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Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure
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Origami-based mechanical metamaterials and metastructure have been demonstrated to exhibit unique
properties originating from their intricate geometries of folding. This research aims to extend the current
investigation level from quasistatics to dynamics. In detail, this research focuses on the wave dynamics of
a metastructure composed of stacked Miura-origami (SMO) units. The SMO unit could possess two stable
configurations, endowing the metastructure with rich possibilities in the layout of its periodic repeating cell.
Through linear dispersion analyses and numerical studies, we show that the long-desired stopband tunability
and programmability of the metastructure along the three principal directions can be acquired by strategically
programming the layout of the periodic cell. Based upon that, we further discover that energy supratransmission
through the metastructure is possible within the stopband by increasing the driving amplitude. Through
numerical means, the amplitude threshold of supratransmission is obtained. We demonstrate that the fundamental
mechanism that triggers the supratransmission phenomenon is the transition of the responses from the low-
energy intrawell oscillations to the high-energy interwell oscillations. Numerical studies also indicate that the
supratransmission threshold can be effectively tailored by adjusting the periodic cell layout. The results of this
research provide a wealth of fundamental insights into the origami wave dynamics and offer useful guidelines
for developing origami metastructures with tunable and programmable dynamic characteristics.
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I. INTRODUCTION

Recently, there are growing appeals for origami structures.
As an ancient art of paper folding, origami has been widely
used in many research fields such as bionics, architecture,
mathematics, material science, and robotics. For example,
inspired by the exquisite folding pattern of the earwig wing,
a spring origami model was developed for achieving tunable
and programmable morphing functionalities [1]. Actuated by
an external Hall effect sensor array, a miniature magnetic
origami robot has been designed and prototyped for potential
in vivo applications [2]. The above ingenious engineering
structures all benefit from the infinite and rich geometries
of origami. In fact, complex three-dimensional (3D) shapes
can be obtained by folding two-dimensional (2D) flat sheets
based on meticulously designed crease patterns. In addition
to constructing delicate 3D structures, another useful aspect
of origami is that folding could induce attractive and even
unorthodox mechanical properties that are missing in conven-
tional materials and structures. For example, origami-based
mechanical metamaterials and metastructures [3] have been
demonstrated to exhibit negative Poisson’s ratios [4], struc-
tural multistability [5–7], programmable stiffness [8–11], self-
locking [12], mechanical diode effect [13], and recoverable
collapse [14], etc.
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Although substantial progress has been achieved in the
mechanics of origami, previous studies mainly focused on
the static or quasistatic characteristics, and the dynamic
folding/unfolding behavior of origami has been relatively
unexplored Note that in practice, origami-based structures
will inevitably work in dynamic environment. For example,
origami devices may suffer from external excitations, and
origami metamaterials and metastructures may serve as media
for wave propagation. Therefore, extending the origami study
from statics to dynamics is a natural next step. Roughly
speaking, the limited current studies on origami dynamics can
be divided into two categories, namely, vibration dynamics
and wave dynamics. In terms of vibration dynamics, Fang
et al. conducted a comprehensive investigation on the rich dy-
namics of a bistable stacked Miura-origami (SMO) structure.
It has been demonstrated theoretically and experimentally that
the intrinsic bistability could induce complex dynamical be-
haviors, including regular periodic oscillations, subharmonic
oscillations, and chaotic oscillations [15]. In terms of wave
dynamics, Yasuda et al. investigated the nonlinear wave prop-
agation in origami-based metamaterials consisting of Tachi-
Miura polyhedron (TMP) cells [16] and triangulated cylin-
drical origami (TCO) cells [17]. They found that the TMP-
based and the TCO-based metamaterials can be highly use-
ful for mitigating impacts by converting compressive waves
into rarefaction waves. In another study, Thota et al. de-
veloped an origami-based metastructure for tuning phononic
bandgap via folding [18,19]; this design concept has also been
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employed for developing a reconfigurable origami traffic
noise barrier [20].

Note that although there is a lack of research on origami
wave dynamics, considerable efforts have been devoted to the
wave propagation in conventional nonlinear and multistable
metastructures, especially in terms of their bandgaps and non-
linear supratransmission effects. For elastic waves, bandgaps
are defined as the frequency range in which wave transmission
is prohibited in the investigated periodic structure [21]. Such
phenomena can be utilized in designing acoustic filters, noise
silencers, and vibration shields [22]. Generally, metamaterials
and metastructures rely on structural periodicity to induce
Bragg scattering effects [23] and to create bandgaps at cer-
tain frequency ranges [24,25]. Providing that the oscillation
amplitude is small, most research on band structures are
based on linear dispersion analysis. In detail, by linearizing
the system about its stable state and assuming solutions in
the form of a traveling wave, the model can be reduced
into a standard eigenvalue problem, and the band structure
can be determined by sweeping the wave number. Several
methods have been developed to calculate the bandgaps of
periodical structures, such as the transfer matrix method
[26–28], the finite different time-domain method [29,30], the
multiscattering theory [31], and the finite element method
[21,32]. However, when the driving frequency locates within
the stopband of the nonlinear periodic structure, there exists a
threshold of the driving amplitude, beyond which a sudden in-
crease in the energy penetration through the medium happens
due to the intrinsic nonlinear process. Such a phenomenon
was first observed by Geniet and Leon and was named as
nonlinear supratransmission [33]. Due to its potential ap-
plications in energy transmission and waveguide, consider-
able research efforts have been devoted to the analysis of
supratransmission in different physical systems, such as the
Fermi Pasta Ulam chain [34], the sine-Gordon and Klein-
Gordon chains [35,36], nonlinear waveguides [37,38], the
discrete electrical lattices [39], etc. Determining the amplitude
threshold is a key issue in analyzing the supratransmission
phenomenon. Several kinds of indexes have been proposed
to evaluate the threshold, including the energy flux [40],
the injected energy [41], the total kinetic energy [34], and
the velocity transmissibility [42]. To better understand the
underlying mechanism and the sources, the supratransmission
thresholds were also surveyed from the perspective of saddle-
node bifurcation [37] and homoclinic orbit approach [38].

