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Energetic and entropic cost due to overlapping of Turing-Hopf instabilities
in the presence of cross diffusion
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A systematic introduction to nonequilibrium thermodynamics of dynamical instabilities are considered for an
open nonlinear system beyond conventional Turing pattern in presence of cross diffusion. An altered condition
of Turing instability in presence of cross diffusion is best reflected through a critical control parameter and wave
number containing both the self- and cross-diffusion coefficients. Our main focus is on entropic and energetic
cost of Turing-Hopf interplay in stationary pattern formation. Depending on the relative dispositions of Turing-
Hopf codimensional instabilities from the reaction-diffusion equation it clarifies two aspects: energy cost of
pattern formation, especially how Hopf instability can be utilized to dictate a stationary concentration profile,
and the possibility of revealing nonequilibrium phase transition. In the Brusselator model, to understand these
phenomena, we have analyzed through the relevant complex Ginzberg-Landau equation using multiscale Krylov-
Bogolyubov averaging method. Due to Hopf instability it is observed that the cross-diffusion parameters can be
a source of huge change in free-energy and concentration profiles.
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I. INTRODUCTION

The traditional Turing pattern [1–5] with very different
self-diffusion coefficients and traveling waves [6–8] are preva-
lent in the living tissues as morphogens [9–12], in cellular
rhythms [13–15], and in many such situations [16–18]; how-
ever, a reaction-diffusion system can be drastically modified
due to the slight presence of cross diffusion which is still
underinvestigated [19–21]. Thermodynamics of pattern for-
mation, or, more generally, far from the equilibrium system,
is addressed at length in the literature starting from the de-
scription of dissipative energy loss [22,23] to stochastic ther-
modynamics [24,25], along with thermal transport problems
[26,27] and demonstrations of the validity of fluctuation the-
orems [28,29], paving the way to a systematic calculation of
thermodynamic quantities in open dynamical systems. From
a theoretical point of view it is still challenging to develop
an approach to deal with an arbitrary nonlinear nonequilib-
rium process to tackle the problems of complex chemical
network [30,31] in a heterogeneous medium. Our goal here
is to develop theories of nonquilibrium consequences of var-
ious dynamical instabilities in open systems describable as
a reaction-diffusion system. Particularly the dynamical char-
acterization of inbuilt limit-cycle oscillation in the presence
of cross-diffusion coefficients resulting from diffusive flux of
one species due to gradient in concentration of another [16]
takes its toll by altering their bifurcation scenario.

Whenever a closed system is opened by chemostatting,
either a subset of conservation laws are broken or an emergent
cycle appears for each chemostatted species [30]. If there
is no emergent cycle for open chemical reaction network
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with homogeneous chemostatting, then the system is said to
be unconditionally detailed balanced for a finite number of
species and reactions due to absence of any nonconservative
forces [31]. In open reaction-diffusion system, Gibbs free
energy is not minimized due to the breaking of conservation
laws which is characterized for closed system. Analogously
to the definition of grand potential in terms of the Gibbs
free energy in equilibrium thermodynamics, the semigrand
Gibbs free energy of the open system can be defined from
the nonequilibrium Gibbs free energy of the system by sub-
tracting the energetic contribution due to exchange of matter
between chemostats and system [32]. In the reaction-diffusion
system, the amplitude equation [33] is already used to capture
a large degree of richness of pattern formation both qual-
itatively and quantitatively near the onset of the instability
[1]. To treat the generic nonlinear dynamics with symmetries
and bifurcation characteristics of the system one can find
the description of multiscale perturbation theory to obtain
the amplitude equation [17,33,34] in terms of the complex
Ginzburg Landau equation (CGLE).

In this context quantifying entropic and energetic costs
of various pattern formation and interplay of various
nonlinearity-induced instabilities are of crucial theoretical
concern here. This kind of approach has been adopted recently
to study the thermodynamics of the Turing pattern in the
presence of self-diffusion only [35] and chemical waves [36].
Again, mathematical analysis of Turing-Hopf interplay has
got some attention in different dynamical contexts [37–40],
but a thermodynamic description of the overlap of Turing-
Hopf instabilities is still missing. Moreover, in the study of
pattern formation, very often cross-diffusion coefficients of
the species have been ignored; however, they can have a very
significant effect to modify almost all the patterns even if they
are minimal [41]. In reaction-diffusion system corresponding
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to traditional Turing pattern, threshold of Turing and Hopf
instabilities are well separated for very different diffusion
coefficients of activator and inhibitor. Proper choice of cross-
diffusion coefficients can bring the threshold of Turing and
Hopf instabilities close enough so that they eventually overlap
and as a consequence a large variety of complex spatiotempo-
ral patterns are likely to emerge beyond a critical Turing-Hopf
point. As the usual multiscale methods [1,17] of deriving
the amplitude equation, especially for the reaction-diffusion
system with cross diffusion, is rather cumbersome, and we
have employed here a simple method of derivation based on
the Krylov-Bogolyubov (KB) averaging method [42] to obtain
the relevant Ginzberg-Landau equation.

The layout of the paper is as follows. In Sec. II we dis-
cuss the chemostatted Brusselator model with cross diffusion.
Turing and Hopf instabilities are estimated for this system in
the next section. In Sec. IV we have derived the amplitude
equation using the Krylov-Bogolyubov method. Entropy pro-
duction rate is calculated for the reaction-diffusion system in
Sec. V. In the next section, the nonequilibrium Gibbs free
energy of chemostatted system is formulated. In Sec. VII con-
centration fields of the intermediate species are obtained using
analytical approach. We have provided numerical results and
discussions in Sec. VIII. Finally, the paper is concluded in
Sec. IX.

II. BRUSSELATOR MODEL WITH CROSS DIFFUSION

The Brusselator model [22,23] is a prototype for studying
various cooperative behavior in chemical kinetics and can suc-
cessfully mimic the oscillatory Belousov-Zhabotinsky (BZ)
reaction [43]. The reversible Brusselator model contains the
following sequence of chemical reactions:

ρ = 1 : A
k1−⇀↽−

k−1

X

ρ = 2 : B + X
k2−⇀↽−

k−2

Y + D

ρ = 3 : 2X + Y
k3−⇀↽−

k−3

3X (Autocatalytic)

ρ = 4 : X
k4−⇀↽−

k−4

E, (1)

where ρ is a reaction step label, {X,Y } ∈ I are two intermedi-
ate species having dynamic concentration, and {A, B, D, E} ∈
C are initial and final products with a constant homogeneous
concentration along the entire system within the timescale of
interest. Main features of the Brusselator model as an open
chemical reaction network are presented in Fig. 1.

The stoichiometric matrix of the Brusselator reaction net-
work in Eq. (1) is

Sσ
ρ =

⎛
⎜⎜⎜⎜⎜⎝

R1 R2 R3 R4

X 1 −1 1 −1
Y 0 1 −1 0
A −1 0 0 0
B 0 −1 0 0
D 0 1 0 0
E 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (2)

FIG. 1. Illustration of the Brusselator model as an open chemical
network where A and B are reference chemostatted species. One can
also use D and E as reference chemostatted species. Reservoirs of
chemostatted species are shown in the two sides (purple) and finite
system of length l is shown in the middle (sky blue).

With the assumptions, all the reverse rate constants k−ρ are
vanishingly small (10−4), and the forward reaction rate con-
stants kρ are much higher than the reverse one, i.e., kρ � k−ρ ,
the rate equations of concentrations of intermediate species in
Eq. (1) read as

ẋ = k1a − (k2b + k4)x + k3x2y

ẏ = k2bx − k3x2y,
(3)

where concentration of species are denoted by lowercase
letters,

x = [X ], y = [Y ], b = [B], a = [A].

