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Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated
into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic
uncertainty relation, we propose a deterministic method to estimate the entropy production from a single
trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest
lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related
to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic
uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for
overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because
the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method
provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a
more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed
method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring
model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed
method.
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I. INTRODUCTION

Entropy production is a fundamental thermodynamic quan-
tity that characterizes the irreversibility of thermodynamic
processes. Owing to the development of stochastic thermody-
namics [1,2], a mesoscopic expression of entropy production
has been formulated in the trajectory level [3,4]. As a conse-
quence, a universal property regarding the symmetry of the
probability distribution of entropy production was discovered
as the fluctuation theorem [5–7], from which the second
law of thermodynamics can be derived. Entropy production
quantifies dissipation costs in nonequilibrium systems and is
essential in the fundamental limits of the efficiency of physical
systems, such as heat engines and refrigerators [8–10]. In the
context of biological processes, entropy production indicates
the free energy lost in the spontaneous relaxation to perform
a specific function [11]. Therefore, the estimation of entropy
production from the experimental data allows us to access the
limits that cannot be exceeded and also provides insight into
the underlying mechanism of physical systems [12].

Recent studies have made considerable advances in the
entropy production inference based on the time-series data
[13–16]. Inference strategies can be generally classified into
two classes: direct and indirect. The authors in Ref. [15]
employed the former class to quantify dissipation for systems
described by the additive-noise Langevin equations; the de-

*tan@biom.t.u-tokyo.ac.jp
†tuan@biom.t.u-tokyo.ac.jp
‡hasegawa@biom.t.u-tokyo.ac.jp

tailed dynamics of the system (e.g., drift terms and probability
fluxes) were estimated, and the associated entropy produc-
tion was subsequently approximated by either a spatial or a
temporal average. However, with an increase in the dimen-
sionality, this strategy becomes computationally costly, and a
prohibitive amount of data is required to accurately estimate
the underlying dynamics. Furthermore, the direct strategy is
not applicable to situations wherein the full freedom degrees
of the system cannot be observed in the experiments (e.g.,
some hidden variables exist due to the resolution limit of
the measuring instrument [17,18]). Alternatively, an indirect
strategy based on important recent discoveries called thermo-
dynamic uncertainty relations (TURs) [19–47] (see [48] for
review) was proposed [15,16]. TURs impose the following
bound for steady-state systems described by continuous-time
Markov jump processes and overdamped Langevin dynamics:

� � 2〈φ〉2

τ 〈〈φ〉〉 , (1)

where φ is an arbitrary time-integrated current, 〈φ〉 and
〈〈φ〉〉 := 〈φ2〉 − 〈φ〉2 are its mean and variance, respectively,
τ is the observation time, and � is the entropy production
rate. Theoretically, a lower bound of entropy production can
be obtained using a TUR. Specifically, when the equality in
Eq. (1) is attained, the exact entropy production inference is
possible [16]. TUR appears to be a powerful tool for entropy
production inference; however, an efficient method is still in
development from the practical perspective.

In this study, we propose a deterministic method of entropy
production estimation that is based on the TUR for classical
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Markovian dynamics. We compute a current that maximizes
the lower bound (i.e., minimizes its relative fluctuation) and is
referred to as the optimal current. For overdamped Langevin
dynamics, we rigorously prove that TUR can be saturated in
the short-time limit with the current of entropy production,
even when the system is arbitrarily far from equilibrium.
Therefore, entropy production can be accurately estimated via
the fluctuation of the optimal current in the short-time limit.
For Markov jump processes, we construct a counterexample
in which TUR is unattainable with the current of entropy pro-
duction. Accordingly, entropy production is not guaranteed
to be exactly estimated as in the case of Langevin dynamics.
In this case, our method provides the tightest possible lower
bound on the entropy production. However, given that entropy
production is the optimal current, an exact estimate can be
further obtained by combining our method with the fluctuation
theorem. We illustrate our approach with the help of three sys-
tems: a four-state Markov jump process, a periodically driven
nonlinear system, and a tractable bead-spring model. The re-
sults demonstrate that the proposed method produces accurate
estimates of entropy production for Langevin systems and the
tightest lower bound for Markov jump processes. Notably,
the computed optimal current accurately approximates the
stochastic entropy production, which agrees with the theory
that the entropy production is one of the optimal currents in
the Langevin dynamics.

Indirect inference on the basis of the TUR has several
advantages over the direct one. First, it can robustly estimate
a lower bound on entropy production even in the presence
of hidden variables, while the direct strategy cannot. This
situation is common in the biological context, where the
full degrees of freedom are often inaccessible. Second, for
Langevin dynamics involving multiplicative noises, the ac-
curate estimation of both the drift and diffusion terms is
not a simple task, especially in the high-dimensional case.
Moreover, the errors that occurred in the estimation of these
quantities can be accumulated in the phase of calculating
entropy production, which potentially affects the accuracy of
the estimate. In contrast, inference that is based on the TUR
does not require us to know the underlying dynamics, e.g.,
whether the noises are additive or multiplicative.

II. METHOD

In this section, we describe our method of entropy produc-
tion estimation for both Markov jump processes and Langevin
dynamics. First, we discuss the strategy of entropy production
estimation on the basis of TUR. Then, we explain in detail
how to efficiently estimate entropy production in practice. The
procedure of entropy production estimation is illustrated in
Fig. 1.