In the abovementioned studies, most metamaterials and
metastructures are built upon either hypothetical elements
(such as sine-Gordon and Klein-Gordon [33]) or conven-
tional nonlinear oscillators (such as periodic bistable chain
[41,43]). They can hardly be utilized for constructing practical
structures. Evolution to a truly 3D system could serve as
a better platform through which we would discover new
characteristics of the band structure that have not been un-
covered in previous studies. To fill this gap, we explore the
utilization of origami, a fundamentally 3D structure with rich
geometries and mechanical properties, such as the structural
multistability and anisotropy. Specifically, in this paper, we
focus on the stacked Miura-origami (SMO) structure, which
has two stable configurations that are topologically different,
namely, the nested-in and the bulged-out configurations [14].

The SMO structure is also a characteristic anisotropic 3D
structure with distinctive constitutive relations along the three
principal axes [44]. Moreover, serving as a constituent cell, the
SMO structure can be tessellated along the three axes, and the
elastic wave can also propagate along these three directions.
The abovementioned features of the SMO structure, therefore,
bring exciting opportunities to the research on the wave prop-
agation in metamaterials and metastructures.

To advance the state of the art, the objectives of this re-
search are twofold. First, based on the modularization concept
and the linear wave propagation theory, we aim to explore
the excellent bandgap tunability and programmability of the
SMO metastructure in different wave propagation directions.
Second, through in-depth numerical studies, we seek to unveil
the supratransmission phenomena in origami metastructure
and uncover its underlying mechanism that has never been
reported. In doing so, this investigation could enhance our
understanding of origami wave dynamics and provide useful
design guidelines for creating real 3D engineering systems
with the long-desired tunability and programmability of the
wave propagation characteristics.

The rest of this paper is organized as follows. Section II
reviews the fundamental geometry and quasistatic mechanics
of the SMO structure. In Sec. III, the governing equations
describing the nonlinear dynamics of the SMO metastructure
is derived, followed by dispersion analysis based on the lin-
earized system. In Sec. IV, we discuss the bandgap tunability
and programmability of the metastructure originating from
the structural bistability. We also demonstrate in this section
that unlike conventional 1D lattices, the bandgaps of the
origami metastructure can also be tuned and programmed in
the other directions. In Sec. V, we move our focus to the
supratransmission phenomenon when the driving amplitude is
increased. The correlations between the threshold amplitude
and the metastructure configuration are established, and the
fundamental mechanism triggering the supratransmission is
explored. Conclusions of this research and heuristic discus-
sions are presented in Sec. VI.

II. GEOMETRY AND MECHANICS OF A STACKED
MIURA-ORIGAMI UNIT

A stacked Miura-origami (SMO) unit consists of two
Miura-origami sheets (sheet A and sheet B) [Fig. 1(a)]. The
crease pattern of each sheet can be defined by the lengths of
the two adjacent lines (ak, bk) and the sector angle between
them (γk), where k = A, B, denoting sheet A and sheet B,
respectively.

Under the rigid-folding assumption, the SMO unit retains a
single degree-of-freedom (DoF) for folding. The folding mo-
tion can be characterized by the folding angle θA or θB defined
as the dihedral angle between one of the Miura-origami facets
and the reference x-o-y plane [Fig. 1(b)]. The parameters of
the two Miura-origami sheets are not independent; rather, they
have to satisfy the following compatibility conditions:

bA = bB = b, aB cos γB = aA cos γA,

cos θB tan γB = cos θA tan γA. (1)
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FIG. 1. (a) Geometry of the SMO unit. (a) The crease patterns
of sheets A and B, the internal solid and dashed lines represent the
“mountain” and “valley” creases, respectively. (b) 3D configuration
of an SMO unit. (c) A single SMO structure at the bulged-out
(θA < 0)and the nested-in (θA > 0) configurations.

Without loss of generality, θA is selected as the independent
variable to describe the configuration of the SMO unit. De-
pending on whether θA ∈ (0, π/2) or θA ∈ (−π/2, 0), the
SMO unit would exhibit two topologically different con-
figurations, namely, nested-in and bulged-out configurations
[Fig. 1(c)].

The external geometries (i.e., the length, the width, and the
height) of the SMO unit can be described by

L = 2b cos θA tan γA√
1 + cos2θA tan2γA

,W = 2aA

√
1 − sin2θA sin2γA,

H = aB sin θB sin γB − aA sin θA sin γA. (2)

Folding of the SMO unit can also be described by the dihedral
angles ρki(k = A, B; i = 1, ..., 4) between the adjacent facets
[Fig. 1(b)], i.e.,

ρk1 = ρk3 = π − 2θk, ρk4 = 2π − ρk2,

ρk2 = 2 arcsin

(
cos θk√

1 − sin2θk sin2γk

)
. (3)

Particularly, for the nested-in configuration, we assign ρA2 ∈
(0, π ), and for the bulged-out configuration, ρA2 ∈ (π, 2π ).
The dihedral angle at the connecting creases between sheet A
and sheet B can be expressed as

ρC = θB − θA. (4)

Under the rigid-folding assumption, the folding motion is
considered as the rotation of the rigid facets with respect to
the elastic hingelike creases. In this research, we assign kA,
kB as the torsional stiffness per unit length for the creases
in sheet A and sheet B, respectively, and kC as the torsional
stiffness per unit length for the connecting creases. Hence,
the torsional stiffness constants corresponding to each crease
can be determined. In sheet A, we have KA1 = KA3 = kAb
and KA2 = KA4 = kAaA; in sheet B, we have KB1 = KB3 =
kBb, KB2 = KB4 = kBaB; for the connected lines, we have
KC = kCb. Hence, the total potential energy of an SMO unit

TABLE I. Design parameters of the SMO unit.