The steady-state value of the Eq. (3) that satisfies ẋ = ẏ = 0
is x0 = k1

k4
a and y0 = k2k4

k1k3

b
a .

Now after taking diffusion into account, the reaction-
diffusion equation of the Brusselator model in one spatial
dimension r ∈ [0, l] could be specified as

ẋ = k1a − (k2b + k4)x + k3x2y + D11xrr + D12yrr

ẏ = k2bx − k3x2y + D21xrr + D22yrr,
(4)

in which D11, D22 are self-diffusion coefficients of interme-
diate species X and Y , respectively, and D12, D21 are cross-
diffusion coefficients of X and Y , respectively.

This cross-diffusion coefficients generally have concen-
tration dependence [41]. Most importantly, the vanishingly
low concentration of the species, σ , demands no flux of
the species σ (σ = 1, 2, . . . ). Therefore cross-diffusion coef-
ficients Dσσ ′ (σ �= σ ′) must tend to vanish as the concentration
zσ tends to zero irrespective of the gradient in the concentra-
tion, zσ ′ . Following the work of Chung and Peacock-Lopez
[44], we can represent the concentration dependence of the
cross-diffusion coefficients as the

Dσσ ′ (zσ ) = Dσσ ′zσ

η + zσ

. (5)

According to Eq. (5), for zσ = 0, Dσσ ′ will always vanish and
thus, it satisfies the demand mentioned above. Moreover, for
the minimal value of the η with respect to concentrations i.e.,
η � zσ , Dσσ ′ (zσ ) will be merely equal to the constant Dσσ ′ .
Whereas if the constant η is very large compare to concen-
tations, i.e., η � zσ , then Dσσ ′ (zσ ) = Dσσ ′ zσ

η
= D′

σσ ′zσ with
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D′
σσ ′ = Dσσ ′

η
and thus cross-diffusion coefficients have linear

concentration dependence. For simplicity, we have considered
here the case (η � zi) of constant cross-diffusion coefficients
for the most of the analysis for dynamic and thermodynamic
entities in the Brusselator model.

III. TURING AND HOPF INSTABILITIES AND THE
BRUSSLATOR MODEL

In the reaction-diffusion system, one can have both Hopf
and Turing instabilities which can be obtained from linear sta-
bility analysis. Evolution equations of the reaction-diffusion
system can be found by considering single Fourier mode
of the form exp[λ(q)t + iqr] where growth rate has wave
number q dependence. For linear stability analysis at the
steady-state value (x0, y0), one needs the Jacobian matrix of
the Brusselator model,

J =
[−(k2b + k4) + 2k3x0y0 k3x2

0
k2b − 2k3x0y0 −k3x2

0

]
. (6)

Here elements of the Jacobian matrix, J , are the following:
J11 = −(k2b + k4) + 2k3x0y0, J12 = k3x2

0
J21 = k2b − 2k3x0y0, J22 = −k3x2

0 .

In this context it is to be noted that the Oregonator model
[45,46] is the simplest model for describing the oscillations
in BZ reaction having Jacobian with a sign structure (pure
activator-inhibitor) opposite to that of the Brusselator model
(cross activator-inhibitor).

A. Turing instability

When the cross-diffusion coefficients are present in the
system and contribute to the Turing pattern, then the self-
diffusion coefficients do not need to obey the condition
of local activation and lateral inhibition [9]. Kumar and
Horsthemke showed that presence of cross diffusion strongly
modifies the Turing instability conditions and in this case Tur-
ing instability can arise even if the self-diffusion coefficient
of the inhibitor is more than the self-diffusion of the activator
[19]. Zemskov et al. have presented universal conditions of
the Turing instability in the presence of the cross-diffusion
coefficients with a linear concentration dependence. With
the aid of those conditions, they have described the proper
Turing instability region [20]. Lin et al. have investigated the
influence of cross diffusion in selecting the spatial pattern
for the Busselator model in a three-dimensional domain [21].
By using the finite-volume-element approximation, they have
shown that cross diffusion can generate a Turing pattern in
this three-dimensional case. Exploiting conditions of Turing
instability in the presence of cross diffusion, one can obtain a
critical value of the control parameter and wave number. We
would next find out those critical values in the 1D Brusse-
lator model in the presence of both self- and cross-diffusion
coefficients.

In the presence of diffusion, Jacobian J becomes

JD = J − q2D

=
[−(k2b + k4) + 2k3x0y0 k3x2

0
k2b − 2k3x0y0 −k3x2

0

]
− q2

(
D11 D12

D21 D22

)
,

(7)

where we have applied a Fourier transform g(r, t ) → g(q, t ),
with q being the wave number. Now the trace of the JD will be
simply: Tr(JD ) = Tr(J ) − q2Tr(D) = k2b − k4 − k3k1

2

k4
2 a2 −

(D11 + D22)q2 and determinant of JD will be

det(JD ) = det(D)q4 − [D11J22 + D22J11 − D12J21

− D21J12]q2 + det(J ), (8)

a quadratic equation of q2 in which det(J ) = k2
1 k3

k4
a2 is deter-

minant of J . Eigenvalues λ of JD are given by the character-
istic equation

λ2 − Tr(JD )λ + det(JD ) = 0.

Hence eigenvalues can be expressed only in terms of determi-
nant and trace as

λ± = Tr(JD ) ±
√

Tr(JD )2 − 4det(JD )

2
. (9)

Stability criterion simply demands both of these eigenval-
ues have to be negative and thus, in terms of trace and
determinant, this implies Tr(JD ) < 0 and det(JD ) > 0. As
chemical concentrations are real quantities, eigenvalues are
complex conjugate pair λ± = λr ± iλi at stable steady state.
Since the system was at stable steady state before adding
diffusion with [(D11 + D22)q2] > 0 being always true, trace
condition of stability, Tr(JD ) < 0, remains intact even in the
presence of the diffusion. So the only way to have diffusion-
driven instability is by breaking the determinant condition of
stability in the presence of diffusion. Therefore, det(JD ) < 0
in the instability regime and at the onset of Turing instability,
det(JD ) = 0. Now, from the second law of thermodynamics,
det(D) > 0 is always true and the existence of stable steady
state in the absence of diffusion demands det(J ) > 0. So the
only way to satisfy the det(JD ) < 0 condition is

[D11J22 + D22J11] > [D12J21 + D21J12]. (10)

The above condition implies one of the eigenvalues crosses
zero to become positive and is a necessary but not sufficient
condition to have Turing instability in the presence of cross
diffusion. From the necessary condition stated in Eq. (10),
it appears that in the presence of cross diffusion, so-called
local activation, and lateral inhibition for a traditional Turing
pattern need not be followed. To obtain the necessary and
sufficient condition for having a Turing instability–induced
spatial pattern, we need to ensure the existence of the real root
of quadratic Eq. (8), i.e., to satisfy the following condition:

(D11J22 + D22J11 − D12J21 − D21J12)2 − 4det(D)det(J )>0.

(11)

If we assume that by varying the control parameter, b, the
onset of instability is reached, then the condition in Eq. (11)
simply results in the following equality:

(D11J22 + D22J11 − D12J21 − D21J12)2 − 4det(D)det(J ) = 0.

(12)

Inserting all the elements of Jacobian, J , and det(J ) into
Eq. (12), we will find the critical value of the bifurcation
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parameter in the Brusselator model as

bcT =
⎛
⎝
[
D11

k2
1 k3

k4
2 + D21

k2
1 k3

k4
2

]
a2 + 2[det(D)]

1
2
[ k2

1 k3

k4

] 1
2 a + D22k4

D22k2 + D12k2

⎞
⎠. (13)

Eigenvalues at the onset of Turing instability now becomes

λ+ = Tr(JD ) = k2bcT − k4 − k3k1
2

k4
2 a2 − (D11 + D22)q2

cT

and λ− = 0. Here qcT is an intrinsic critical wave number and
bcT is critical value of the control parameter at the onset of
Turing instability. Negative value of the Tr(JD ) means that
eigenvalue λ− = 0 at the Turing instability will govern the
whole dynamics of the system.

