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Managing thermal transport in nanostructured materials possesses both theoretical and application value in
thermoelectric and microelectronics design. Though a suppressed thermal conductivity could be easily achieved
through disorder-induced phonon scattering in a superlattice, it is challenging to enhance thermal transport in
a periodically designed lattice. In this paper, we show the possibility of mediating thermal conductivity from
a suppressed to an enhanced value in a Fermi-Pasta-Ulam β superlattice with periodic cells of arithmetically
increased nonlinearity. When the cell length is increased, thermal conductivity in the superlattice crosses over
a suppressed region into an enhanced one and it is even higher than in a homogeneous lattice with the same
nonlinearity strength. The mediation originates from the long-lived nonlinear wave packets as solitons across the
disorder-induced interface between cells of the superlattice, while at the same time the normal vibrational modes
as phonons are suppressed. Our result shows a promising strategy to manipulate thermal transport over a wide
range in a superlattice with strong nonlinearity.
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I. INTRODUCTION

Understanding thermal transport behavior in nanostruc-
tured materials like a semiconductor superlattice is a funda-
mental challenge for thermoelectric energy harvesting, heat
dissipation, design of thermal logic gates and diodes, etc.
[1–6]. For good performance of the thermoelectric materials,
it is intensively studied for strategies to suppress thermal
transport in a superlattice. Various experimental and theo-
retical works suggest an ultralow thermal conductivity of
superlattices achieved by interfacial phonon scattering [7–13],
band-gap-induced group velocity reduction [14,15], phonon
resonance and filtering [16–18], broadband Anderson local-
ization [19], etc. On the other hand, it is more challenging to
achieve a high thermal conductivity in a superlattice because
it is unlikely to avoid the intrinsic disorder at the interface
of its periodic cell, which confers a strong thermal resis-
tance to phonons. Dispersing one material into another one,
the derived thermal conductivity is thus usually lower than
the homogeneous counterpart. To our best knowledge, there
have been very few studies that could enhance the thermal
conductivity of a superlattice [20–22]. They use isotopes to
flatten the phonon dispersion, where one particular structure
might enhance the thermal conductivity under a large mass
mismatch. Therefore, a new strategy is called for to evade the
limit of phonons for adjustment of the thermal conductivity
from suppression to enhancement in a superlattice.

As the temperature or nonlinearity is increased, energy
carriers like solitons rather than phonons could be excited

*chenjige@zjlab.org.cn

in classic lattices like the Fermi-Pasta-Ulam β (FPU-β) lat-
tice with a nonlinear quartic term [3,4,23–32]. Preliminary
research also suggests evidence of nonlinear energy carriers in
some low-dimensional materials whose covalent bonds relate
to strong nonlinearity, such as carbon nanotubes, graphene,
and black phosphorene [33–41]. Solitons are surmised to
play a significant role in anomalous thermal conduction and
thermal rectification. In a perfect integrable system, scattering
of solitons is elastic and no energy exchange occurs in the
collisions of solitons with themselves and phonons [26,42–
45]. Solitons are thus particularly robust in carrying ther-
mal energy against interfacial disorder. Solitons rather than
phonons were argued to be responsible for FPU recurrence
over half a century ago [46,47]. Since then, there has been
ongoing debate about the dominant energy carriers being
solitons or phonons, with studies of the sound velocity, tem-
perature dependence of the thermal conductivity, and phase
shift of wave fronts in the FPU lattice [23–27,30–32]. This
raises the reasonable expectation of soliton-mediated thermal
behavior in a modified FPU lattice (FPU superlattice) as long
as phonons can be suppressed due to the intrinsic disorder at
the cell interface.