Parameters Values Parameters Values

bA = bB = b 26.7 mm kA = kC 0.2 N/m
aA 38.1 mm kB 1.4 N/m
aB 43.4 mm θ0

A −60◦

γA 60◦

originating from the torsional stiffness at the creases yields

� = 1

2

[
4∑

i=1

KAi
(
ρAi − ρ0

Ai

)2 +
4∑

i=1

KBi
(
ρBi − ρ0

Bi

)2

+ 4KC
(
ρC − ρ0

C

)2
]
, (5)

where ρ0
Ai, ρ

0
Bi, ρ

0
Ci denote the dihedral angle when the SMO

unit is at its stress-free configuration with θA = θ0
A.

Fang et al. have found that the SMO unit would become
bistable when the crease torsional stiffness of the sheet B
creases (KBi) is sufficiently larger than sheet A creases (KAi)
and connecting crease (KC), or the stress-free folding angle
(θ0

A) far deviates away from 0° [15,44]. In this research, the
design parameters of an SMO unit are listed in Table I, where
the stiffness ratio μ = 7 to ensure bistability. In what follows,
unless otherwise noted, all studies are based on this design.
Based on these parameters, Figs. 2(a)–2(c) displays the po-
tential profiles of the SMO unit along the height, the length,
and the width directions. It shows that with these parameters,
the SMO unit is essentially bistable, with a nested-in and a
bulged-out stable configurations.

Taking derivatives of the potential energy with respect to
the H, L, and W :

FH = d�

dH
= d�

dθA

(
dH

dθA

)−1

,

FL = d�

dL
= d�

dθA

(
dL

dθA

)−1

,

FW = d�

dW
= d�

dθA

(
dW

dθA

)−1

, (6)

the force-displacement relations along the height, the length,
and the width directions can be obtained [Figs. 2(d)–2(f)]. It
reveals that the constitutive relations along the three princi-
pal directions are qualitatively different. We will discuss in
Sec. IV that such distinct constitutive relations would trigger
different wave propagation characteristics.

III. MODELING OF THE SMO METASTRUCTURE

Figure 3 displays schematic designs of the SMO metas-
tructures, which consists of 61 SMO units. Since the SMO
unit is a true 3D structure, the metastructure can be ob-
tained by tessellating the constituent units in series along
the length (L), the width (W ), or the height (H) directions,
showing in Figs. 3(a)–3(c), respectively. Here, connections
between adjacent cells are achieved by rigid rods, such
that folding of the constituent units remain independent.
In what follows, the modeling will be exemplified by the
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FIG. 2. The energy landscapes (a), (b), and (c) and the force-displacement curves (d), (f), and (e) of the SMO unit along different
orientations. The solid circles denote the stable bulged-out and nested-in configurations.

scenario that the metastructure is connected along the height
direction.

To simplify the modeling, we equivalently represent the
mass of the SMO unit into a lumped mass m and the force-
displacement relation into a nonlinear spring such that each
SMO unit along the height direction can be described as a non-
linear lumped-mass oscillator. Considering that the tangent
stiffness around the stable nested-in and the stable bulged-out
configurations could be significantly different, we use two

different nonlinear oscillators to represent them, denoted
by the orange and blue circles, respectively. To precisely
tackle the nonlinear force-displacement relation and to ensure
computational efficiency, we use a 15th-order polynomials
to approximate the force-displacement curve. Specifically,
we use Fin(s) and Fout (s) to represent the constitutive re-
lation corresponding to the nested-in and the bulged-out
configurations, respectively, where s denotes the deforma-
tion of the unit measuring from the corresponding stable

Rod connections

zinput z[2]1 z[2]2 zoutputz[2]3

Nested-in Bulged-out

1st cell 20th cell

)b()a(

(c)

(d)

#0 #1 #2 #3
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06#6#5#4# #59#58#57

Displacement excitation Propagation direction

Fixed 
boundary
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FIG. 3. Conceptual designs and the equivalent model of the SMO metastructure. The metastructures are constructed by connecting SMO
units in series along (a) the length direction, (b) the width direction, and (c) the height direction via rigid rods. (d) A schematic nonlinear
oscillator representation of the metastructure given in (c). A single SMO unit is equivalently modeled as a lumped mass with a nonlinear spring.
The nested-in and the bulged-out configuration of the constituent SMO units are represented by orange circles and blue circles, respectively.
A periodic repeating cell is highlighted with a red dashed box.
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configuration.

Fin(s) = α1s + α2s2 + ...α15s15,

Fout (s) = β1s + β2s2 + ...β15s15. (7a)

s = H − Hin for Fin,

s = H − Hout for Fout. (7b)

Based on the above simplification, the metastructure can then
be described as a chain of nonlinear oscillators [Fig. 3(d)],
where all masses are equal, and only the nearest neighbors
have direct effects on each other. The actuation is applied
on the left side of the chain, which can be modeled as a
displacement input zin applied to the mass of the first oscillator
(#0) next to the left boundary. On the right side of the chain,
the last oscillator (#60) connects with a fixed boundary by a
nonlinear spring Fin(s) to ensure periodicity. The output signal
zout is measured from one cell away from the boundary, i.e.,
the mass in the #57 oscillator.

Assuming that a periodic cell consists of three SMO units
showing in Fig. 3(d), equations of motion (EOM) for the pth
cell can be expressed as

mz̈[p]1 + Fout (z[p]1 − z[p−1]3) − Fin(z[p]2 − z[p]1) = 0, (8a)

mz̈[p]2 + Fin(z[p]2 − z[p]1) − Fout (z[p]3 − z[p]2) = 0, (8b)

mz̈[p]3 + Fin(z[p]3 − z[p]2) − Fout (z[p+1]1 − z[p]3) = 0. (8c)

Equation (8a) is valid to ∀p ∈ [2, 20], Eq. (8b) is valid to ∀p ∈
[1, 20], and Eq. (8c) is valid to ∀p ∈ [1, 19]. The EOM for the
first and last oscillator in the metastructure can be modified as

mz̈[1]1 + Fout (z[1]1 − zinput ) − Fin(z[1]2 − z[1]1) = 0, (9a)

mz̈[20]3 + Fin(z[20]3 − z[20]2) − Fin(0 − z[20]3) = 0. (9b)

In the above equations, z[p]q denotes the global displacement
of the mass in the p-th oscillator of the qth cell (p = 1, ..., 20)
and q = 1, 2, 3 in this example. The initial positions of the
lumped masses locate at the stable nested-in or bulged-out
configurations.