The necessary and sufficient condition to have Turing
instability is that the det(JD ) equation must have double roots
at the onset of instability, i.e., the following two conditions
are satisfied simultaneously: det(JD ) = 0 and d{det(JD )}

d (q2 ) = 0.
This will result in the equation of intrinsic critical wave
number at the onset of instability,

qcT =
[

det(J )

det(D)

] 1
4

=
[

k2
1k3

k4

a2

det(D)

] 1
4

(14)

and it will set the length scale as 2π
qcT

. This qcT is the fastest-
growing Fourier mode and for the critical value of the control
parameter the growth rate first becomes zero at this critical
wave number. Now for Turing instability the critical eigen-
vector, UcT , corresponding to eigenvalue λqcT = 0 is

UcT =
[

1
− k4

(D12+D22 )qcT
2 − (D21+D11 )

(D12+D22 )

]

=
[

1

− k4
k1

√
k4
k3

√
det(D)

(D12+D22 )a − (D21+D11 )
(D12+D22 )

]
. (15)

Above the critical parameter value, a quite small but finite
band of Fourier modes in the vicinity of the critical wave
number, qcT , is considered to be equally excited and thus
contributes to nonlinear growth of the spatial pattern. How-
ever, in a finite system with length l subjected to the zero flux
boundary condition, the accessible critical wave number will
be given by qcT = nπ

L for Turing instability. One needs to set
the integer value, n, in such a way that the admissible critical
wave number is nearest to the intrinsic critical wave number,
qcT .

The circumstances for Turing instability in the Brusselator
are more favorable if D21 is negative and D12 is positive
[19,20]. However, too much negative D21 or positive D12

values may suppress the Turing instability in the Brusselator
model [19]. The conditions in cross-diffusion coefficients to
obtain favorable circumstances of Turing instability will be
inverted in the case of the model like Oregonator because of
the opposite cross-kinetic behavior compared to the Brussela-
tor model.

B. Hopf instability

Besides diffusion-driven Turing instability, reaction-
diffusion system could also have a type III-o ([1], ch. 10)
oscillatory Hopf instability with critical wave number qcH =
0. For Hopf instability as the control parameter is varied, the
trace condition of the stability will be broken as Tr(JD )|q=0

moves to the positive value, but the initial determinant condi-
tion holds. So at the onset of Hopf instability, Tr(JD )|q=0 = 0,
i.e., J11 + J22 = 0 or J11 = −J22 and this condition leads to
critical value of control parameter as

bcH = k4

k2
+ k2

1k3

k2k4
2 a2. (16)

Real parts of complex conjugate eigenvalues which are neg-
ative initially will be zero at b = bcH and eigenvalues can be
expressed only in terms of determinant of the Jacobian matrix
following from Eq. (9) as

λ± = ±i
√

det(JD )|q=0 = ±i

√
k2

1k3

k4
a. (17)

The critical frequency of Hopf bifurcation, ωcH, is given by
the imaginary part of the eigenvalue at the onset of instability.
Therefore, the period of the limit cycle near the the Hopf
instability, i.e., slightly above bcH, is approximately T = 2π

ωcH
,

where ωcH =
√

k2
1 k3

k4
a for the Brusselator model. The criti-

cal eigenvector, UcH, corresponding to the eigenvalue λ =
i
√

det(J ) at the onset of Hopf instability in the Brusselator
model is

UcH =
[
= 1 + i

√
det(J )
J11

J21
J11

]
=

⎡
⎣ 1 + i

a

√
k4
k3

1
k1

−(1 + k4
3

k3k1
2

1
a2 )

⎤
⎦. (18)

IV. DERIVATION OF AMPLITUDE EQUATION USING THE
KRYLOV-BOGOLYUBOV METHOD

Amplitude is a complex entity that often features charac-
teristics analogous to those of the order parameter in phase
transition [33], and its profile in pattern formation shows a
pitchfork bifurcation in a system with translational symmetry.
Turing and Hopf interplay, and their relative strength and
stability can be studied by exploiting the analytic solutions
of their respective amplitude equations.

The KB averaging method is a standard method for anal-
ysis of oscillation in nonlinear mechanics [42]. The essential
idea of this averaging method consists of varying the mag-
nitude and phase of the amplitude so slowly in time and
space that the solution of the averaged system approximates
the exact dynamics. Introducing two new variables, namely
the total concentration of internal species, z = x − y and u =
a − x, it is possible to rewrite Eq. (3) of the Brusselator model.
Substitution of new variables and with simplification of all
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the forward rate constants setting as unity, the steady-state
solution is given by us = 0 and zs = b

a + a. To shift the fixed
point into the origin a new variable ζ = z − zs has been
introduced to obtain a single second-order equation with a
form quite similar to that of the generalized Rayleigh equation
[47,48] as

ζ̈ + �2ζ = λ[2(1 + c1u − c2u2)u − 1

λ
(u2 − 2�u)ζ ], (19)

where � = a, λ = b−1−a2

2 , and c1 = (2a− b
a )

2λ
, c2 = 1

2λ
.

Now by taking 2(1 + c1u − c2u2)u − 1
λ

(u2 − 2�u)ζ = h
Eq. (19) becomes

ζ̈ + �2ζ = λh. (20)

Now in the presence of the both self- and cross-diffusion co-
efficients, which are in general unequal, we can write Eq. (20)
in the following form:

ζ̈ + �2ζ = λh + (D22 + D12 − D11 − D21)u̇rr

+(D22 + D12)ζ̇rr + (D11 − D12)urr − D12ζrr . (21)

For a very small value of λ, Eq. (21) admits simple harmonic
functionlike solutions,

ζ (r, t ) = A(r, t ) cos[�t − φ(r, t )], (22a)

u(r, t ) = ζ̇ (r, t ) = −�A(r, t ) sin[�t − φ(r, t )], (22b)

where both the amplitude A and phase φ are changing very
slowly. From Eqs. (22a) and (22b), we can easily find all the
required spatial derivatives,

ζrr = (2Arφr + φrrA) sin(�t − φ)

+ (
Arr − Aφ2

r

)
cos(�t − φ), (23a)

urr = �
(
Aφ2

r − Arr
)

sin(�t − φ)

+�(2Arφr + φrrA) cos(�t − φ). (23b)

Further, with the aid of Eqs. (22a) and (22b), we acquire
the following form of the amplitude dynamics:

Ȧ = − 1

�
[λh − �2(D22 + D12 + D12

�2
− D11

− D21)ζrr + (D22 + D11)urr] sin(�t − φ), (24)

and the dynamical equation of phase,

̇ = 1

�A

[
λh − �2(D22 + D12 + D12

�2
− D11

− D21)ζrr + (D22 + D11)urr

]
cos(�t − φ). (25)

Now by taking average over one cycle, fast oscillation parts
can be easily ironed out and we obtain amplitude and phase
equations of the Brusselator model in the presence of cross
diffusion as

Ȧ=Aλ − p1
3λc2�

2

4
A3 + �

2

(
D22 + D12 + D12

�2
− D11 − D21

)

× (2Arφr + φrrA) + (D11 + D22)

2

(
Arr − Aφ2

r

)
,

(26a)

̇=−p2
�

8
A2 + (D11 + D22)

2

(
2Arφr

A + φrr

)

− �

2

(
D22 + D12 + D12

�2
− D11 − D21

)(Arr

A − φ2
r

)
.

(26b)

To take into account the effect of non-negative term 2λc1

in Eq. (19) that generates unidirectional acceleration from
unstable stationary point, correction factors, p2 and p1, in
phase shift and limit-cycle radius expression needs to be
introduced [49].