In this paper, we study thermal transport in an FPU-β
superlattice with periodic cells of arithmetically increased
nonlinear quartic coefficients and in disorder and homoge-
neous FPU-β lattices with the same nonlinearity strength. The
thermal conductivity of the superlattice is dependent on its cell
length, which reaches a minimum value at a certain length
and then gradually increases to be higher than the value in
the other two lattices. This variation is independent of the
nonlinearity strength of the superlattice. By investigating the
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FIG. 1. (a) Schematic of an FPU-β superlattice (upper, blue lattice) with arithmetically increased nonlinear quartic coefficients from βmin

to βmax in its periodic cell of length W , a disorder lattice (middle, gray lattice) with randomly distributed quartic coefficients between βmin and
βmax, and a homogeneous lattice (bottom, red lattice) with an averaged quartic coefficient 〈β〉 = (βmin + βmax)/2. (b) Temperature gradient
of the three superlattice systems with the nonlinear strength at W = 32 and βmax = 2 [upper, blue line, of the superlattice (s); bottom, gray
line, of the disordered lattice (d); and middle, red line, of the homogeneous lattice (h)]. (c) Thermal conductivity of a superlattice κs (middle,
blue line with x’s), a disorder lattice κd (bottom, gray line with asterisks), and a homogeneous lattice κh (upper, red line with crosses), with
βmax = 2, as a function of W . Green-shaded boxes indicate the minimum and maximum thermal conductivity in the superlattice at W = 32
and W = 2048. (d) κs of βmax = 2–8 in a periodic cell (indicated by lines with different symbols). (e) Variation ratio of the minimum and
maximum difference between the disorder lattice and the superlattices ξmin

d (gray line with open downward triangles) and ξmax
d (gray line with

filled upward triangles), and between the homogeneous lattice and the superlattices ξmin
h (red line with open circles) and ξmax

h (red line with
filled squares), as a function of βmax.

dynamics of phonons and solitons, it is found that long-lived
solitons and suppressed phonons determine the suppressed-to-
enhanced thermal conductivity.

II. METHODS

A schematic of the three lattice systems is shown in
Fig. 1(a), where three lattice systems, namely, an FPU-β
superlattice and disorder and homogeneous lattices with the
same nonlinearity strength, are studied. The adopted FPU
lattice model is given by its dimensionless Hamiltonian as
[26,27,29,30],

H =
N∑

i=1

[
p2

i

2
+ (qi+1 − qi )2

2
+ βi(qi+1 − qi )4

4

]
, (1)

where pi denotes the momentum and qi denotes the
displacement-from-equilibrium position of the ith atom, N
is the total lattice length, and N = 2048. The superlattice is
characterized by two independent parameters, i.e., the cell
length W and the maximum quartic coefficient βmax. The quar-
tic coefficient arithmetically increases from βmin = βmax/W
to βmax in the periodic cell as an arithmetic sequence with a
common difference of βmax/W . The comparative disorder and

homogeneous lattices are also characterized by W and βmax.
The lattice is one supercell with W = N . The supercell repeats
once with W = N/2, which refers to the theoretical limit of
a superlattice. The quartic term is randomly distributed as
βi ∈ [βmin, βmax] in the disorder lattice, while it is the same as
βi = (βmin + βmax)/2 in the homogeneous lattice. Two Nosé-
Hoover heat baths with 24 extra atoms are coupled to the two
ends of the lattices as a heat source, TH = 1.5, and a heat sink,
TL = 0.5. The quartic term in the heat baths is fixed as the
last one in the lattice to avoid the boundary effect (e.g., in the
superlattice, βi = βmin in the heat source and βi = βmax in the
heat sink). Fourier’ s law is applied to calculate the thermal
conductivity κ as [4]

κ = J

(TH − TL )/N
,

J =
〈

1

2
(q̇i+1 + q̇i )

∂H (qi+1 − qi )

∂qi

〉
, (2)

∂H (qi+1 − qi )

∂qi
= −(qi+1 − qi ) − 3βi(qi+1 − qi )