Considering small amplitudes of the displacement input,
the following transformation is introduced:

z[p]q = εz̃[p]q(p = 1, ..., 20; q = 1, 2, 3). (10)

Hence, z[p]q becomes of order O(ε) and z̃[p]q becomes of order
O(1). Substituting Eqs. (7) and (10) into Eqs. (8) and (9), and
neglecting the high-order terms of ε, the EOM yields

m ¨̃z[p]1 + kout (z̃[p]1 − z̃[p−1]3) − kin(z̃[p]2 − z̃[p]1) = 0, (11a)

m ¨̃z[p]2 + Fin(z̃[p]2 − z̃[p]1) − Fout (z̃[p]3 − z̃[p]2) = 0, (11b)

m ¨̃z[p]2 + Fin(z̃[p]2 − z̃[p]1) − Fout(z̃[p]3 − z̃[p]2) = 0, (11c)

and

m ¨̃z[1]1 + Fout (z̃[1]1 − z̃input ) − Fin(z̃[1]2 − z̃[1]1) = 0, (12a)

m ¨̃z[20]3 + Fin(z̃[20]3 − z̃[20]2) − Fin(0 − z̃[20]3) = 0, (12b)

where kin = α1 and kout = β1, denoting the corresponding
linearized stiffness of the origami cell at the nested-in and the
bulged-out configurations, respectively.

Assuming that the solution of Eq. (11) in the form of a
traveling wave, i.e.,

z̃[p]1 = Aei(ωt−kpL),

z̃[p]2 = Bei[ωt−k(p+1)L], (13)

z̃[p]3 = Cei[ωt−k(p+2)L],

where k is the wave number and L = 1 is the unit length.
Hence, the model can be reduced to a standard eigenvalue
problem⎛
⎝kout + kin −kinei(−kL) −koutei(−kL)

−kinei(kL) kin + kin −kinei(−kL)

−koutei(kL) −kinei(kL) kin + kout

⎞
⎠

⎛
⎝A

B
C

⎞
⎠= mω2

⎛
⎝A

B
C

⎞
⎠.

(14)

The stopbands and passbands of the metastructure can then be
determined by sweeping the wave number k from 0 to π . If
with different periodic repeating cells, then the corresponding
band structures can be determined based on similar linear
dispersion analysis.

To demonstrate the introduced method above, without loss
of generality, we consider four cases that the periodic repeat-
ing cell consists of three SMO units remaining at different
stable configurations. Specifically, if denoting the nested-in
and the bulged-out configuration by binary numbers “0” and
“1,” the four cases can be expressed as the state sequence
of the constituent SMO units in a cell, namely, (1A) “0-0-
0,” (1B) “1-1-1,” (3A) “1-0-0,” and (3B) “0-1-1.” With the
lumped mass m = 0.12kg and the other parameters given in
Table I, the band structures corresponding to the four cases
can be theoretically obtained by solving Eq. (14), showing
in the left panels of the subfigures in Fig. 4. For the first
two cases, the periodic cell consists of identical SMO units
[Figs. 4(a) and 4(b)]. However, the band structures exhibit
obvious differences. For case (1A), the only stopband locates
within [65.00, �) Hz; while for case (1B), the stopband is
significantly broadened to [29.79, �) Hz. In the left two cases,
the periodic cell consists of different SMO units [Figs. 4(c)
and 4(d)]. Surprisingly, the band structures are dramatically
altered in both the number and the locations. For case (3A),
there are three stopbands locating within [16.77, 32.50] Hz,
[38.79, 56.29] Hz, and [57.72, �) Hz; for case (3B), the
stopbands shift to [14.89, 19.82] Hz, [25.79, 48.32] Hz, and
[48.83, �) Hz.

To verify the correctness of the theoretical results, numeri-
cal frequency sweeps are also performed on the metastructure
based on Eqs. (8) and (9). Specifically, harmonic displacement
excitation with amplitude 0.01mm is applied to the most
left mass of the chain. The excitation frequency is swept
from 0.1 to 75 Hz, with step 0.1 Hz. The output signal is
measured from one cell away from the right boundary, i.e.,
the mass in the #57 oscillator. Small viscous damping with
coefficient ζ= 0.001 is assumed between adjacent SMO units.
At each excitation frequency, zero initial displacement and
velocity are set. In this research, we use the root mean square
(RMS) value of the displacement data to characterize the
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FIG. 4. Band structure and transmissibility of the SMO metas-
tructure based on different periodic cells. (a) Periodic cell 1A (0-
0-0); (b) periodic cell 1B (1-1-1); (c) periodic cell 3A (1-0-0); and
(d) periodic cell 3B (0-1-1). The left panels show the bandgaps
obtained via linear dispersion analysis, and the right panels display
the numerically obtained frequency-transmissibility relations.

average vibration energy. Hence, by dividing the RMS of the
output displacement (zoutput) by the RMS of the input dis-
placement (zinput), we derive the displacement transmissibility
T = |RMS(zoutput )|/|RMS(zinput )|. In Fig. 4, the numerically
obtained frequency-transmissibility diagrams are displayed in
the right panels of subfigures. If defining the stopband as
the frequency interval in which the transmissibility is lower
than 0.1, we notice that the numerically determined stopbands
agree perfectly with those determined via linear dispersion
analysis.