A. Entropy production estimation on the basis of TUR

The lower bound of the entropy production rate can be
estimated from TUR [Eq. (1)] as

� � �̂τ := max
φ

2〈φ〉2

τ 〈〈φ〉〉 , (2)

FIG. 1. (a) Schematic diagram of entropy production estimation.
A trajectory � = {x(t )}t=Tobs

t=0 of the steady-state system is observed
by a measuring instrument. Then, the entropy production rate � is
estimated solely from this single trajectory. (b) Schematic diagram of
the trajectory-split process. The observed trajectory of length Tobs is
split into multiple subtrajectories of length τ (�Tobs). Note that the
subtrajectories can be overlapped in the splitting phase to increase
the number of samples.

where the maximum is taken over all possible currents. The
inequality (2) immediately suggests a simple way to obtain
the lower bound of the entropy production rate as follows: (i)
observing a variety of currents in the system and calculating
the fluctuation of each current and (ii) setting a maximum of
{2〈φ〉2/τ 〈〈φ〉〉} as a lower bound on �. Despite its simplicity,
there are several issues when employing this strategy. First,
there is no theory that supports the number and the detailed
forms of currents needed to yield a good estimate. Moreover,
it is also difficult to assess whether the present maximum
value is the tightest bound or not. Clearly, if the explicit form
of the optimal current is known in advance, one can observe
such a current and readily obtain the tightest bound for the
entropy production rate. Given the underlying dynamics, a
recent study has proposed a method to analytically calculate
the optimal current, which is called the hyperaccurate current
[49]. Without accessibility to the details of dynamics, it is
impossible to attain an exact form. In Ref. [15], the authors
used the Monte Carlo method to randomly sample the optimal
current. However, the resulting current is only suboptimal
when the system is strongly driven from equilibrium. In the
next section, we propose a deterministic strategy to efficiently
approximate the optimal current from a single trajectory.

To obtain an exact estimate of the entropy production rate,
the saturation in Eq. (2) is required, i.e., �̂τ = �. Recently,
the authors in Ref. [16] stated that the equality can be attained
in the short-time limit with the current σ of entropy produc-
tion, i.e.,

2〈σ 〉2

τ 〈〈σ 〉〉
τ→0−−→ � or F := 〈〈σ 〉〉

〈σ 〉
τ→0−−→ 2. (3)
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Here, we use the relation 〈σ 〉 = τ�, and F denotes the Fano
factor of σ . Equation (3) implies that for short observation
times, σ is the optimal current, and its Fano factor F con-
verges to 2. However, we show that this statement holds for
overdamped Langevin dynamics but not for the Markov jump
processes. We rigorously prove that for systems described by
overdamped Langevin equations, the Fano factor of entropy
production always converges to 2 in the short-time limit. The
details of the proof are presented in Appendix A. Regard-
ing Markov jump processes, we construct a counterexample,
in which F can be arbitrarily large even in the short-time
limit. The details of the counterexample are provided in
Appendix B. In conclusion, the entropy production rate can be
accurately estimated for Langevin dynamics. However, only
the tightest lower bound on the entropy production rate can be
obtained for Markov jump processes.

B. Approximation of the optimal current

Let C = {φi(�)}n
i=1 be a set of predetermined basis currents

such that an arbitrary current can be approximately formed
as a linear combination of these currents. Here, � denotes a
given trajectory, and n is the number of basis currents. The
construction of C (i.e., how to define the detailed form of
each basis current φi) will be described in the next section.
We assume that the optimal current can be expressed in
terms of basis currents as φopt (�) = ∑n

i=1 ciφi(�), where c =
[c1, . . . , cn]� ∈ Rn×1 is the coefficient vector. Then, the mean
and variance of φopt can be analytically calculated via the basis
currents as

〈φopt〉 = c�μ, (4)

〈〈φopt〉〉 = c��c, (5)

where μ := [〈φ1〉, . . . , 〈φn〉]� ∈ Rn×1 and � := [〈φiφ j〉 −
〈φi〉〈φ j〉] ∈ Rn×n denote the means and the covariance matrix
of the basis currents, respectively. The computation of φopt is
equivalent to finding the optimal value of c that maximizes the
following function:

J (c) = 〈φopt〉2

〈〈φopt〉〉 = E (c)2

V (c)
, (6)

where E (c) = c�μ and V (c) = c��c. Fortunately, this opti-
mization problem can be solved analytically. Since J (c) is
scale invariant with respect to c, i.e., J (κc) = J (c) ∀κ 	= 0,
we can add an equality constraint, E (c) = 1. Consequently,
the maximizing J (c) and minimizing V (c) optimizations are
equivalent. The latter optimization can be exactly solved using
the Lagrange multipliers method. We consider the Lagrangian
function

L(c, λ) = 1
2V (c) − λ[E (c) − 1]. (7)

Taking the partial derivative of L with respect to ci (i =
1, . . . , n) and λ, we obtain

0 = ∂ciL(c, λ) =
n∑

j=1

c j�i j − λμi (i = 1, . . . , n), (8)

0 = ∂λL(c, λ) = 1 −
n∑

i=1

ciμi. (9)

By solving Eqs. (8) and (9), the explicit solution is obtained:

λ = (μ��−1μ)−1, c = (μ��−1μ)−1�−1μ. (10)

Thus, the maximum value of J (c) is

Jmax := max
c

J (c) = μ��−1μ. (11)

Since the fluctuation of the optimal current φopt obeys TUR,
we have

2〈φopt〉2

τ 〈〈φopt〉〉 = 2Jmax

τ
= 2μ��−1μ

τ
� �. (12)

Equation (12) implies that �̂τ = 2Jmax/τ is the tightest lower
bound for the entropy production rate � for the given set
of basis currents C. Because TUR can be saturated in the
short-time limit for Langevin dynamics, this lower bound is
expected to be exactly the entropy production rate. More-
over, as shown later, an arbitrary current in the Markov
jump process can always be exactly expressed in the form
of a linear combination of basis currents; thus, 2Jmax/τ

is the tightest lower bound on the entropy production rate
for arbitrary observation times. Using the coefficient vector
c obtained in Eq. (10), the optimal current can be readily
calculated as φopt = ∑n

i=1 ciφi. The obtained optimal current
is in agreement with that reported in Ref. [28]. The inequality
μ��−1μ � τ�/2 is also a consequence of the multidimen-
sional TUR [32,36], which provides a tighter bound than that
of the scalar TUR [Eq. (1)]. Here, our analysis indicates that
the multidimensional TUR has a remarkable application in the
entropy production estimation, which was not revealed until
now.