A. Hopf amplitude equation

The system dynamics near the onset of Hopf instability
can be described by using the lowest-order amplitude equa-
tion as the CGLE [17,33,34]. From the phase and amplitude
Eqs. (26b) and (26a) found by use of the KB method, we can
arrive at a particular form which agrees with unscaled form of
CGLE,

∂Z

∂t
= λZ + (αr + iαi )∂

2
r Z − (βr − iβi ) | Z |2 Z. (27)

By setting Z = A exp(−iφ) in Eq. (27) and separating real
and imaginary parts one obtains

∂A
∂t

= λA − βrA3 + αi(2Arφr + φrrA) + αr
(
Arr − Aφ2

r

)
,

(28a)

∂φ

∂t
= −βiA2 + αr

(
2Arφr

A + φrr

)
− αi

(Arr

A − φ2
r

)
.

(28b)

Equation (28a) and Eq. (28b) are exact deductions of
the CGLE and represent amplitude and phase dynam-
ics, respectively, near the onset of Hopf instability. Com-
paring Eqs. (28a) and (28b) with the dynamical equa-
tions of amplitude and phase derived by use of the KB
method, Eqs. (26a) and (26b), we obtain these coefficients:
λ = b−1−a2

2 , βr = p1
3λc2�

2

4 , βi = p2
�
8 , αr = (D11+D22 )

2 , αi =
�
2 (D22 + D12 + D12

�2 − D11 − D21). Now we will introduce the
following scaled variables:

A = A√
βr

, r = r√
αr

.

This scaling will result in the following form of amplitude
and phase equations:

∂A
∂t

= λA − A3 + α(2Arφr + φrrA) + (
Arr − Aφ2

r

)
,

(29a)

∂φ

∂t
= −βA2 +

(
2Arφr

A + φrr

)
− α

(Arr

A − φ2
r

)
,

(29b)

corresponding to normal form of complex Ginzburg-Landau
equation [1,34,50] in one space dimension at the onset of Hopf
instability in spatially extended system as

∂Z

∂t
= λZ + (1 + iα)∂2

r Z − (1 − iβ ) | Z |2 Z. (30)
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Coefficients in normal form of CGLE are now solely the
ratio between the imaginary and real parts of the complex
coefficients of diffusive and nonlinear terms in Eq. (27) and

are given by α = αi
αr

= �(D22+D12+ D12
�2 −D11−D21 )

(D11+D22 ) and β = βi

βr
=

p2

p1

1
3a . The coefficient α found by using KB averaging in the

case of the Brusselator model with cross diffusion exactly
matches with the one found by using the rigorous method
of the multiscale approach in Ref. [51]. It is quite apparent
that the coefficient α depends on the both self- and cross-
diffusion terms explicitly in the case of Hopf instability.
Another coefficient, β, does not have any dependence on
diffusion and is given in Ref. [17] as β = 4−7a2+4a4

3a(2+a2 ) for the
Brusselator model. Properties of uniform oscillations can be
obtained from Eq. (30) by considering a simple and general
state of nonlinear oscillations as

Z = A exp(iω0t ), (31)

where ω0 is the shift in frequency from the critical frequency
ωcH [1]. Now by inserting it into normal CGLE (30) and
comparing imaginary and real parts, we get A2 = λ and
ω0 = βA2 = βλ. As β is a nonlinear phase shift, it captures
dependence of oscillation frequency on the magnitude of the
amplitude and wave-number shift. Hence nonlinear oscilla-
tions for Hopf bifurcation can be specified from Eq. (31)
as

AH =
√

λ exp(iβλt ). (32)

B. Turing amplitude

The amplitude equation corresponding to Turing instability
is known as the Turing amplitude equation (TAE) which is
the real counterpart of the CGLE. Near the onset of Turing
instability, the lowest-order case of one-dimensional TAE
can simply be constructed by the symmetry argument [1]
as

∂Z

∂t
= λT Z + �∂2

r Z − g | Z |2 Z, (33)

where λT = b−bc
2 is defined in similar way as λ in Hopf

instability and � and g are coefficients containing details of
the system. By setting Z = A exp(−iφ) in Eq. (33) and then
separating the real and imaginary parts we obtain

∂A
∂t

= λTA − gA3 + �
(
Arr − Aφ2

r

)
, (34a)

∂φ

∂t
= �

(
2Arφr

A + φrr

)
. (34b)

We are only interested in bifurcation scenario of generic
dynamical features of the system here and hence it is enough
to have only parameter λT in TAE. Now, by introducing the
following scales in amplitude and spatial dimension,

A = A√
g
, r = r√

�

and taking constant phase value by virtue of translational
invariance of spatial pattern in Eqs. (34a) and (34b) we
find

∂A
∂t

= λTA − A3 + Arr, (35a)

∂φ

∂t
= 0, (35b)

where bcT in λT = b−bcT
2 is given by the Eq. (13) and it

contains all the effect of self-diffusion as well as cross-
diffusion constant. Equations (35a) and (35b) are deduction
of normalized form of TAE for the case of constant phase as

∂Z

∂t
= λT Z + ∂2

r Z− | Z |2 Z, (36)

which could be simply regarded as special case of the normal
form of CGLE (30) if α and β are set to zero [33]. Equation
(35a) admits a time-dependent homogeneous solution of Tur-
ing amplitude as

AT
2 = A2

s

{
1

1 − A0 exp [−2λT (t − t0)]

}
, (37)

which renders AT = √
λT for the long-time limit.

V. ENTROPY PRODUCTION RATE

For a chemical reaction network, fluxes are not a lin-
ear function of the conjugate force. Net reaction currents
of reversible chemical reactions are given as the difference
between forward and reverse fluxes of reactions:

jρ = j+ρ − j−ρ, (38)

where + and − label forward reaction and backward reaction,
respectively. Since k−ρ 	 0 is assumed in Sec. II, all the
reverse reaction fluxes are negligibly small, i.e., j−ρ 	 0.

Concentration fluxes according to the law of mass action
are

j±ρ = k±ρ

∏
σ

z
vσ

±ρ

σ , (39)

where vσ
±ρ denotes the number of molecules of a particular

species σ for forward (+) or reverse (−) direction of reaction
ρ. Whereas, according to Fick’s diffusion law, the diffusion
current is proportional to the gradient of the concentration
distribution of diffusing species and in a one-dimensional
system simply reduces to

Jσ = −D
∂zσ

∂r
, (40)

with constant diffusion coefficient D being one of the the
elements of the matrix D = (D11 D12

D21 D22
) in the presence of the

cross diffusion.
The product of the stoichiometric coefficient of species σ

of a particular reaction step ρ and corresponding chemical po-
tential μσ gives the thermodynamic driving forces of reaction
known as reaction affinities [52]:

fρ = −
∑

σ

Sσ
ρ μσ , (41)
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where Sσ
ρ = vσ

−ρ − vσ
+ρ and μσ = μo

σ + ln zσ

z0
with solvent

concentration z0 and standard-state chemical potential μo
σ .