Overall, Fig. 4 suggests that the band structure, includ-
ing the number and the locations of the stopbands, can be
effectively tailored by switching the configuration of the
constituent bistable SMO unit (between the “0” and “1”
configurations) in the periodic repeating cell. Considering that
the number of the SMO units in the periodic cell can also
be tuned, programmability of the stopband within a broad
frequency range can be further expected. Moreover, since the
SMO unit is a true 3D shape, the bandgap of the metastructure
along the other two directions can be determined via a similar
linear dispersion analysis. It is also worth expanding the
bandgap tunability and programmability study to all the three
principal directions.

IV. BANDGAP TUNABILITY AND PROGRAMMABILITY

A. Rich possibilities of the periodic repeating cell

Before discussing the tunability and programmability, we
first study the possibilities for constructing the periodic re-
peating cell. Here, as examples, we consider the cases that the
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(6C)
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(6E)

(6F)

(6G)

(6H)

(5I)

Nested-in Bulged-outLegend:

FIG. 5. All possible layouts of the periodic repeating cell con-
sisting of 1, 2, 3, 4, 5, or 6 SMO units. By removing the duplicate
cases, 23 cases are possible.

cell consists of 1 to 6 units along the height direction. If the
cell consists of only one SMO unit, two layouts are possible,
namely (1A) “0” and (1B) “1.” If there are two units in a
cell, at a first glance it appears that there are 22 = 4 possible
layouts which are “0-0,” “1-1,” “1-0,” and “0-1,” but this will
reduce to two if we consider the repeatability with the one-
unit situation [i.e., “0-0” and “1-1” are identical with layouts
(1A) and (1B)]. By further accounting for the reflectional
symmetry, layouts “1-0” and “0-1” are identical; hence, only
one layout is left, i.e., (2A) “0-1.” If the cell is made up
of more than 2 cells, by overall considering the reflectional
symmetry, the rotational symmetry, and the repeatability with
the previous situations, then we can get the possible layouts
without redundancy. For example, if we consider the cell
with 3 units, then there are 23 = 8 layouts at first, which
can be reduced to 2 by considering the repeatability and the
equivalence due to symmetry. In sum, for all the situations
that the cell consists of 1 to 6 units, 23 different layouts are
possible, as illustrated in Fig. 5.

B. Wave propagation along the height direction

With the 23 possible layouts of the periodic repeating
cell, we then investigate the achievable frequency band that
the wave propagation is prohibited. To this end, based on
the same driving amplitude, viscous damping coefficient, and
initial conditions as those used in Fig. 4, numerical frequency
sweeps are performed from 5 to 75 Hz. Figure 6 shows the
transmissibility and the corresponding stopbands (transmissi-
bility lower than 0.1) of the 23 cases.

Figure 6 reveals two important characteristics that are
unique for the SMO metastructure. First, with more SMO
units in the periodic repeating cell, the stopband of the metas-
tructure is substantially extended to the low-frequency region.
For example, if the cell consists of only one cell, then two
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FIG. 6. Transmissibility and stopbands of the SMO metastructure corresponding to 23 different layouts of the periodic repeating cell
configurations and their band structure. (a) Cases with layouts (1A), (1B), (2A), (3A), and (3B). (b) Cases with layouts (4A), (4B), and (4C).
(c) Cases with layouts (5A), (5B), (5C), (5D), (5E), and (5F). (d) Cases with layouts (6A), (6B), (6C), (6D), (6E), (6F), (6G), (6H), and (6I).

layouts are possible, and the overall stopband (denoted by
shades in the bottom panels) spans from 29.8Hz to infinity.
By involving more units in a cell, the lower bound of the
overall stopband would be extended downward significantly,
from 21.2 Hz when the cell consists of two SMO units, to 15.0
Hz, to 12.2 Hz, to 9.7 Hz, and to 8.7 Hz when the cell consists
of three, four, five, and six SMO units, respectively. Second,
the capability of switching between two stable configurations
and the rich layout possibilities of the periodic cell endow the
SMO metastructure with excellent tunability and programma-
bility of the stopband. Based on the 23 possible layouts, the
achievable stopband would become [8.7,∞] Hz. Within this
stopband, wave propagation at any prescribed frequency can

always be prohibited by strategically tuning the number of
the constituent SMO units in the periodic cell and coding the
state sequence. For example, if we intend to prohibit the wave
propagation at 20.0 Hz and the number of SMO units in a
periodic cell is asked to be no more than 4, by referring to
Fig. 6, we realize that effective prohibition can be achieved
in two cases, namely, (3A) and (4A). Hence, by adjusting
the state sequence of the periodic cell into (3A) “1-0-0” or
(4A) “0-0-1-1,” the wave can no longer be propagated through
the metastructure. Note that if allowing more units in a cell,
more possibilities can be found. Figure 6 also suggests that
if aiming at prohibition at relatively higher frequencies, we
would have more choices of the cell layouts; however, if
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FIG. 7. Transmissibility and stopbands of the SMO metastruc-
ture corresponding to five different layouts along the length and the
width directions. (a) Cases with layouts (1A), (1B), (2A), (3A), and
(3B) along the length direction. (b) Cases with layouts (1A), (1B),
(2A), (3A), and (3B) along the width direction.

looking for prohibition near the lower frequency bound, then
the layout choices become limited.

C. Wave propagation along the width and the length directions

Note that the origami unit is a true 3D structure, which is
fundamentally different from many conventional 1D and 2D
units constituting metamaterials and metastructures [26]. As
a result, it is necessary and interesting to examine the wave
propagation characteristics of the SMO metastructure along
the other two principal directions, i.e., the length and the width
directions. This would make more sense if we realize that the
constitutive relations of the SMO unit are very anisotropic
along the three principal directions [Figs. 2(d)–2(f)]. To this
end, assuming that the metastructure is constructed by con-
necting the SMO units along the length or the width direction,
systematic numerical studies are carried out based on the same
setup. Similarly, 23 possible layouts of the periodic cell are
examined. As examples, Figs. 7(a) and 7(b) display the trans-
missibility and stopbands of the metastructure with layouts
(1A), (1B), (2A), (3A), and (3B) along the length and the
width directions, respectively. For reference purposes, based
on 23 possible layouts, the overall achievable stopbands along
the width and the length directions are also denoted by shades

TABLE II. Design parameters of SMO unit “2” in the
counterexample.