We summarize the procedure of estimating entropy pro-
duction rate in the following.

Algorithm 1. Estimation of the entropy production rate.

Input: A given trajectory of system states � = {x(t )}t=Tobs
t=0

Output: The estimated entropy production rate �̂τ

1: Define a set of basis currents C = {φ1, . . . , φn}
2: Split � into subtrajectories {�k} of length τ as [see Fig. 1(b)]
3: Compute μi = 〈φi〉, �i j = 〈φiφ j〉 − 〈φi〉〈φ j〉 using {�k}
4: Calculate optimal coefficients c = (μ��−1μ)−1�−1μ

5: Return �̂τ = 2μ��−1μ/τ

The statistical values of φi can be numerically approxi-
mated from subtrajectories as

〈φi〉 = 1

N�

∑
k

φi(�k ), (13)

〈φiφ j〉 = 1

N�

∑
k

φi(�k )φ j (�k ), (14)

where N� := |{�k}| denotes the number of subtrajectories.

C. Construction of basis currents

Here, we describe the construction of basis currents for
continuous-time Markov jump processes and overdamped
Langevin dynamics.
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1. Markov jump process

We consider a system modeled by the continuous-time
Markov jump process on a finite countable state space �. Its
dynamics are governed by the master equation

∂t p(y, t ) =
∑
z∈�

[p(z, t )wzy − p(y, t )wyz], (15)

where p(y, t ) denotes the probability distribution at time t
and wyz denotes the transition rate from state y to state z.
We assume that wzy > 0 whenever wyz > 0, and the system
always relaxes to a unique steady state in the long-time limit.
Let pss(y) denote the steady-state distribution, which satisfies∑

z∈� [wzy pss(z) − wyz pss(y)] = 0 ∀y ∈ �.
Given a trajectory � = [x(t )]τt=0, a generic current in the

system can be represented as

φ(�) =
∑
y<z

γyz

∫ τ

0
dt (δx(t− ),yδx(t+ ),z − δx(t− ),zδx(t+ ),y), (16)

where γyz’s are arbitrary real numbers and x(t−) and x(t+)
denote the state of the system immediately before and
after a jump, respectively. Define the set of basis cur-
rents as C = {φyz}y<z, where φyz(�) = ∫ τ

0 dt (δx(t− ),yδx(t+ ),z −
δx(t− ),zδx(t+ ),y) is a current that counts the net number of jumps
between y and z. Then, the arbitrary current φ can be written
in terms of basis currents {φyz} as φ(�) = ∑

y<z γyzφyz(�). For
example, the current of stochastic entropy production has the
form [2]

σ (�) =
∑
y<z

ln
pss(y)wyz

pss(z)wzy
φyz(�), (17)

which corresponds to the case γyz = ln pss(y)wyz/pss(z)wzy.
Because arbitrary currents can always be expressed as a linear
combination of basis currents {φyz}, the optimal current φopt

can be accurately computed. Equivalently, the tightest lower
bound on the entropy production rate can always be obtained.

In special cases, the entropy production rate can, in princi-
ple, be accurately estimated using additional steps, even when
the optimal current does not saturate the TUR. If the entropy
production is the optimal current, i.e., σ = αφopt, where α

is an unknown scaling factor, then � can be estimated by
employing the integral fluctuation theorem as follows. First, α
can be determined by examining whether the relation 〈e−σ 〉 =
1 holds or not. Specifically, this is equivalent to solving the
equation �(α) = N� , where �(α) = ∑

k e−αφopt (�k ). Here, we
consider the case where the trajectory � is well sampled;
that is, both negative and positive values are contained in
{φopt (�k )}k . Since �(α) is a convex function and �(0) =
N�, �(−∞) = �(∞) = ∞, this equation has, at most, one
nonzero solution, which can be, if it exists, efficiently com-
puted using the Newton-Raphson method. After obtaining
α, the entropy production rate can be readily estimated as
�̂τ = α〈φopt〉/τ . It was proved that the entropy production is
the optimal current for the long-time limit [20]. However, the
stochastic entropy production tends to be positive in this limit,
and the negative samples are rare. Thus, the equation �(α) =
N� may have only the trivial solution α = 0, which means
that the entropy production rate cannot be further estimated.

2. Langevin dynamics

For simplicity, we consider a one-dimensional system
whose dynamics are described by the Langevin equation,

ẋ = F (x) +
√

2D(x)ξ (t ), (18)

where F (x) is the force, D(x) > 0 is the diffusion term, and
ξ is the zero-mean Gaussian white noise with a variance of
〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The noise term in Eq. (18),

√
2D(x)ξ ,

is interpreted in the Ito sense. Boltzmann’s constant and the
friction coefficient are set to unity throughout this study.
Let p(x, t ) denote the probability distribution function of the
system state at time t . Then, the corresponding Fokker-Planck
equation is written as

∂t p(x, t ) = −∂x j(x, t ), (19)

where j(x, t ) = F (x)p(x, t ) − ∂x[D(x)p(x, t )] is the proba-
bility current. Again, we focus exclusively on the steady
state, where p(x, t ) = pss(x) and j(x, t ) = jss. The current of
stochastic entropy production is expressed as [50]

σ (�) =
∫ τ

0
dt ϕ(x) ◦ ẋ, (20)

where ϕ(x) := jss/D(x)pss(x) and ◦ denotes the Stratonovich
product.