To define a baseline for substances, standard-state quantities
with notation o are defined at standard pressure p = po and
molecular concentration and chemical potential and μσ char-
acterizes each chemical species of the dilute solution thermo-
dynamically. The system is maintained at constant absolute
temperature T fixed by the solvent, and, for simplicity, RT
is taken as unity. Using this form of the chemical potential
local detailed balance condition of the the reaction steps can
be expressed as:

ln
k+ρ

k−ρ

= −
∑

σ

Sσ
ρ μ0

σ . (42)

Hence reaction affinities in Eq. (41) can be written in terms of
the reaction fluxes of the chemical steps as

fρ = ln
j+ρ

j−ρ

. (43)

Equation (42) is very important one as it relates the dynamical
term with thermodynamic entity. Similarly to reaction affinity,
a thermodynamic driving force, local diffusion affinity, exists
in the reaction-diffusion system and can be expressed as a
gradient of the chemical potential,

Fσ = −∂μσ

∂r
. (44)

Entropy production rate (EPR) due to the chemical reaction
can be expressed as the product of the thermodynamic driving
force and reaction flux as

d�R

dt
= 1

T

∫
dr

∑
ρ

fρ jρ. (45)

So with the help of the Eq. (43) and Eq. (38), we obtain EPR
due to reaction as

d�R

dt
= 1

T

∫
dr

∑
ρ

( j+ρ − j−ρ ) ln
j+ρ

j−ρ

, (46)

considering the elementary reaction steps which are directly
related to reaction stoichiometry.

Similarly, entropy production rate due to diffusion can be
simply

d�D

dt
= 1

T

∫
dr

∑
σ

Fσ Jσ . (47)

Considering diffusive flux and affinity given in the Eqs. (40)
and (44), respectively, we have

d�D

dt
=

∫
dr

[
D11

‖ ∂x
∂r ‖2

x
+ D22

‖ ∂y
∂r ‖2

y

+ D12
‖ ∂y

∂r ‖‖ ∂x
∂r ‖

x
+ D21

‖ ∂x
∂r ‖‖ ∂x

∂r ‖
y

]
. (48)

The last two terms on the right-hand side in Eq. (48) corre-
spond to the cross-diffusion coefficients of the intermediate
species present in the system.

Total entropy production is simply the sum of reaction EPR
and diffusion EPR,

�̇ = �̇R + �̇D � 0. (49)

In contrast, a closed system must relax to the thermody-
namic equilibrium, and as a consequence the concentration
distribution of the species will be distributed homogeneously
over the system. At thermodynamic equilibrium all the inter-
nal fluxes, i.e., jρ and Jσ , and external fluxes of the chemostat-
ted species vanish and so the total entropy production rate is
zero.

VI. NONEQUILIBRIUM GIBBS FREE ENERGY
OF CHEMOSTATIC SYSTEM

Nonequilibrium Gibbs free energy of a chemical reaction
network can be expressed in terms of the Gibbs free energy of
an ideal dilute solution ([53], ch. 7) as

G = G0 +
∫

dr
∑
σ �=0

(zσμσ − zσ ), (50)

where G0 = z0μ
o
0. A constant term like ln z0 is also absorbed

within μo
σ term of chemical potential. Here the solvent has

been treated as a special chemostatted element and both G0

and
∑

σ �=0 zσ in Eq. (50) are due to solvent of dilute solution.
For a closed system, when the concentration distribution is
relaxed to a unique equilibrium distribution, zeq

σ , from Eq. (50)
one finds

G
(
zeq
σ

) = G0 +
∫

dr
∑
σ �=0

(
zeq
σ μeq

σ − zeq
σ

)
. (51)

The left null vectors corresponding to the left null space of
the stoichiometric matrix are known as the conservation laws
([32], pp. 89–103), whereas the (right) null eigenvectors of the
stoichiometric matrix represent cycles. So, mathematically,
conservation law can be expressed as∑

σ

lλ
σ Sσ

ρ = 0, (52)

where

Sσ
ρ ∈ Rσ×ρ,

{
lλ
σ

} ∈ R(σ−w)×σ ,w = rank
(
Sσ

ρ

)
.

From the definition of affinity in Eq. (41), we can further
express chemical potentials in terms of linear combination of
conservation laws for a closed system at equilibrium,

μeq
σ = Rλlλ

σ , (53)

where Rλ is real coefficient with dimension of force. Con-
served quantities of a closed system known as components can
be specified in terms of this conservation laws of the reaction
network with

Lλ =
∑

σ

lλ
σ zσ , (54)

such that d
dt

∫
drLλ = 0. Since components Lλ remain con-

stant over time for a closed reaction-diffusion system, it
would characterize both the equilibrium and nonequilibrium
concentration distributions as μ

eq
σ zeq

σ = μ
eq
σ zσ . This renders
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another form of Eq. (51) as

G
(
zeq
σ

) = G0 +
∫

dr
∑
σ �=0

(
zσμeq

σ − zeq
σ

)
. (55)

Using the relation in Eq. (53) we could also have the following
expression of equilibrium Gibbs free energy from Eq. (51):

Geq = G
(
zeq
σ

) = G0 +
∫

dr
∑
σ �=0

(
RλLλ − zeq

σ

)
. (56)

In the information theory approach [54], Shannon entropy or
Kullback-Leibler divergence is defined for two normalized
probability distributions, P and P0, as

�(P||P0) =
∑

i

Pi log
Pi

Pi
0

and it quantifies the amount of information needed to switch
from a known distribution P0 to the distribution P. With
the similar spirit, we can express nonequilibrium Gibbs free
energy by exploiting Eqs. (50) and (55) as

G − Geq = �
(
zσ

∣∣∣∣zeq
σ

)
, (57)

where

�
(
zσ

∣∣∣∣zeq
σ

) =
∑

σ

{
zσ log

zσ

zeq
σ

− (
zσ − zeq

σ

)}
� 0

is relative entropy for non-normalized concentration distribu-
tion. Thus Eq. (57) implies that the lowest possible value of
the nonequilibrium Gibbs free energy is set by its equilibrium
counterpart in a closed system.

Conservation laws in an open system could be character-
ized in general by

lλ
I SI

ρ + lλ
CSC

ρ = 0

{
lλb
I SI

ρ �= 0 broken CL
lλu
I SI

ρ = 0 unbroken CL
, (58)

where for an open system, {lλ} = {lλb} ∪ {lλu}, labels u and
b correspond to unbroken and broken ones, respectively. So
from Eq. (58), we can say broken conservation laws are not
left null vectors of SI

ρ for at least one reaction of the reaction
network. Consequently, corresponding broken components,
Lλb , of open system are no longer a global conserved quan-
tities. Depending on whether chemostatted species break a
conservation law or not, a set of chemostatted species could
thus be divided into two subsets so that {C} = {Cb} ∪ {Cu}.

The semigrand Gibbs free energy of the open system can
be acquired from the nonequilibrium Gibbs free energy as

G = G −
∑
Cb

μ
eq
Cb

MCb, (59)

where MCb = ∑
Cb

lλb
−1

Cb

∫
drLλb resembles moieties that are

exchanged between chemostats and a system only through the
external flow of the chemostatted species. For an open system,
nonequilibrium semigrand Gibbs free energy will have a form
similar to its nonequilibrium Gibbs free-energy counterpart,

G = Geq + �
(
zσ

∣∣∣∣zeq
σ

)
. (60)

At the local level, exchange of species between neighboring
spaces due to local diffusion will be equivalent to matter ex-
change through chemostatting. So the energetic contribution

of the species exchanged through the local diffusion needs to
be eliminated to define proper thermodynamic potential at the
local level of the open reaction-diffusion system [36]. So from
the local standpoint, the transformed Gibbs free energy would
have the following form:

GL = G − μeq
σ zσ , (61)

where G is the Gibbs free energy of the system is speci-
fied at each point of the system. When all the conservation
laws are broken then μ

eq
I zσ = μ

eq
Cb

lλb
−1

Cb
lλb
I zI and μ

eq
Cb

Zσ =
μ

eq
Cb

lλb
−1

Cb
lλb
Cb

zCb and thus Eq. (61) would result in expression
identical to Eq. (59).

For the stoichiometric matrix (2) of the Brusselator reac-
tion network, the conservation laws of the closed reaction-
diffusion system are represented by two linearly independent
(1 × 6) vectors,

lλ=1
σ = (X Y A B D E

1 1 1 0 0 1
)

(62)

and

lλ=2
σ = (X Y A B D E

0 0 0 1 1 0
)
. (63)

The components corresponding to these two conservation
laws are L1 = x + y + a + e and L2 = b + d . The species A
and B are considered as the reference chemostatted species
here and both the conservation laws of the Brusselator model
in Eqs. (62) and (63) are broken by chemostatting of A and B.