3,

where J is the heat current, 〈·〉 denotes the ensemble av-
erages, and ∂H (qi+1 − qi )/∂qi refers to the atomic force
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FIG. 2. (a) Energy correlation CE (i, t ) of a superlattice (s), disorder lattice (d; gray line with a higher center peak), and homogeneous
lattice (h; red line with a smaller center peak) at t = 500 for temperature T = 1 and W = 32. The orange-shaded area implies a negative
regime of CE (i, t ). (b) Time variations of an energy excitation δE (i, t ) along the superlattice (green-shaded area) and along an extended
homogeneous lattice for an initial pulse H2048(0) = 1 and W = 2 at T = 0. (c) Speed of phonons vs in the superlattice (upper, blue line with
x’s), vd (upper, gray line with asterisks) in the disorder lattice, and vh in the homogeneous lattice (upper, red line with crosses) and speed of
solitons vsoliton (bottom, green line with open circles) excited by H2048(0) = 1 as a function of W . (d, e) Phonon density distributions ρ(ω)
and lifetime distributions τ (ω) as a function of the frequency ω in the superlattice (W = 2, red line; W = 32, green line; and W = 2048, blue
line). (f) Average phonon lifetime τphonon as a function of W in the three lattice systems (superlattice—upper, blue line with x’s; disordered
lattice—upper, gray line with asterisks; and homogeneous lattice—bottom, red line). (g) Decay of soliton energy Hs in the superlattice and
Hd in the disorder lattice with time (W = 2, red line; W = 32, green line; and W = 2048, blue line). (h) Average soliton lifetimes τsoliton as a
function of W in the superlattice and disorder lattice (superlattice, blue line with x’s; disordered lattice, gray line with asterisks).

of the ith atom implemented on the (i + 1)th atom. The
thermal conductivity of the superlattice is denoted κs, the
thermal conductivity of the disorder lattice is denoted κd ,
and the thermal conductivity of the homogeneous lattice is
denoted κh.

III. RESULTS AND DISCUSSION

The typical temperature profiles of a superlattice of W =
32 and βmax = 2 and of disorder and homogeneous lattices
with the same nonlinearity are illustrated in Fig. 1(b). The
intrinsic disorder at the interface of the periodic cell leads to a
temperature discontinuity at the cell ends, which represents

the intrinsic thermal resistance to phonons. Later similar
discontinuities in energy correlations are shown in Fig. 2(a).
A random temperature disorder and a perfect linear tempera-
ture variation are observed in the disorder and homogeneous
lattices.

The typical variations of κ in the three lattice systems as a
function of W are illustrated in Fig. 1(c), where W = 2–2048
(in the form of 2x) and βmax = 2. The variations in the disorder
and homogeneous lattices are simple; κd decreases from its
maximum value 56.55 at W0 = 2 to its minimum value 46.85
at W2 = 2048, and κh increases from its minimum value 62.75
at W0 = 2 to its maximum value 68.06 at W2 = 2048. The
superlattice exhibits a nonmonotonic variation of κs, where it
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first decreases from its peak value 60.53 at W0 = 2 to its min-
imum value 57.41 at W1 = 32, and then gradually increases
to its maximum value 74.92 at W2 = 2048. Interestingly, the
thermal conductivity of the superlattice is always higher than
that of the disorder lattice, as κs > κd , while it is not always
smaller than its homogeneous counterpart, as κs < κh (W �
128) and κs > κh (W � 256). This unexpected mediation
from suppression to enhancement reveals the possibility of
flexible thermal management.

The thermal conductivity κs of the superlattice is adjustable
by the nonlinearity strength with βmax from 2 to 8. As illus-
trated in Fig. 1(d), the minimum and maximum values of the
superlattice always occur at the same cell length, W1 = 32 and
W2 = 2048, with different βmax values (variations of κd and
κh with βmax are shown in PS1 in the Supplemental Material
[48]). To characterize the suppression and enhancement of
κs as a function of βmax, we use the difference ratio of its
extreme values between the disorder and the homogeneous
lattices as

ξmin
d = κs(W1) − κd (W1)

κs(W1)
, ξmax

d = κs(W2) − κd (W2)

κs(W2)
,

ξmin
h = κs(W1) − κh(W1)

κs(W1)
, ξmax

h = κs(W2) − κh(W2)

κs(W2)
, (3)

where κs(W1) and κs(W2) refer to the minimum and maximum
values. The four ratios ξmin

d , ξmax
d , ξmin

h , and ξmax
h could serve

as comparative quantities to illustrate the changes due to
nonlinearity strength between the superlattice and the other
two lattice systems. As shown in Fig. 1(e), four linear re-
lations are obtained. Comparing with the disorder lattice, it
is obtained that ξmin

d = 0.17 and ξmax
d = 0.35 + 0.013βmax,

which refer to the same suppression in both lattice systems
at W1 and a linear enhancement in the superlattice at W2.
Comparing with the homogeneous lattice, it is obtained that
ξmin

h = −0.15 − 0.014βmax and ξmax
h = 0.098, which refer to

a linear suppression in the superlattice at W1 and the same
enhancement in both lattice systems at W2. The suppression
ratio (−0.014βmax) and enhancement ratio (0.013βmax) are
quite close, which implies the same microscopic mechanism
in governing the thermal transport mediation.