A generic time-integrated current takes the form of φ(�) =∫ τ

0 dt f (x) ◦ ẋ, where f (x) is the projection function. The
entropy production current corresponds to the case of f (x) =
ϕ(x). We consider a finite set of basis currents defined as
φi(�) = ∫ τ

0 dt fi(x) ◦ ẋ, where fi(x) is the basis function.
We seek basis functions that have a rich representation, i.e.,
where an arbitrary function f (x) can be well approximated
by a linear combination of { fi(x)}n

i=1 for a certain region
of x. For example, { fi(x)} can be trigonometric functions of
the Fourier basis, {sin(ix), cos(ix)}, or Gaussian radial basis
function kernels, exp [−(x − xi )2/2ϑ2

i ], where xi and ϑi are
the center and the bandwidth of the kernel, respectively. As
other choices, { fi(x)} can be orthogonal polynomials such as
Legendre or Chebyshev polynomials [51]. In all examples,
we employ trigonometric functions and Gaussian kernels
and determine that they provide excellent approximations.
Theoretically, increasing the number of basis currents will
enhance the representation ability. However, as shown later,
the truncation of n to some order is sufficient to obtain good
estimates.

Once the basis functions { fi(x)} are determined, the cor-
responding set of basis currents is C = {φi}, where φi(�) =∫ τ

0 dt fi(x) ◦ ẋ. Using the coefficient vector, which is calcu-
lated via the means and covariances of basis currents using
Eq. (10), one can construct the optimal current as φopt (�) =∫ τ

0 dt fopt (x) ◦ ẋ, where fopt (x) = ∑
i ci fi(x).

III. APPLICATIONS

In this section, we apply the proposed method to three
systems: the four-state Markov jump process, the periodically
driven particle, and the bead-spring model. For each system,
we run a simulation and obtain a single trajectory of length
Tobs, from which we estimate the entropy production rate.
Specifically, for Langevin systems, we use the Euler method
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FIG. 2. (a) Schematic diagram of the four-state Markov jump
process whose states are fully connected. (b) Estimation of the
entropy production rate. The blue solid line represents the actual en-
tropy production rate, while the green solid line with dots represents
its estimated tightest lower bound. The error bar depicts the standard
deviation of the estimated values. The violet circles denote the lower
bound on the basis of individual random currents. The orange dots
with error bars represent the estimated values by combining the
proposed method with the fluctuation theorem. When the entropy
production is the optimal current, � can be accurately estimated
with the help of the fluctuation theorem. (c) Cosine similarities
between the coefficients of the computed optimal current and those
of the entropy production current. As shown, all inner products are
close to 1 for all k+ ∈ [1, 5], which empirically indicates that the
entropy production is the optimal current. The parameter k+ is varied
while the remaining parameters are fixed as k− = 1,Tobs = 104, and
τ = 10−2.

to numerically solve the system dynamics with a time step of
�t = 10−4. To examine the stability of the proposed method,
we independently perform 20 estimations and calculate the
mean and standard deviation of the estimates for each param-
eter setting.

A. Four-state Markov jump process

We consider the four-state Markov jump process [20],
whose transition rates are given as follows:

[wyz] =

⎡
⎢⎢⎢⎣

0 k+ k+ k−
k− 0 k+ k+
k− k− 0 k+
k+ k− k− 0

⎤
⎥⎥⎥⎦, (21)

where k+ and k− are positive parameters [see Fig. 2(a) for
illustration]. When k+ = k−, the system relaxes to an equi-
librium after a long period of time. By solving the master

equation, one can readily obtain the steady-state distribution

[pss(y)] = 1

10k2− + 12k−k+ + 10k2+

⎡
⎢⎢⎢⎣

4k2
− + 2k−k+ + 2k2

+
3k2

− + 4k−k+ + k2
+

k2
− + 4k−k+ + 3k2

+
2k2

− + 2k−k+ + 4k2
+

⎤
⎥⎥⎥⎦.

(22)
Using [pss(y)], the entropy production rate can be immediately
calculated,

� =
∑
y<z

[pss(y)wyz − pss(z)wzy] ln
pss(y)wyz

pss(z)wzy
. (23)

We apply the proposed method to estimate the tightest
lower bound on the entropy production rate from the single
trajectory � of length Tobs = 104, which is obtained from the
simulation using the Gillespie algorithm [52]. The value of
k− is fixed to 1, while k+ is varied in the range of [1,5].
We illustrate the estimated results in Fig. 2(b). As can be
seen, the estimated lower bound on � is tight and coincides
with the actual entropy production rate when the system is
close to equilibrium, i.e., when k+/k− → 1. When k+/k− �
1, the gap between the estimated value and the actual value
increases, which implies that TUR cannot be saturated in
this regime even with the short-time limit. We also generate
random coefficients γyz ∈ [−1, 1] and form random currents
φr = ∑

y<z γyzφyz. We evaluate the fluctuation of each random
current, 2〈φr〉2/τ 〈〈φr〉〉 (which is a lower bound on �) and plot
the result in Fig. 2(b). Clearly, the estimated lower bound �̂τ ,
which is based on the optimal current, is always better than
the one that is based on each individual random current.