VII. CONCENTRATION FIELDS
OF INTERMEDIATE SPECIES

As mentioned earlier in Sec. III B, we can have both
Turing and Hopf instabilities in reaction-diffusion system.
The spatiotemporal profile of the concentration fields in a
different range of control parameters shows periodic behavior
depending on the dispositions of the Turing and Hopf instabil-
ities. The resulting pattern can be traced in the critical wave
numbers and frequencies of Turing and Hopf regimes from
the solution of the corresponding amplitude equations.

A. Turing instability regime

For the marginal stability condition of the homogeneous
state of the system, the growth rate becomes zero and the
evolution equation of the concentration field near the onset
of Turing instability can be expressed by using an amplitude
equation formalism for the single fastest-growing mode as

zIT = zI0 + ATUcT exp (iqcT r) + c.c., (64)

where ZI 0 ∈ [x0, y0] is a time-independent uniform base state
with respect to extended direction and AT is a Turing am-
plitude rendering several essential features of the pattern
formation. The corresponding long-time solution of Eq. (64)
is given by(

x
y

)
=

(
x0

y0

)
+

{[
1

− k4
k1

√
k4
k3

√
det(D)

(D12+D22 )a − (D21+D11 )
(D12+D22 )

]

× AT2 cos qcT r

}
. (65)
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B. Hopf instability regime

Similarly to the Turing instability in Sec. VII A, the perturbation part in the Hopf instability can be written as

δzI = AHUcH exp (iωcHt ) + c.c., (66)

where AH is the Hopf amplitude part. The final equation of the perturbation can be expressed as

(
δx
δy

)
=

√
λ exp(iβλt )

⎧⎨
⎩2 cos (ωcHt + βλt ) − 2

a

√
k4
k3

1
k1

sin (ωcHt + βλt )

−2(1 + k4
3

k3k1
2

1
a2 cos [ωcHt + βλt )]

⎫⎬
⎭. (67)

For the parameter value greater than the critical value bcH, this perturbation part will give rise to the limit-cycle type oscillatory
profile.

C. Overlapping of Turing and Hopf instabilities

Here we are going beyond the Turing condition of pattern formation and we have chosen equal self-diffusion coefficients and
nonzero cross-diffusion coefficients for the Brusselator model. Critical values of the control parameter b for Turing and Hopf
instabilities are given previously by Eq. (13) in Sec. III and (16) in Sec. III B, respectively. Equating these, we can simply derive
a particular point aTH in the parameter space of a for which thresholds of Turing and Hopf instabilities would coincide in the
(a, b) parameter plane as

aTH =
[

k3
4

k3k2
1

] 1
2
(

[det(D)]
1
2 + √

[det(D)] − [D22 + D12 − D11 − D21]D12

[D22 + D12 − D11 − D21]

)
. (68)

In the vicinity of the Turing-Hopf point, the critical intrinsic
wave number of the Turing instability obtained from the
marginal stability condition is given by

qcT |a=aTH = qcTH =
[

k2
1k3

k4

a2
TH

det(D)

] 1
4

and the critical frequency of a homogeneous Hopf mode is
ωcT H = aTH. Superposition of the Turing mode in Eq. (64)
and the Hopf mode in Eq. (66) will describe the spatiotem-
poral dynamics of the concentration field due to Turing-Hopf
interplay with

zITH = zI0 + ATUcT exp (iqcT r) + AHUcH exp (iωcHt ) + c.c.
(69)

This concentration field is employed to assess all the thermo-
dynamic entities corresponding to Turing-Hopf interplay.

We have considered spatiotemporal pattern arising from
the interplay between Turing and Hopf instabilities in either
of following three ways:

(i) The stationary spatial Turing pattern grows before it
loses stability as control parameter b is further changed and
Hopf instability appears in the reaction-diffusion system.

(ii) Homogeneous oscillatory pattern emerges first and
then the limit-cycle solution modulated by Turing instability
emerges.

(iii) Critical points of Turing and Hopf instabilities over-
lap and thus they arise simultaneously in the system and
interact.

Based on the amplitude equation formalism in the presence
of cross diffusion, we obtain concentration profiles for all
three scenarios with the aid of Eq. (68) in the space of control
parameter b, which lies in the vicinity of onset of instabilities.

VIII. RESULTS AND DISCUSSIONS

The evolution of the entropy production rate and semigrand
Gibbs free energy in the 1D Brusselator model regarded as
an open chemical network has been investigated analytically
to find out the correspondence between the evolution of
thermodynamic quantities and spatiotemporal pattern due to
Turing-Hopf interplay. All the results correspond to a steady-
state condition with absolute temperature T = 300 K; diffu-
sion coefficients D11 = D22 = 1, D12 = 0.51, D21 = −0.51,
one-dimensional system length l = 9.5; and for the weakly
reversible case, i.e., chemical reaction rate constants k−ρ =
10−4 � kρ = 1, unless otherwise indicated. The temperature
is constant throughout the system as the rate of heat diffusion
is assumed to be much faster than the diffusion rate of species.
We have used b as control parameter to find its effect on the
intermediate species concentrations and thus on the thermo-
dynamic entities also.

In Fig. 2(a), we show the region of Turing-Hopf interplay
in (b, a) parameter space. We have obtained the Turing line by
using Eq. (13) and the Hopf line by using Eq. (16) as shown by
a solid line and a dashed line, respectively. The circular label
in the figure corresponds to the critical Turing-Hopf point
where the Turing and Hopf lines intersect.

Exploiting the modified Taylor dispersion method, the
values of the self-diffusion, as well as cross-diffusion, coef-
ficients are experimentally determined in the case of three-
component [55], four-component [55,56], and five-component
[57] Belousov-Zhabotinsky reaction dispersed in Aerosol OT
water-in-oil microemulsion (BZAOT) systems [58,59]. In
their work, Rossi et al. reported that experimentally found
cross-diffusion coefficients can shift the Turing onset and
thus can generate a Turing pattern if the system was initially
close to the onset of instability. To obtain proper insight of
this experimental claim, we have also taken diffusion matrix
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FIG. 2. The solid line is the Turing line corresponding to Eq. (13) and the dashed curve is the Hopf line corresponding to Eq. (16) in both
(a) and (b) in the presence of the diffusion coefficients D11 = D22 = 1, D12 = 0.51, and D21 = −0.51. In panel (a), the point of intersection
of the Turing and Hopf lines is [aTH ≈ 1.9438, bcT = bcH ≈ 4.7785]. In (b), we have defined a new parameter, Dcr = D12[1 + 1

a2 ] − D21,
containing only cross-diffusion coefficients to explore the effect of cross diffusion on the Turing and Hopf lines. Panels (c) and (d) are similar
to the previous figures with experimental magnitudes of the diffusion coefficients as D11 = 1.28, D12 = 1.26, D21 = −0.005, and D22 = 1.51
of the pentanary BZ-AOT system.

elements from the experimental data of a pentanary BZAOT
system [57] as D11 = 1.28, D12 = 1.26, D21 = −0.005, and
D22 = 1.51 on the ground of the assumption that the presence
of additional components in the system leaves the diffusion
coefficients unchanged [56] and the corresponding results are
shown in Figs. 2(c) and 2(d). One should note that the effect
of cross diffusion on the onset of Turing instability for the
BZ-AOT system was reported in the presence of two different
self-diffusion coefficients. Although, from Fig. 2(b), it is clear
that Dcr composed of cross-diffusion coefficients can control
the onset of instabilities even when all the self-diffusion
coefficients are equal [51].