Parameters Values Parameters Values

bA = bB = b 38.1 mm γA 60◦

aA 38.1 mm γB 75◦

kA = kC 0.05 N kB 2 N

(bottom panels). Figure 7 reveals that along the length direc-
tion, the achievable stopband spans from 7.1 Hz to infinity,
and along the width direction, the achievable stopband spans
from 5.5 Hz to infinity. Note that the lower-frequency bounds
of the stopbands along the width and length directions are
much lower than that along the height direction; meanwhile,
for a specific periodic cell layout, the overall band structures
along the three directions show considerable differences. Such
discrepancies are induced by the anisotropy of the constitutive
relations, particularly, the different tangent stiffness at the
stable configuration along the three principal directions.

The above observation also suggests that the excellent
tunability and programmability of the SMO metastructure are
preserved along the length and width directions. Prohibiting
the wave propagation at any frequency within the achievable
stopband can be realized by coding the status sequence of the
periodic cell.

It is also worth pointing out here that a broad and pro-
grammable stopband is not always achievable. Rather, they
rely on appropriate geometry and mechanical parameters of
the SMO unit. Here, we demonstrate a counterexample to
illustrate this point. In this example, the design parameters of
the SMO unit are listed in Table II. For distinction purposes,
in what follows, the SMO unit with parameters listed in
Table II is referred as SMO unit “2,” and the SMO unit
with parameters listed in Table I is referred as SMO unit
“1.” Based on SMO unit “2,” similar numerical frequency
sweeps are performed on the SMO metastructure along the
three principal directions, and Figs. 8(d)–8(f) show the cor-
responding transmissibility and stopbands with layouts (1A),
(1B), (2A), (3A), and (3B). Figures 8(d)–8(f) indicate that
along the height and the width directions, the stopbands would
experience significant changes when adjusting the layout of
the periodic cell. More specifically, based on SMO unit “1,”
with five layouts (i.e., 1A, 1B, 2A, 3A, and 3B), the achievable
stopband along the width direction already fully cover the
frequency interval [5.5, 45.0] Hz (Fig. 7); rather, for the
counterexample based on SMO unit “2,” there are still some
frequency intervals, such as [10.7, 11.2] Hz and [12.3, 13.8]
Hz, cannot be covered by the stopband. The situation along
the length direction is even deteriorated. Unlike the case based
on SMO unit “1” (Fig. 7), for SMO unit “2,” changing the
layout of the periodic cell has little effect on the stopband.
These observations indicate that the stopband tunability and
programmability of this metastructure are weakened along
the width direction, and may completely vanish along the
length direction.

Note that with small excitation amplitude, the tangent
stiffness at the stable configurations play a dominant role in
determining the stopband of the metastructure [43]. Thus,
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FIG. 8. The transmissibility, stopbands, and force-displacement curve of the SMO metastructure corresponding to 5 layouts along three
principal directions based on SMO unit “2” (with design parameters listed in Table II). Panels (a)–(c) show the transmissibility and stopbands
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directions, respectively.

the above worsening or even deterioration of the stopband
tunability and programmability can be interpreted in terms
of the tangent stiffness at the stable configurations. To this
end, for SMO unit “2,” the force-displacement relations along
the height, length, and width directions are displayed in
Figs. 8(a)–8(c), respectively. For both SMO units, the tangent
stiffness at the nested-in and the bulged-out configurations
along the three principal directions are calculated and listed
in Table III. Table III reveals clearly that for both SMO units,
along the height direction, the tangent stiffness difference is
significant (�KH = 3.2N/mm and 3.3N/mm corresponding
to SMO units “1” and “2,” respectively), which accounts
for the good tunability and programmability of the stopband
along the height direction. Along the width direction, the stiff-

ness difference for both units are substantially decreased, and
SMO unit “1” outstrips SMO unit “2” (�KW = 0.48N/mm
and 0.31N/mm corresponding to SMO units “1” and “2,”
respectively), explaining why SMO unit “1” could induce
better stopband tunability and programmability. Along the
length direction, for SMO unit “2,” the stiffness difference
completely vanishes (�KL ≈ 0). This explains why along
the length direction the stopbands are almost the same for
different layouts of the periodic cell. Figure 8 and Table III
also provide useful hints for designing metastructures. To
acquire programmability along all three principal directions,
the constituent cell should be designed such that along each
direction, the tangent stiffness at the two stable configurations
are significantly different.

TABLE III. Tangent stiffness of the SMO units along the three principal directions.

SMO unit “1” with parameters listed in Table I SMO unit “2” with parameters listed in Table II
Tangent stiffness Stiffness difference Tangent stiffness Stiffness difference

Height direction KH−in = 4.5 N/mm �KH = 3.3 N/mm Height direction KH−in = 5.1 N/mm �KH = 3.2 N/mm
KH−out = 1.2 N/mm KH−out = 1.9 N/mm

Width direction KW −in = 0.23 N/mm �KW = 0.48 N/mm Width direction KW −in = 0.45 N/mm �KW = 0.31 N/mm
KW −out = 0.71 N/mm KW −out = 0.76 N/mm

Length direction KL−in = 1.7 N/mm �KL = 0.98 N/mm Length direction KL−in = 0.42 N/mm �KL ≈ 0
KL−out = 0.72 N/mm KL−out = 0.42 N/mm
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FIG. 9. Supratransmission phenomenon of the SMO metastructure based on layout (3A). (a) The injected energy as a function of the input
amplitude in the logarithmic scale. (b) Three indicators NA, NB, and NC with respect to the input amplitude. (c) Amplitudes of the 61 SMO
units at five different input amplitudes. (d)–(h) Phase diagrams of the first SMO unit at five input amplitudes.