We investigate the form of the computed optimal current
by measuring the distance between the coefficients of φopt and
those of the entropy production σ . Specifically, we normalize
the coefficient vectors, γ̂ = γ/‖γ‖2, and calculate their inner
product. Here, ‖ · ‖2 denotes the Euclidean norm. We vary
k+ and plot the cosine similarities in Fig. 2(c). The cosine
similarity between γ1 and γ2 is defined as γ̂1 · γ̂2, where · de-
notes the inner product of two vectors. Interestingly, the inner
products are always approximately equal to 1, which implies
that φopt is identical to the current of entropy production (by
ignoring the scaling factor). Thus, σ = αφopt, where α ∈ R is
the unknown scaling factor. Therefore, we use the fluctuation
theorem to further estimate the entropy production rate, as
demonstrated in the previous section (i.e., not the lower bound
but the exact value of �). We solve the equation �(α) =
N� using the Newton-Raphson method to find the nontrivial
solution α 	= 0. Then, we estimate the entropy production rate
as �̂τ = α〈φopt〉/τ . We plot the estimated results in Fig. 2(b).
As illustrated, the method in combination with the fluctuation
theorem produces accurate estimates even when the system is
far from equilibrium.

B. Periodically driven particle

Next, we consider a Brownian particle that circulates on
a ring with a circumference of 2π [30], and its dynamics
are governed by the Langevin equation with F (x) = [a +
sin(x)][b + cos(x)] and D(x) = [a + sin(x)]2, where a > 1
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FIG. 3. (a) Estimation of the entropy production rate � in the
periodically driven particle system. The blue solid line depicts the
theoretical entropy production rate. The orange solid line with dots
represents the mean of the estimates of �, and the error bars
represent the standard errors. The inset shows how the estimation
results are affected when the length Tobs is changed (at b = 3).
(b) Comparison between the projection function of the computed
optimal current fopt (x) and that of the entropy production current
(which is theoretically the optimal one) ϕ(x) in two cases: n = 11
and n = 21 basis currents, when b = 5. The solid, dotted, and dashed
lines represent ϕ(x), fopt (x) (n = 11), and fopt (x) (n = 21), respec-
tively. The result shows that the optimal current is well approximated
in both cases. The parameters are fixed as a = 2,Tobs = 104, and
τ = 10−2.

and b � 0 are the parameters. The effective potential is

U (x) = − 1
2 [a + sin(x)]2 − b[ax − cos(x)], (24)

which is illustrated in Fig. 3(a). Although the system is
nonlinear, the steady-state distribution can be analytically
calculated:

pss(x) = c

a + sin(x)
, (25)

where c > 0 is the normalization constant such that∫ 2π

0 dx pss(x) = 1. The entropy production rate is given by

� =
∫ 2π

0
dx

( jss)2

D(x)pss(x)
= b2, (26)

where jss = bc is the probability current. It has been shown
that the equality of TUR can be exactly attained with the

current of entropy production [30]

σ (�) =
∫ τ

0
dt ϕ(x) ◦ ẋ (27)

for arbitrary observation time τ , where ϕ(x) = b/[a + sin(x)].
To compute the optimal current, we employ basis currents

with the following projection functions:

fi(x) =
{

1 + cos(mx) if i = 2m + 1,

1 + sin(mx) if i = 2m,
(28)

for i = 1, . . . , n. Here, 1 is added to each projection function
to avoid vanishing currents. We fix a = 2 and vary b in the
range of [0,5]. For each parameter setting, we use n = 21
basis currents to approximate the optimal current. We plot the
mean and the standard error of the estimated results over 20
independent trajectories in Fig. 3(a). It is observed that the
estimated value �̂τ and the actual entropy production rate �

agree well for all b. The errors are always small even when
� increases, which confirms the stability of our method. We
also investigate the effect of the length of the trajectory on
the estimation result. We vary the value of Tobs in the range
of [102, 104] and plot the results in the inset of Fig. 3(a). As
illustrated, the estimator is unbiased for all finite lengths of
the trajectory. The mean of the estimated values is always
approximately equal to the actual entropy production rate,
even when the trajectory is not long. Compared to when Tobs is
large, the standard error tends to increase when Tobs is small.
This occurs due to the limited length of the trajectory (i.e.,
there are statistical errors in the calculation of moments of
basis currents).

We define

fopt (x) :=
n∑

i=1

ci fi(x), (29)

which is the projection function of the computed optimal
current. We plot fopt (x) and ϕ(x) in Fig. 3(b) to examine
whether the computed function is close to the optimal one or
not. We consider two cases: using n = 11 and n = 21 basis
currents. We find that fopt (x) and ϕ(x) are almost identical
in both cases, which implies that the theoretically optimal
current is approximated well by our method, even when using
a small number of basis currents, n = 11.