Consistently, we have also considered the thermal con-
ductivity variations by varying the lattice lengths. We find
similar suppressed-to-enhanced mediation by decreasing or
increasing the lattice lengths in the three lattice systems
(please see variations of κs, κd , and κh with N = 512 and 4096
in the Supplemental Material [48]). Interestingly, it is also
found that superlattice systems with different W values exhibit
similar logarithm increases: κs ∼ 9.56 log2 N (W = 2), κs ∼
9.52 log2 N (W = 32), and κs ∼ 9.73 log2 N (W = 512). The
logarithm dependence of the thermal conductivity on the lat-
tice length indicates a strong anomalous thermal conductivity
divergence due to the enhanced nonlinearity strength in the
FPU superlattice. The logarithm dependence of the thermal
conductivity on the lattice length of the superlattice was
similarly found in a two-dimensional FPU disk model [49].
There is also no thermal rectification effect in the superlattice
upon changing the increased nonlinearity to be decreased
nonlinearity in its cell (please see κ ′

s in the Supplemental
Material [48]).

To understand the microscopic origin of this suppressed-to-
enhanced mediation in the superlattice, we study the dynamics
of the energy carriers, namely, the speed and scattering of
phonons and solitons. Phonons as harmonic vibrational modes
could be extracted from fluctuations while solitons are masked
by fluctuations in thermal equilibrium. Therefore, convention-
ally, the equilibrium calculations are applied to identify the
properties of phonons, while the momentum excitations in the
static lattice are applied for solitons [25,26,31,32]. First, time
variations in the energy correlation CE (i, t ) [27,29,30] and
energy excitation δE (i, t ) [26,28,40,41] are calculated to get
the spatiotemporal spreading of an initial energy fluctuation
as

CE (i, t ) = 〈
Hi(t )
H0(0)〉
〈
H0(0)
H0(0)〉 , 
Hi(t ) = Hi(t ) − 〈Hi(t )〉,

(4)

δE (i, t ) = H ext
i (t ) − Hnonext

i (t ), (5)

where CE (i, t ) is calculated in an equilibrium ensemble at
temperature T = 1. Hi(t ) refers to the total energy of the
ith atom at time t . H ext

i (t ) refers to the total energy of the
ith atom at time t , which starts from the initial condition of
a pulse H2048(0) by adding the atomic velocity v2048(0) =
−√

2H2048(0) at time t = 0 and temperature T = 0. Hnonext
i (t )

refers to the total energy of the ith atom at time t , which starts
from an initial condition without any pulses at temperature
T = 0, and Hnonext

i (t ) = 0 in the FPU lattice systems. CE (i, t )
could be used to describe the speed of phonons by measuring
the peak positions of the propagating fronts, while δE (i, t )
could be used to describe the speed of solitons by measuring
the excited solitary wave fronts. As illustrated in Fig. 2(a),
the speeds of phonons are almost identical for W = 32 in
the three lattice systems, where vs = 1.45 in the superlattice,
vd = 1.45 in the disorder lattice, and vh = 1.50 in the ho-
mogeneous lattice (please see the time variations of CE (i, t )
in the Supplemental Material [48]). Figure 2(c) shows that
the speed of phonons is insensitive to W in the three lattice
systems (their differences are within 3%). Discontinuity at
the cell interface of the superlattice is observed in CE (i, t ),
which represents its intrinsic arithmetical correlation (CE (i, t )
values of all W ’s are illustrated in the Supplemental Mate-
rial [48]). The negative regime observed in the superlattice
excludes CE (i, t ) as a probability distribution. Meanwhile, as
illustrated in Fig. 2(b), two solitons, excited by an initial pulse
H2048(0) = 1, transport along the superlattice of W = 2 from
right to left (vsoliton = 1.02) and along the extended ho-
mogeneous lattice in the opposite direction (vsoliton = 1.03).
As illustrated in Fig. 2(c), the speed of solitons vsoliton

is identical in the three lattice systems and insensitive to
W (vsoliton > 1, and it is dependent on its energy as illus-
trated in the Supplemental Material [48]). As a result, it
implies that thermal mediation does not originate from carrier
speed variations.