V. SUPRATRANSMISSION: THRESHOLD VALUE
AND MECHANISM ANALYSIS

Note that the above stopband analyses are carried out based
on the assumption that the excitation amplitude is small. We
are then interested to know the behavior of the metastructure
with the increase of the excitation amplitude when the input
frequency locates inside the stopband.

Here, we revisit the metastructure composed of 60 SMO
units that are connected along the height direction. The design
parameters of the SMO unit are given in Table I. As an
example, the periodic repeating cell layout (3A) “1-0-0” is
examined first. To minimize the wave reflection effect and to
mimic an infinite medium, viscous damping (with damping
ratio 0.15) is assumed in the last 10 oscillators to simulate
an absorbing boundary. The initial displacement and initial
velocity are assumed to be zero for all oscillators. Here,
displacement excitation is applied to the mass of the first oscil-
lator (#0) next to the left boundary. The excitation frequency
is prescribed to be 40 Hz, which locates inside the stopband;
the excitation amplitude is increased from 0.5 to 4.0 mm, with
step 0.05 mm. The simulation time is set as 20 000 times of
the excitation period (i.e., 500 s) to reach the steady state.

To examine the overall behavior of the metastructure, the
injected energy is selected as an index to evaluate the energy
transmission. Specifically, the energy injected into the metas-
tructure by the driving boundary over the simulation time is
can be expressed as [33]

Ein =
∫ nT

0
F (z1 − zinput )żinputdt, (15)

where F represents the force-displacement relations of the
first SMO unit; it can be either Fin or Fout, depending on
whether the first unit is at the nested-in or at the bulged-out
configuration. For the layout (3A) “1-0-0,” F takes Fout. T
is the period of the excitation, and n takes 20 000 in our

simulations. We also define three indicators, namely, NA, NB,
and NC, to quantify the behaviors of the SMA units (or, the
oscillators). In detail, NA quantifies the number of oscillators
that experience at least one snap-through transition from one
stable configuration to the other during the whole simulation
time; NB quantifies the number of oscillators that no longer
stay at the initial stable configuration (in another word, stay at
the other stable configuration) when the simulation ends; NC

quantifies the number of oscillators that undergo interwell os-
cillations (which is a large amplitude oscillation surrounding
both stable equilibria [15]) during the steady state (last at least
5000 periods).

Figure 9(a) displays the relationship between the injected
energy and the input amplitude, in logarithmic scale, and
Fig. 9(b) plots the three indicators with respect to the input
amplitude. When the input amplitude is relatively small, only
little energy can be transmitted through the metastructure
since the input frequency locates inside the stopband. For
example, with amplitude 0.75 mm (point P1 in Fig. 9), the
injected energy is of order O(10−3), and all the three indica-
tors equal to 0. We also plot the phase diagram of the first
SMO unit (#1) at this excitation [Fig. 9(d)], which indicates
that the SMO unit is executing an intrawell oscillation around
the bulged-out stable configuration. With a small amplitude
of the first oscillator and low injected energy, the vibration
can hardly propagate beyond the second oscillator, which can
be observed from the amplitudes of all oscillators shown in
Fig. 9(c). By increasing the input amplitude to 1.25 mm,
the injected energy gradually increases; however, all three
indicators remain zero, indicating that no qualitative change
occurs on the dynamics of the metastructure. When the input
amplitude is larger than 1.25 mm, a small jump of the injected
energy is witnessed, accompanied by a small increase of NA.
To understand the underlying reason, point P2 with input
amplitude 1.5 mm is studied. The phase diagram [Fig. 9(e)]
indicates that the first SMO unit still performs an intrawell
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oscillation but with larger amplitude, which was described
as resonant intrawell oscillation [15]. This explains why the
inject energy reaches the order of O(10−1), NA and NB be-
comes positive, and the vibration could propagate to the 13th
oscillator [Fig. 9(c)]. Keep increasing the amplitude, both the
injected energy and the indicators NA, NB, and NC experiences
upsurges at 1.8 mm (point P3). In detail, the injected energy
elevates to the order of O(102), NA and NB are above 55, and
NC is close to 50. Such significant rises are induced by the
transition from small-amplitude intrawell oscillations to large-
amplitude interwell oscillations, as is depicted in the phase
diagram shown in Fig. 9(f). The large amplitude vibration can
also propagate until the 49th oscillators [Fig. 9(c)]. Actually, it
is the interwell oscillation that triggers the supratransmission
phenomena, and the amplitude at point P3 (i.e., 1.8 mm) is the
threshold value for supratransmission. Before the threshold,
the injected energy is spatially attenuated away from the input
and does not propagate along the chain; when exceeding
the threshold, even though the frequency locates within the
stopband, energy transmission becomes possible due to the
nonlinear instability induced interwell oscillations.

It is worthwhile pointing out here that if the input ampli-
tude is above the threshold (shaded area), the occurrence of
supratransmission also depends on the initial conditions of the
constituent oscillators of the metastructure. This is because
the SMO unit is fundamentally a bistable system, whose
behavior is sensitive to initial conditions. For example, at
point P4 with amplitude 2.25 mm, supratransmission does not
happen. The injected energy as well as the indicators NA, NB,
and NC fall back to the levels similar to those corresponding
to point B. This is because, at this amplitude and initial
conditions, the first oscillator performs a small-amplitude
intrawell oscillation [Fig. 9(g)], while the instability-induced
interwell oscillation is not activated. As a result, the vibration

propagation stops at the 13th oscillator. However, if we change
the initial velocity of the first unit in each periodic cell
to −800 mm/s [point P’ in Fig. 9(b)], supratransmission is
regained, with the injected energy returning to the order of
O(102). This is also manifested by the phase diagram of the
first unit (#1), which is an obvious large-amplitude interwell
oscillation [Fig. 9(g)]. At another point P5 with amplitude
3.8mm, supratransmission phenomenon is observed again.
Both the injected energy and the indicators NA, NB, and
NC take large values. The first oscillator undergoes a large-
amplitude interwell oscillation [Fig. 9(h)], and the vibration is
able to propagate to the 52nd oscillator [Fig. 9(c)].