C. Bead-spring model

Finally, we consider a nonequilibrium system that consists
of N beads that are coupled in one dimension [15]. Each bead
is in contact with a thermal reservoir at different temperature.
The dynamics of the system are described by the multivariate
Langevin equation

ẋ = Ax +
√

2Dξ, (30)

where x = [x1, . . . , xN ]� denotes the positions of the beads
and A ∈ RN×N and D ∈ RN×N are the drift and diffusion
terms, respectively. Note that D = diag(D1, . . . , DN ) is a
diagonal matrix, and the noises that affect each bead are
uncorrelated. Because the forces are linear, the steady-state
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FIG. 4. (a) Estimation of the entropy production rate in the two-bead system. The blue solid line represents the actual entropy production
rate �. The orange solid line with dots depicts the estimated values �̂τ , while the error bars indicate standard deviations. Blue and orange
solid lines almost overlap, which implies that � is accurately estimated. The inset shows the performance of the estimator when the length of
the trajectory is changed. With an increase in Tobs, the estimated value converges to the exact value of � with high stability. (b) Comparison
between the projection function of the computed optimal current f opt (x) (top panel) and that of the entropy production current ϕ(x) (bottom
panel). Two vector fields show the same behavior in both direction and magnitude, which empirically verifies that the optimal current is
approximated well. (c) Estimation of the entropy production rate in the five-bead system. The blue and orange solid lines represent the actual
entropy production rate � and the estimate �̂τ , respectively. The error bars depict the standard deviations of the estimated values. The inset
shows the estimation performance when the length Tobs of the trajectory is varied. Parameter Th is varied while the remaining parameters are
fixed as k = 1 (two bead) and 4 (five bead), Tc = 10,Tobs = 104, and τ = 10−2.

distribution is Gaussian,

pss(x) = 1√
(2π )N |C| exp

(
−1

2
x�C−1x

)
. (31)

Here, C is the covariance matrix of x, given by Ci j = 〈xix j〉 −
〈xi〉〈x j〉. The probability current in the Fokker-Planck equa-
tion is

jss(x) = (Ax − D∇x)pss(x) = (A + DC−1)xpss(x). (32)

The current of the stochastic entropy production reads σ (�) =∫
dt ϕ(x)� ◦ ẋ, where

ϕ(x) = D−1 jss(x)/pss(x) = (D−1A + C−1)x. (33)

Then, the entropy production rate is analytically obtained:

� =
∫

dx jss(x)�ϕ(x) = Tr[D−1ACA� − C−1D], (34)

where Tr[·] is the trace operator that calculates the sum of
elements on the main diagonal.

First, we consider the case of N = 2 beads with the drift
and diffusion terms given by

A =
[−2k k

k −2k

]
, D =

[
Th 0

0 Tc

]
. (35)

Here, k > 0 is the stiffness of the springs, and Th � Tc > 0 are
the temperatures of the thermal reservoirs that are coupled to
each bead. From Eq. (34), the entropy production rate can be
analytically calculated:

� = k(Th − Tc)2

4ThTc
. (36)

We use m2 Gaussian kernels to approximate the optimal
current. Specifically, for each i = 1, . . . , m2, we define

fi(x) = exp

[
− (x − xi )�B−1(x − xi )

2

]
, (37)

where xi is the kernel center and B is the kernel bandwidth.
From the given trajectory, we calculate x = [x1, x2]�, where
xν := 10 + maxt {|xν (t )|}. Then, xi and B are determined as
follows:

xi =
[

(0.5 + (i − 1)%m)�x1 − x1

(0.5 + �(i − 1)/m�)�x2 − x2

]
, (38)

B =
[
�x2

1 0

0 �x2
2

]
, (39)

where �xν = 2xν/m (ν = 1, 2), % denotes the remainder of
the Euclidean division, and �·� denotes the floor function.
Equation (38) indicates that the kernel centers are uniformly
sampled over the region of interest, [−x1, x1] × [−x2, x2].
The optimal current is approximated using n = 2m2 basis
currents as

φopt (�) =
∫

dt
m2∑
i=1

[ci,1 fi(x) ◦ ẋ1 + ci,2 fi(x) ◦ ẋ2]

=
∫

dt f opt (x)� ◦ ẋ, (40)

where c = [c1,1, . . . , cm2,1, c1,2, . . . , cm2,2] is the coefficient
vector and f opt (x) := [

∑
i ci,1 fi(x),

∑
i ci,2 fi(x)]�.

We vary the temperature ratio Tc/Th in the range of [0.1,1]
and test the effectiveness of our method using n = 50 basis
currents (i.e., m = 5). For each parameter setting, we collect
a trajectory of length Tobs = 104, from which we estimate
the entropy production rate. We independently perform 20
estimations and obtain the mean and standard error of the
estimated values. As illustrated in Fig. 4(a), on average, the
estimator always produces an exact estimate of the entropy
production rate, even when the system is far from equilibrium.
The inset shows the performance of the estimator when the
length of the trajectory is changed. Although the estimated
values are biased for finite lengths, they converge to the exact
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FIG. 5. Performance of the different estimators. We compare our estimator herein, �̂τ , with the two estimators used in Ref. [15], �̂TUR

and �̂temp. The mean and standard deviation of each ratio �̂/� are calculated using ten independent estimations via the two-bead model with
(a) Tc/Th = 0.1 and (b) Tc/Th = 0.5 and via the five-bead model with (c) Tc/Th = 0.1 and (d) Tc/Th = 0.5. The results of the estimators �̂τ ,
�̂TUR, and �̂temp are depicted using circles, diamonds, and squares, respectively. The dashed line represents the actual ratio, which equals 1.
Our estimator shows the best convergence and always provides accurate estimates when Tobs is sufficiently long. Notably, for the five-bead
model with Tc/Th = 0.5, estimators �̂TUR and �̂temp show slow convergence, while �̂τ rapidly converges to the actual entropy production rate.
The length Tobs of the observed trajectory is varied, while the remaining parameters are fixed to k = 1 (two bead) and ≈3.215 (five bead),
Tc = 25, �t = 10−3, and τ = 10−2.

values when Tobs is increased. In addition, the standard errors
also decrease when the length Tobs is sufficiently long.