Next, the phonon power spectrum ρ(ω) and lifetime spec-
trum τ (ω) are calculated to estimate the average lifetime of
phonons τphonon. The time variation of soliton energy decay is
calculated to estimate the average lifetimes of solitons τsoliton.
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In the superlattice, they are calculated as [50,51]

ρ(ω) = 1

2π

∫
〈vi(t )vi(0)〉e−iωt dt (6)

τ (ω) = 1

1 − 1
e

∫ tc

0

〈
Hω(t )
Hω(0)〉
〈
Hω(0)
Hω(0)〉dt,


Hω(t ) = Hω(t ) − 〈Hω(t )〉, (7)

τphonon =
∫

τ (ω)ρ(ω)dω∫
ρ(ω)dω

, (8)

Hs(t ) =
∑

i∈soliton

δE (i, t ), τsoliton =
〈

NHs(0)

∂Hs(t )/∂t

〉
. (9)

For calculations of phonons, vi(t ) = q̇i(t ) and vi(0) =
q̇i(0) are the velocities of the ith atom at times t and 0,
and 
Hω(t ) is the energy fluctuation of a phonon mode
ω. For each phonon mode ωk , its energy is calculated by
Hωk = 1

2 (P2
k + ω2

k Q2
k ), and Pk = ∑N

i=1
√

miviV k
i = ∑N

i=1 viV k
i

and Qk = ∑N
i=1

√
miqiV k

i = ∑N
i=1 qiV k

i are the relative canon-
ical momentum and canonical coordinate. The lifetime of
phonons is derived based on the single-mode relaxation time
approximation. Under this approximation, a relaxation time is
assigned to each phonon mode and it represents the temporal
response of the lattice due to the particular activated phonon
mode. Therefore, as discussed in the literature [51,52], the
lifetime of a particular phonon mode can be defined by the
time integral of the autocorrelation of its energy fluctuation
from the equilibrium value. Since the autocorrelation decays
exponentially, the infinite time integral of calculating the
phonon lifetime τ (ω) could be numerically cut off at a particu-
lar small value. In our calculations, the cutoff value of the time
integral is selected to be tc where the autocorrelation is smaller
than 1/e, and τphonon is calculated by averaging the lifetime of
all 2048 phonon modes. Calculation details for each phonon
mode are discussed in the Supplemental Material [48].

For calculation of solitons, Hs(t ) is the energy of a soliton
at time t, Hs(0) is its initial energy, and N = 2048 is the
lattice length. Here i ∈ soliton indicates that the summation
is performed over the width of the solitons (usually it crosses
about 8–10 lattice sites) [26,45]. Since solitons are supersonic
and strongly centralized, δE (i, t ) = 0 when the summation
is out of the range of the solitons. The decay procedure
of a soliton by propagating from its excitation point (the
right end of the superlattice) to the other side boundary (the
left end of the superlattice) provides a numerical measure
to compare its robustness to the interfacial disorder in the
superlattice. The lifetime of solitons in the superlattice could
be numerically compared by τsoliton. τsoliton is calculated by
averaging the lifetime of solitons excited by an initial pulse
H2048(0) from 0.875 [v2048(0) = −√

2H2048(0) = −1.32] to
1.125 [v2048(0) = −1.5] within the time N/vsoliton. τsoliton de-
notes the average lifetime in which a soliton would decay to be
its averaged energy after propagating from one end to another
in the lattice.