Note that the layout of the periodic repeating cell could
significantly affect the number and location of the stopbands.
We then investigate the effects of the layouts on the threshold
amplitude of supratransmission. In detail, based on the same
setup, numerical amplitude sweeps are carried out on the
SMO metastructure. Six layouts of the periodic cell, namely,
(2A), (3A), (3B), (4A), (4B), and (4C), are examined. Fig-
ure 10 illustrates the relationships between the injected energy
and the input amplitude in the logarithmic scale corresponding
to the six layouts. It shows that supratransmission always
happens when increasing the input amplitude. However, the
amplitude threshold varies significantly. In detail, correspond-
ing to the six layouts, the threshold values are 2.20 mm
for layout (2A), 1.80 mm for layout (3A), 1.95 mm for
layout (3B), 1.65 mm for layout (4A), 2.40 mm for layout
(4B), and 2.25 mm for layout (4C), respectively. Above the
threshold (shaded areas), supratransmission is possible, but
still sensitively depends on the initial conditions.

However, along the length and the width directions, al-
though prominent stopbands are observed when the input
amplitude is small, supratransmission phenomenon cannot
occur by increasing the driving amplitude. This is because
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the occurrence of supratransmission relies on the instability-
induced high-energy response (for the bistable SMO unit,
the large-amplitude interwell oscillation). However, along the
width and the length directions, the constitutive relations are
fundamentally different from that along the height direction.
Particularly, the stable equilibria of the SMO unit stay on the
same side of the unstable equilibrium [Figs. 2(b), 2(c), and
2(e), 2(f)], indicating that deforming along the width and the
length directions cannot achieve a switch between the two
stable configurations. As a result, along the length and the
width directions, no matter how large the driving amplitude
is, interwell oscillation of the SMO unit cannot be generated,
and supratransmission phenomenon cannot be achieved.

VI. SUMMARY AND CONCLUSIONS

Owing to the infinite design possibilities and unique shape
reconfigurability, origami, fundamentally the art of paper
folding, receives extensive attention in developing metama-
terials and metastructures. While rich outcomes have been
achieved in the field of kinematics and statics, the dynamic
characteristics of origami metamaterials and metastructures
are less focused. Actually, we cannot ignore the necessity
that origami structures have to work in dynamic environment
or serves as a medium for wave propagation. Aiming at
deepening our understanding of origami wave dynamics, this
paper investigates the wave propagation characteristics of an
origami metastructure composed of stacked Miura-origami
(SMO) units. Originating from the nonunique geometry cor-
respondence, the SMO unit has two topologically different
stable configurations, namely, the nested-in and the bulged-
out configurations. Through linear dispersion analyses and
numerical calculations, we find that along the height direction,
the SMO metastructure would prohibit wave propagation in
some frequency intervals (i.e., stopbands) when the driv-
ing amplitude is small. Based upon that, by adjusting the
layout of the periodic repeating cell, including the number
and configurations of the SMO units, the stopbands would
experience substantially changes. By utilizing this property,
the bandgaps of the SMO metastructure can be effectively
tailored. Moreover, by digitizing the two stable configurations
into “0” and “1,” the state sequence of the periodic cell can
be strategically coded, we can then effectively program or
tune the band structure toward requirements. We show that
if the metastructure consists of 60 SMO units, 23 periodic
cell layouts are possible; based on which, the stopband can
be programmed within a broad frequency interval.

As the input amplitude increases, we find that the en-
ergy propagating through the metastructure could experience
a sudden jump, even though the driving frequency locates
within the stopband. Such supratransmission phenomenon
and the threshold amplitude are evaluated by the injected

energy and three indexes describing the number of units
relating to the snap-through transitions. We demonstrate that
the supratransmission is triggered by the occurrence of large
amplitude inter-well oscillation of the constituent cell, which
is a characteristic behavior of the system with bistability or
instability. It is also revealed that the occurrence of supra-
transmission phenomenon also relies on initial conditions, be-
cause the bistability is a strong nonlinearity, and the trigger—
interwell oscillation—sensitively depend on the initial condi-
tions. Moreover, through some examples, we show that the
threshold amplitude of supratransmission is also tailorable by
adjusting the periodic cell layouts.

We also remark in this paper that by tessellating the SMO
units along different directions, we can construct different
metastructures based on the same constituent units. The above
wave propagation studies are then extended to the other
two directions. Overall, due to the anisotropy in constitutive
relations, the band structures along the three principal direc-
tions are significantly different. Numerical results confirm the
stopband tunability and programmability along the length and
the width directions. However, these features could disappear
if the design parameters are not appropriately prescribed.
However, since the SMO unit cannot switch its configuration
by changing the unit’s length or width, supratransmission
of energy cannot be observed along the length or the width
direction. It is also worth pointing out here that although the
band structures along all the three directions are considered,
they are examined independently, i.e., the interactions from
the other two directions are not considered. This brings up
several interesting questions that are worthy of future study,
i.e., How does the wave propagate when the metastructure
is constructed by tessellating the origami units along all the
three directions? How do the interactions among the three
directions affect the programmability and tunability of the
dynamics?

This research performs a comprehensive investigation on
the wave dynamics of an SMO metastructure. By uncover-
ing the unique stopband tunability and programmability as
well as the underlying mechanism of the supratransmission
phenomenon, the present work could significantly advance
the state of the art and open new perspectives for origami
dynamics research. The results also lay a solid foundation for
developing origami-based metamaterials and metastructure
with adaptive dynamic properties.
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