When cross diffusion has a linear dependence on the
concentration, we can write the cross-diffusion coefficients
as D12 = D12x0 and D21 = D21y0 [19,20] with x0 = k1

k4
a and

y0 = k2k4b
k1k3a being the steady-state concentrations of X and Y ,

respectively, for the spatially homogeneous system. As A and
B are chemostatted species and kinetic rate constants are fixed
at a particular value throughout the time of interest, D21 and
D12 are effectively constant in this case also. From Fig. 3(a),
it is clear that the intersection of the Turing and Hopf lines
is shifted to lower values of a and b due to this concentra-

tion dependence. In this context by taking only one nonzero
cross-diffusion coefficient at a time, we have shown the effect
of individual cross-diffusion coefficients on the Turing-Hopf
intersection in Fig. 3(c) and Fig. 3(d) for equal self-diffusion
coefficients. From Figs. 3(a) and 3(d), it is evident that mod-
ification of the Turing line due to concentration-dependent
D21 is comparable to the effect of concentration a on the
Turing line. From Figs. 3(b), 3(c), and 3(d), one can conclude
that D21 has a stronger effect on the Turing line in the case
of the Brusselator model. The more general concentration
dependence of cross-diffusion terms is beyond the scope
here.

We now consider three different values of a for three
different scenarios, i.e., a = 2.1 (Turing instability precedes
Hopf instability), a ≈ 1.9438 Codimension 2 (COD2), and
a = 1.8 (Hopf instability arises first) in subsequent studies.
In Fig. 2(b), we explore the Turing and Hopf lines as a
function of the newly defined parameter, Dcr = D12[1 + 1

a2 ] −
D21, motivated by the fact that cross-diffusion coefficients
are present explicitly in this part and Dcr appears in both
Eqs. (26a) and (26b) of amplitude and phase dynamics.
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FIG. 3. The solid line is the Turing line, and the dashed curve is the Hopf line in both (a) and (b) in the presence of following diffusion
coefficients: D11 = D22 = 1, D12 = 0.51x0, and D21 = −0.51y0. In (a), the point of intersection of Turing and Hopf line is shifted to lower
values of a and b due to concentration-dependent cross-diffusion coefficients. In (b), the parameter, Dcr = D12[1 + 1

a2 ] − D21, contains only
cross-diffusion coefficients show the effect of concentration-dependent cross-diffusion coefficients on the Turing and Hopf lines. Panels (c) and
(d) represent the individual effect of the cross-diffusion coefficients D12 and D21, respectively.

FIG. 4. The solid black line corresponds to the Hopf amplitude derived analytically as a function of control parameter b of the system at
time t = 150. The blue dashed line refers to the Turing amplitude obtained from the analytical amplitude equation of the Turing instability.
The red line plot with marker ∗ shows addition of Turing and Hopf amplitudes. Three different scenarios of Turing-Hopf interplay have been
shown here: (a) for a = 2.1, Turing first; (b) for COD2-Turing and Hopf appear simultaneously at the same point in parameter space; (c) for
a = 1.8, Hopf first. Here we have analyzed all three cases at a particular local point of the finite system of length l = 9.5. This figures of
amplitude will give lucid idea about local concentration profile in 1D Brusselator model in the parameter space of Turing-Hopf interplay and
the effect of Hopf instability on the diffusion-driven Turing instability.
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FIG. 5. Spatial and temporal dynamics of concentration X for the scenario when the Turing and Hopf modes arise simultaneously in a
1D Brusselator model with a system size of l = 9.5. Here a = aTH and b = 4.9998 and both self- and cross diffusion are present. The spatial
pattern in (a) corresponds to a fixed time t = 150. Whereas the temporal pattern in (b) corresponds to a particular point of the system. Existence
of these two structures is due to Turing instability and Hopf instability, respectively. Panel (c) shows the power spectral density estimate of
discrete-time concentration vector of species X [see panel (b)] obtained via Welch’s method.

In Fig. 4, we have shown the amplitude dynamics of Hopf
and Turing with the aid of Eqs. (32) and (37). As the control
parameter b is changed through the critical values of Turing
and Hopf instabilities, we can see how the oscillatory behavior
of Hopf instability dominates over diffusion-driven Turing
instability for steady state at a given point of the system at
time t = 150. Conversely, these figures also depict how the
Turing instability modifies the oscillatory amplitude. As a
consequence of this modification in oscillatory profile, the
radius of the corresponding limit cycle will also change. In
another way, it shows the effect of diffusion on the Hopf limit
cycle indirectly through Turing instability. This amplitude
profile renders clear the idea about local concentration profile
in the parameter space of the Turing-Hopf interplay. Above
all, these figures are the measure of both Turing and Hopf
instabilities at fundamental level.

In Fig. 5, the spatial and temporal profiles of the concentra-
tion for a given value of the control parameter show periodic
behavior due to Turing and Hopf instability, respectively. The
spatial profile in Fig. 5(a) corresponds to a wave number
close to the critical value of the Turing intrinsic critical wave
number. Whereas the temporal oscillation in Fig. 5(b) has
nonzero normalized frequency as seen by the peak in the
power spectral density in FIig. 5(c). For the profiles in Fig. 5,
we have considered only the scenario when the Turing and
Hopf instabilities arise simultaneously at a point in parameter
space. For other two scenarios these profiles have roughly the
same features.

We have studied the response of the total entropy produc-
tion rate due to the changes in reference chemostatted species,
b, while another reference chemostatted species, a, remains
constant. A nonzero total entropy production rate changes
continuously and shows that an oscillatory response for all
three scenarios(as mentioned above) arises in Turing-Hopf
interplay as shown in Figs. 6(a), 6(c), and 6(e). Comparison
among profiles of global concentration of activator (or in-
hibitor) in the right column of Fig. 6 and the corresponding
total EPR on the left column of the same figure reveals that
the total entropy production rate is quantitatively proportional
to the the total concentration of activator (or inhibitor) in
the reaction-diffusion system. Moreover, they are showing
qualitatively similar dynamics for all three cases. In other

words, the entropy production rate reflects the global dynam-
ics of reaction-diffusion system concentration arising from
the Turing-Hopf interplay. This result simply implies that the
entropy production rate of a dissipative system can measure
the pattern formation quantitatively as well as qualitatively.

Analytical concentration field of an intemediate species,
X , as a function of control parameter b due to the Turing-
Hopf interplay as shown in the first two rows of Fig. 7 is
calculated by using Eq. (69) in Sec. VII C. The corresponding
reaction and diffusion entropy production rate is obtained
from Eqs. (46) and (48), respectively, in the presence of cross
diffusion. The study of entropy production rate separately for
diffusion and reaction reveals their proper contribution to total
entropy production. It also renders clearly how Turing-Hopf
interplay and cross diffusion modify these two parts sepa-
rately. In Fig. 7(g), as the parameter value reaches the Turing
instability critical point, the nonzero entropy production rate
due to both reaction and diffusion shows initially dynamical
bifurcation types of characteristics. Then the appearance of
Hopf instability modifies the reaction part of the entropy
production rate by its innate limit-cycle-type oscillatory dy-
namics and gives rise to irregular oscillatory response of
the entropy production rate with respect to parameter b. The
dotted red line in the same figure also shows modification of
the diffusive entropy production rate by Hopf instability to a
very little but finite extent and thus hints that the limit cycle of
the Hopf instability has indirect dependence on the diffusion.
In Fig. 7(i), initially Hopf instability is only present in the
reaction-diffusion system and the entropy production rate is
zero. Then as the control parameter changes and exceeds the
Turing critical point, a nonzero diffusion entropy production
rate appears due to Turing instability. This means that the
thermodynamic entity is modified by the Turing instability
in this framework although Hopf instability appears first.
It is an interesting result, as in the dynamical framework,
Hopf instability screens the Turing instability if the former
precedes the latter instability in reaction-diffusion system. In
Fig. 7(h) we can see as the Turing and Hopf instabilities
appear simultaneously, both the reaction and diffusion entropy
production rates are modified sufficiently from the initial zero
value. Corresponding concentration profiles in all the cases
are shown in the first row of Fig. 7.
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FIG. 6. Total entropy production (left column) as function of externally controlled parameter b calculated analytically for a 1D Brusselator
model of length l = 9.5 at time t = 150 and absolute temperature T = 300 K for three different values of parameter a leading to three different
scenarios of Turing-Hopf interplay: [(a) and (b)] for a = 2.1, Turing first; [(c) and (d)] for COD2-Turing and Hopf that appear simultaneously;
and [(e) and (f)] for a = 1.8, Hopf first. Total entropy production expressed as the sum of entropy production rates due to diffusion and reaction
parts. Global concentration field of intermediate species X and Y as a function of b are shown in the right column. In all the three cases it
is very apparent from the figures that entropy production rate is proportional to global concentration of X (or Y ). For all the cases diffusion
coefficients are D11 = D22 = 1, D12 = 0.51, and D21 = −0.51 and reaction rate constants are K−ρ = 10−4 � Kρ = 1. (i.e., for the weakly
reversible case).