Typical ρ(ω) and τ (ω) values of the superlattice are shown
in Figs. 2(d) and 2(e), and the average lifetimes of phonons
in the three lattice systems are illustrated in Fig. 2(f). In-
terestingly, compared with the variation of κs in Fig. 1(c),
a complete opposite variation of τphonon is observed in the

superlattice as a function of W , where the maximum τphonon

occurs at W = 32 and two minimum τphonon occur, at W = 2
and 2048. Similar opposite variations between τphonon and κd

are observed in the disorder lattice. Meanwhile, soliton decay
in the superlattice and the disorder lattice are illustrated in
Fig. 2(g) (it is negligible in the homogeneous lattice without
interfacial disorder). Compared with the exponential decay of
phonons, the decay is very slow (slower than a power-law
decay) due to the particlelike nature of solitons. For example,
in the superlattice with W = 2, a soliton exhibits a slow
power-law decay at first (t < 256) and then the decay is
negligible in the following time (scattering of solitons with
other W ’s are illustrated in the Supplemental Material [48]).
Similar behavior of solitons is observed in the disorder lattice.
The lifetimes of solitons τsoliton as a function of W in the
superlattice and disorder lattice are illustrated in Fig. 2(h),
where perfect agreement with the variation of κs and κd is
observed. The negative (totally opposite) predication from
phonons and the positive predication from solitons imply the
long-lived solitons rather than the suppressed phonons as the
microscopic mechanism of the thermal conduction mediation
in the superlattice and disorder lattice. The homogeneous
lattice relates to the usual FPU model in the literature. The
phonon-mediated variation indicates that thermal transport
is more determined by phonons if no interfacial scattering
occurs. On the other hand, if phonons were suppressed by
the interfacial scattering, solitons would become the dominant
energy carriers in the FPU lattice.

Here we would like to emphasize that, in this paper, the
analysis of phonons is under the harmonic approximation.
A linearized algebra equation is derived for each atom to
solve the eigenvalue of the dynamic matrix and thus phonons
refer to the classic definition as discrete harmonic oscillation
modes. The nonlinear effect is considered in the single-mode
relaxation time approximation of phonons and the analysis
of solitons. It is different from the effective (renormalized)
phonon approximation [30], where the mean-field treatment
of nonlinear terms of each atom is used to renormalize the
eigenvalue (eigenfrequency) of phonons. Meanwhile, we are
aware that disorder-induced localization could lead to an ab-
sence of diffusion of waves in a lattice with sufficiently large
randomness (usually, of mass) and consistently affect thermal
transport in nonlinear lattices. It is known that disorder of
mass would destabilize solitons, while strong nonlinearity
would reduce Anderson localization [19,53]. Therefore, it
would be extremely difficult to clearly distinguish the contri-
bution of localization to lattices with disordered nonlinearity
rather than mass. In this paper, we focus our attention on
elaborating the contributions of solitons and phonons to the
thermal mediation. By comparison with the homogeneous and
superlattice cases, it would be helpful to know that, in the
disordered lattice, the lifetime of solitons exhibits a tendency
to decay and the lifetime of phonons exhibits a tendency to
be prolonged when the cell length is increased. The explicit
role of the localization effect remains for future study. Fur-
thermore, the in-band discrete breathers within the phonon
frequency are unstable and would rapidly decay in a non-
linear lattice [54–56]. In-band discrete breathers are usually
found in lattice systems with both nearest- and next-nearest-
neighbor interactions [57,58]. Since only nearest interactions
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are considered in our lattice model, we think that the unstable
discrete breathers are unlikely to affect our numerical analysis
of phonons using the parameters in this paper.

IV. CONCLUSION

In summary, we find suppressed-to-enhanced thermal con-
ductivity mediation in an FPU-β superlattice with periodic
cells of arithmetically increased nonlinearity. The dynamics
of energy carriers, i.e., phonons and solitons, are calculated
to understand the microscopic mechanism. It is found that the
long-lived solitons and suppressed phonons across the disor-
dered interface determine the enhanced thermal conductivity
in the superlattice. Similar soliton-enhanced and the usual
phonon-mediated thermal transport behaviors are observed

in disorder and homogeneous lattices. Our finding implies
a new strategy to achieve suppressed-to-enhanced thermal
conductivity in a superlattice through long-lived nonlinear
energy carriers like solitons.
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