We investigate whether the projection function of the com-
puted optimal current f opt (x) is close to that of the entropy
production current ϕ(x). We plot f opt (x) and ϕ(x) as vector
fields in Fig. 4(b). It is observed that these vector fields are
in excellent agreement in both direction and magnitude. This
implies that σ (�) (which is the theoretically optimal current
in the short-time limit) is well approximated by the linear
combination of the constructed basis currents.

Next, we consider a five-bead system, whose drift and
diffusion terms are

A =

⎡
⎢⎢⎢⎢⎢⎣

−2k k 0 0 0

k −2k k 0 0

0 k −2k k 0

0 0 k −2k k

0 0 0 k −2k

⎤
⎥⎥⎥⎥⎥⎦, (41)

D = 1

4

⎡
⎢⎢⎢⎢⎢⎣

4Th 0 0 0 0

0 3Th + Tc 0 0 0

0 0 2Th + 2Tc 0 0

0 0 0 Th + 3Tc 0

0 0 0 0 4Tc

⎤
⎥⎥⎥⎥⎥⎦.

(42)

For this system, the entropy production rate is equal to

� = k(Th − Tc)2
(
111T 2

h + 430ThTc + 111T 2
c

)
495ThTc(3Th + Tc)(Th + 3Tc)

. (43)

Again, we employ Gaussian kernels, whose centers and band-
width are analogously determined as in the two-bead case.
We use n = 160 basis currents to approximate the optimal
current and plot the estimated results in Fig. 4(c). As shown,
the estimator is unbiased for all temperature ratios Tc/Th even
when the dynamics are strongly driven from equilibrium. The
inset in Fig. 4(c) illustrates the statistics of the estimated

values when the length Tobs is changed. The estimator is
biased for small Tobs but rapidly converges to the exact value
when Tobs is increased, which is analogous to the two-bead
case.

In the end, we compare the performance of our estimator
�̂τ with that of the two estimators proposed in Ref. [15],
�̂TUR and �̂temp. Herein, we will briefly describe these two
estimators (see Ref. [15] for details). The thermodynamic
force of the entropy production is estimated as ϕ̂(x) =
D−1̂ j

ss
(x)/p̂ss(x), where ĵ

ss
(x) and p̂ss(x) are estimators of

jss(x) and pss(x), respectively. Subsequently, �̂TUR estimates
the lower bound of the entropy production rate by utilizing
the TUR with the current

∫
dt ϕ̂(x)� ◦ ẋ. On the other hand,

�̂temp directly estimates the entropy production rate via its

temporal average, �̂temp = T −1
obs

∫ Tobs

0 dt ϕ̂(x)� ◦ ẋ. It is worth
noting that these two estimators require knowledge of the
diffusion matrix D, while our estimator does not rely on such
information.

To evaluate the performance of the estimators, we vary
the trajectory length Tobs = 1.2 × 10l (1 � l � 4) and focus
on the convergence of each estimator. We examine two
temperature ratios, Tc/Th = 0.1 and Tc/Th = 0.5, using both
the two- and five-bead models. The parameter values and
experimental settings are the same as used in Ref. [15]. We
calculate the mean and standard deviation of the ratio �̂/�

using ten independent estimations and plot them in Fig. 5.
As illustrated, our estimator shows the best convergence in
all cases. When the trajectory length Tobs is short, �̂τ is
prone to overestimating the actual entropy production rate
because the trajectory does not provide sufficient information
to accurately calculate the mean and variance of each basis
current. However, when Tobs is sufficiently long, �̂τ always
obtains accurate estimates. Notably, for the five-bead model
with Tc/Th = 0.5, estimators �̂TUR and �̂temp slowly converge
and return inaccurate estimates even when Tobs is long. In
contrast, our estimator rapidly converges to the actual entropy
production rate and provides the best estimate.
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IV. CONCLUSION AND DISCUSSION

In summary, a method for estimating entropy production
based on the TUR was proposed. Three examples, including
Markov jump processes and Langevin dynamics, were studied
to illustrate the effectiveness of the proposed method. It was
shown that the entropy production rate can be accurately
estimated for Langevin dynamics using the short-time limit.
The results demonstrate that the estimates are significantly
consistent with the theoretical entropy production rates, even
when the system is far from equilibrium. The proposed
method always effectively performs, regardless of whether
the noise is additive or multiplicative. Further, it was empir-
ically confirmed that the optimal current, which is propor-
tional to the entropy production in the short-time limit, can
be successfully approximated by the linear combination of
predetermined basis currents. Thus, the entropy production
current can be accurately inferred by integrating our method
with the fluctuation theorem. Namely, one can infer not only
the average of entropy production but also its probability
distribution. For Markov jump processes, our method provides
the tightest lower bound for the entropy production rate. If the
condition that the entropy production current is the optimal
one is given, then an exact estimate can be obtained through
the combination with the integral fluctuation theorem.

From a practical perspective, the proposed algorithm can
be easily implemented and is computationally efficient (i.e.,
all numerical computations can be performed in parallel). The
Monte Carlo sampling utilized in Ref. [15] suffers from a local
optimum when the dynamics are strongly driven; thus, it can
be replaced by our method, which always produces a global
optimum. Unlike in Ref. [16], where the details of underlying
dynamics (e.g., the system entropy, heat, and work) are re-
quired to form the optimal current, the proposed method does
not require such prior knowledge of the dynamics.

