.org/10.1063/1.527752
https://doi.org/10.1063/1.527752
https://doi.org/10.1063/1.527752
https://doi.org/10.1063/1.527752
https://doi.org/10.1007/BF00419931
https://doi.org/10.1007/BF00419931
https://doi.org/10.1007/BF00419931
https://doi.org/10.1007/BF00419931
https://doi.org/10.1016/0375-9601(86)90527-X
https://doi.org/10.1016/0375-9601(86)90527-X
https://doi.org/10.1016/0375-9601(86)90527-X
https://doi.org/10.1016/0375-9601(86)90527-X
https://doi.org/10.1016/0375-9601(88)90881-X
https://doi.org/10.1016/0375-9601(88)90881-X
https://doi.org/10.1016/0375-9601(88)90881-X
https://doi.org/10.1016/0375-9601(88)90881-X
https://doi.org/10.1088/0305-4470/39/24/007
https://doi.org/10.1088/0305-4470/39/24/007
https://doi.org/10.1088/0305-4470/39/24/007
https://doi.org/10.1088/0305-4470/39/24/007
https://doi.org/10.1103/PhysRevA.87.063624
https://doi.org/10.1103/PhysRevA.87.063624
https://doi.org/10.1103/PhysRevA.87.063624
https://doi.org/10.1103/PhysRevA.87.063624
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1016/S0370-1573(99)00106-4
https://doi.org/10.1016/S0370-1573(99)00106-4
https://doi.org/10.1016/S0370-1573(99)00106-4
https://doi.org/10.1016/S0370-1573(99)00106-4
https://doi.org/10.1103/PhysRevE.60.R1170
https://doi.org/10.1103/PhysRevE.60.R1170
https://doi.org/10.1103/PhysRevE.60.R1170
https://doi.org/10.1103/PhysRevE.60.R1170
https://doi.org/10.1364/OL.26.001981
https://doi.org/10.1364/OL.26.001981
https://doi.org/10.1364/OL.26.001981
https://doi.org/10.1364/OL.26.001981
https://doi.org/10.1103/PhysRevLett.87.103903
https://doi.org/10.1103/PhysRevLett.87.103903
https://doi.org/10.1103/PhysRevLett.87.103903
https://doi.org/10.1103/PhysRevLett.87.103903
https://doi.org/10.1103/PhysRevLett.105.160405
https://doi.org/10.1103/PhysRevLett.105.160405
https://doi.org/10.1103/PhysRevLett.105.160405
https://doi.org/10.1103/PhysRevLett.105.160405
https://doi.org/10.1364/OL.41.000583
https://doi.org/10.1364/OL.41.000583
https://doi.org/10.1364/OL.41.000583
https://doi.org/10.1364/OL.41.000583
https://doi.org/10.1103/PhysRevLett.118.243903
https://doi.org/10.1103/PhysRevLett.118.243903
https://doi.org/10.1103/PhysRevLett.118.243903
https://doi.org/10.1103/PhysRevLett.118.243903