The left column of Fig. 8 shows the semigrand Gibbs
free-energy change as a function of chemical energy of the
control parameter b. As suggested by Figs. 8(a), 8(c), and 8(e)
for “Turing first,” “COD2” and “Hopf first,” respectively, the
transformed Gibbs free energy of the unstable homogeneous
part basically sets the baseline for the transformed Gibbs
free energy corresponding to the part where pattern formation
arises. This clearly suggests that the transformed Gibbs free
energy plays the role of the proper nonequilibrium thermo-

dynamic potential of the reaction-diffusion system in the
presence of Turing-Hopf interplay, at least in a global sense. A
plot of the slopes for the same thermodynamic entity is shown
in the right column of Fig. 8 to get a more clear idea about
the phase transitions in the response of the thermodynamic
entity for whether Turing [Fig. 8(b)] or Hopf instability [Fig.
8(f)] appears first or both of them appear simultaneously [Fig.
8(d)] as control parameter b is varied. In Figs. 7 and 8, due to
Turing Hopf interplay one obtains oscillation in concentration
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FIG. 7. In the first row, 3D concentration fields of X in the Brusselatator model of length l = 9.5 as a function of externally controlled
parameter b at t = 150 and T = 300 K for three different values of parameter a leading to three different scenarios of Turing-Hopf interplay
are shown (plots of Y are similar). Here a “jet” colormap is used to show contrast in concentration field. Figures of the second row shows image
of these concentration fields of X . Extended spatial dimension is shown along the vertical axis. In the third row the corresponding analytical
result of EPR for reaction (�̇R) and diffusion (�̇D) as function of control parameter b is presented. The solid blue lines corresponds to the
difference between reaction part and the homogeneous part of the reaction-diffusion system and red dashed lines refer to the diffusion part of
entropy production rate. [(a), (d), and (g)[ For a = 2.1, Turing first; [(b), (e), and (h)] for COD2-Turing and Hopf appearing simultaneously;
[(c), (f), and(i)] for a = 1.8, Hopf first.

and thermodynamic quantities with b and μb. A series of
phase transitions can open up the opportunity to control
concentration and the free-energy profile both spatially and
dynamically by varying the chemostatted species B.

IX. CONCLUSIONS

In this work, we have investigated the energetic and en-
tropic costs of pattern arising in the realm of Turing-Hopf
interplay in a standard model system by determining proper
nonequilibrium potential and entropy production rate in an
open system with finite size. In a systematic way we have
shown here how the concentration, nonequilibrium semigrand
Gibbs free energy and entropy production rate at steady state

drastically depend on a control parameter in the Turing-Hopf
interplay regime for three possible situations. This approach
will also help to control and manipulate the efficiency and
dissipation of a system far from equilibrium. It also paves
the way to relate Turing-Hopf interplay with the instance of
nonequilibrium phase transitions which generates a possibility
of huge modulation of free-energy and concentration profiles.
Here we capture as well as quantify the effect of diffusion
on the Hopf limit cycle through the diffusion-driven Turing
instability. Proportionality of total EPR with the global con-
centration profile is an important result in the context of the
entropic cost of pattern formation and thus for the evolu-
tion of real chemical or biological systems in larger sense.
Furthermore, we have found that these outcomes are also
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FIG. 8. Semigrand Gibbs free energy (left column) and corresponding slope (right column) profiles calculated analytically as function of
chemical potential of control parameter b in 1D the Brusselator model at t = 150 and T = 300 K for three different values of parameter a
leading to three different scenarios of Turing-Hopf interplay: [(a) and (b)] For a = 2.1 Turing first; [(c) and (d)] for COD2 Turing and Hopf
appearing simultaneously; and [(e) and (f)] for a = 1.8, Hopf fist. A and B are considered as the reference chemostatted species to define
nonequilibrium free energy in an open system. The dotted lines are for an unstable homogeneous state of the system with no pattern. For all
the cases the diffusion coefficients are D11 = D22 = 1, D12 = 0.51, and D21 = −0.51 and reaction rate constants are K−ρ = 10−4 � Kρ = 1.

valid for the experimentally found magnitudes of the self- and
cross-diffusion coefficients. The only thing that would be
different for the experimental values of diffusion coeffi-
cients is the period of oscillations as the parameter a, on
which critical frequency of the Hopf bifurcation depends, is
shifted to a new value due to this different set of diffusion
coefficients.

Amplitude equation formalism, a universal description in
terms of dynamical symmetry breaking near a bifurcation
point, has been utilized here to lay the basis of analytical
construction. The approximate amplitude solution obtained
by the analytical scheme for equal self-diffusion coefficients
can describe the dynamical phenomena found in the exper-
iments with high accuracy [49]. In our approach of finding
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the amplitude equation by exploiting the KB scheme, we
have considered both the self- and cross-diffusion coefficients
which are generally not equal. In this aspect, our results
related to the amplitude equation is more general and would
be quite useful in the environment where cross diffusion is
present.

It turns out that even in the absence of the “local activation
and long-range inhibition” condition [9] with equal self-
diffusion coefficients of the species, proper choice of cross-
diffusion coefficients can lead to the diffusive instabilities as
the mathematical expressions of the intrinsic critical values of
control parameter as well as wave number explicitly contain
cross-diffusion coefficients. So Turing instabilities considered
here are essentially cross diffusion driven and this kind of ther-
modynamic description is valid beyond the traditional Turing
pattern. Our selection of the Brusselator model in this study
excludes the possibility of subcritical Hopf bifurcation. Here
we have inspected weak Turing-Hopf interplay and have not

considered subharmonic oscillation in this kind of interplay.
We believe this framework for Turing-Hopf interplay will also
be applicable to study the thermodynamics of Turing-Hopf
interaction in a superdiffusive two species model [60].

This analytically tractable thermodynamic description of
the reaction-diffusion system is found to be powerful enough
to capture almost all of the essential richness of the Turing-
Hopf interaction in an open chemical network. In linear
nonequilibrium thermodynamics, the thermodynamic driving
force is specified as flux times Onsager coefficients near
equilibrium. Here the reaction affinity for a system kept far
from equilibrium is expressed directly from the elementary
chemical reaction containing the nonlinear autocatalytic reac-
tion. This approach of nonequilibrium thermodynamics on top
of nonlinear dynamical features considered here for pattern
formation could also be implemented in kinetic proofreading
[61,62], enzyme-assisted copolymerization [63], and in sev-
eral nonequilibrium steady states of biochemical systems [24].
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