We discuss some possible future research directions. This
study focused on estimating entropy production; however, the
proposed method should also apply to the estimation of the
Fisher information, which is lower bounded by means and
covariances of multiple observables [53]. Moreover, it is of
interest to test our method with the experimental data. For
example, one can estimate the dissipation cost in the motor
protein F1-adenosine triphosphatase [54] from the trajectory
of the rotational angles, whose dynamics are governed by the
Langevin equation. Along with studies of applications, further
research on theoretical guarantees of the proposed method is
desirable. Basically, the longer the input trajectory is, the more
accurate the estimate that can be obtained is. However, a full
investigation regarding the relationship between the error of
the estimate and the trajectory length is beyond the scope of
this study. The development of theoretical bounds on the error
with respect to the length needs to be addressed. In addition,
overcoming the curse of dimensionality in entropy production
estimation remains an open problem. Although our proposed
method works well in the five-dimensional model, it is still
challenging to handle genuinely high-dimensional Langevin
systems. A considerable number of basis functions may be
required to obtain an accurate approximation of the optimal
current, which leads to a substantial computational cost. As
an alternative solution, one can estimate with multiple sets,

whose number of basis currents is limited, and assign the
largest estimated value as the lower bound of the entropy
production rate.

Note added. We recently became aware that Shun Otsubo
and his collaborators had obtained similar results [55].
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APPENDIX A: SATURATION OF TUR FOR LANGEVIN
DYNAMICS IN THE SHORT-TIME LIMIT

We prove that TUR is saturated with the current of entropy
production in the τ → 0 limit. We consider a general mul-
tivariate Langevin system, whose dynamics are described by
uncorrelated Ito stochastic differential equations,

ẋi = Fi(x) +
√

2Di(x)ξi(t ), (A1)

where x = [x1, . . . , xN ]� is the vector of variables. The cur-
rent of stochastic entropy production can be expanded up to
the first order of τ as

σ (�) =
∫ τ

0
dt ϕ(x)� ◦ ẋ = ϕ(x0)�(xτ − x0) + O(τ ), (A2)

where ϕ(x) := [Di(x)−1 jss
i (x)/pss(x)]� ∈ RN×1 and jss

i (x) =
Fi(x)pss(x) − ∂xi [Di(x)pss(x)] is the probability current. The
average of the entropy production is given by [50]

〈σ 〉 = τ

∫
dx

N∑
i=1

jss
i (x)2

Di(x)pss(x)
. (A3)

Using the short-time propagator [56], the transition probabil-
ity can be written as

p(xτ |x0) =
N∏

i=1

1√
4πDi(x0)τ

exp

(
− [xi,τ − xi,0 − τFi(x0)]2

4Di(x0)τ

)
.

(A4)
Here, xi,0 := xi(0), xi,τ := xi(τ ), and p(xτ |x0) denotes the
conditional probability distribution that the system is in xτ at
time t = τ , given that the system is initially in x0 at time t =
0. Using Eqs. (A2)–(A4), the variance of entropy production
can be analytically calculated as

〈〈σ 〉〉 = 〈σ 2〉 − 〈σ 〉2

=
∫

dx0 pss(x0)
∫

dxτ p(xτ |x0)

× [ϕ(x0)�(xτ − x0) + O(τ )]2 + O(τ 2)

= 2τ

∫
dx

N∑
i=1

jss
i (x)2

Di(x)pss(x)
+ O(τ 2)

= 2〈σ 〉 + O(τ 2).

(A5)

Note that to obtain the third equality, means and co-
variances of xτ − x0 are calculated by employing prop-
erties of the Gaussian distribution given in Eq. (A4).
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Specifically, 〈xi,τ − xi,0〉 = τFi(x0) and 〈(xi,τ − xi,0)(x j,τ −
x j,0)〉 = δi j[τ 2Fi(x0)2 + 2Di(x0)τ ], where the average is taken
over distribution p(xτ |x0) and x0 is fixed. Subsequently, the
Fano factor can be written as

F = 〈〈σ 〉〉
〈σ 〉 = 2 + O(τ ). (A6)

Thus, one can easily confirm that the Fano factor of entropy
production converges to 2 as τ → 0; equivalently, TUR is
saturated in the short-time limit with the current of entropy
production.

APPENDIX B: COUNTEREXAMPLE FOR THE
UNATTAINABILITY OF TUR IN MARKOV JUMP

PROCESSES

We show an example of Markov jump processes in which
TUR is not saturated with the current of the entropy produc-
tion in the short-time limit. Explicitly, we consider a ring-
type Markov chain with N states, {1, 2, . . . , N}. For each
i = 1, . . . , N , a forward jump from state i to state i + 1 occurs
at the rate of k+ > 0, and a backward jump from state i + 1
to state i occurs at the rate of k− > 0. Here, state N + 1 is
identical to state 1. There are no other transitions between

nonconsecutive states. In the short-time limit, i.e., τ → 0, the
mean and variance of entropy production can be calculated as

〈σ 〉 = τ (k+ − k−) ln
k+
k−

, (B1)

〈〈σ 〉〉 = τ (k+ + k−)

(
ln

k+
k−

)2

+ O(τ 2). (B2)

Subsequently, we can obtain the Fano factor F of the entropy
production,

F = 〈〈σ 〉〉
〈σ 〉

τ→0−−→ k+ + k−
k+ − k−

ln
k+
k−

. (B3)

It is observed that F can be arbitrarily large and does not
converge to 2 in the vanishing-time limit. Because

ln
k+
k−

� 2
k+ − k−
k+ + k−

, ∀k+, k− > 0, (B4)

we have F � 2 as τ → 0. F → 2 only when k+/k− → 1,
which means that the system is near equilibrium. This agrees
with the conclusion in previous studies [30,40] that TUR is
asymptotically saturated near equilibrium for the current of
entropy production.
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