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Using the integral transformation, the field-theoretical Hamiltonian of the statistical field theory of fluids is
obtained along with the microscopic expressions for the coefficients of the Hamiltonian. Applying this approach
to the liquid-vapor interface, we derive an explicit analytical expression for the surface tension in terms of
temperature, density, and parameters of the intermolecular potential. We also demonstrate that a clear physical
interpretation may be given to the formal statistical field arising in the integral transformation—it may be
associated with the one-body local microscopic potential. The results of the theory, lacking any ad hoc or fitting
parameters are in good agreement with available simulation data.
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I. INTRODUCTION

The growing popularity of the field theoretical (FT) meth-
ods in statistical physics reflects recognition of the power
and flexibility of such methods [1,2]. In most of the FT
approaches, the configuration integral, associated with a ther-
modynamic potential (free energy, Gibbs free energy, etc.)
is expressed in terms of a functional integral over one or
a few space-dependent fluctuating fields, emerging in the
Kac-Siegert-Stratonovich-Hubbard-Edwards (KSSHE) trans-
formation [3–9]. Commonly, this field for simple fluids is
treated as a formal mathematical object facilitating the anal-
ysis. The query, whether a physical interpretation to this field
may be given, is explained here.

Once the functional integral representation is obtained,
one can apply standard field-theoretical techniques to find the
configuration integral and space correlation functions. These
tools comprise the mean-field (MF) (or saddle-point) approxi-
mation, e.g., Refs. [1,2,10–14], random phase approximation,
e.g., Refs. [15–19], Gaussian equivalent representation, e.g.,
Refs. [20,21], many-loop expansion, e.g., Ref. [22], variation
method, e.g., Ref. [23], and renormalization group theory
(RG), e.g., Refs. [24,25].

The field-theoretical methods are successfully applied to
describe thermodynamic and structural properties of simple
and complex fluids, nonhomogeneous fluids, and fluid in-
terfaces and have already a half-century history [6–8,10–
14,20,26–30]. In the pioneering paper [26], Storer outlined
the derivation of the equation of state of simple fluid, treating

separately the repulsive (short-range) and attractive parts of
the interaction potential. He expressed the grand partition
function in terms of the functional integral with the coeffi-
cients depending on the thermodynamic and structural prop-
erties of the reference fluid with the short-range potential.
The properties of the reference fluid, such as the equation
of state and structure factor, were supposed to be known.
The functional integration has been then performed under
the random phase approximation. The approach was close to
the one developed by Edwards [8] for ionic fluids where the
excluded volume interactions between ions were taken into
account to improve the Debye-Hueckel theory.

A similar field theory of simple fluids has been proposed by
Hubbard and Schofield (HS) [6]. They also divided the total
intermolecular potential into repulsive and attractive parts and
recast the grand partition function into the form of a functional
integral [6]. The exponential factor in the functional integral
was written as an effective magneticlike Hamiltonian, ex-
pressed in terms of functional series of a fluctuating field φ(r).
The latter mimics the magnetization field in magnetics. The
coefficients of the effective Hamiltonian were, in their turn,
written as multiparticle correlation functions of the reference
fluid with purely repulsive interactions.

Using this effective Hamiltonian, the authors further dis-
cussed, whether Wilson’s theory of criticality was applicable
to fluid criticality. They demonstrated that the modified RG
analysis applied to the magneticlike Hamiltonian, proved the
Ising-like criticality of simple fluids. Although the main focus
of the study [6] was the fluid criticality, the authors also
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showed that the coefficients of the field-theoretical Hamil-
tonian could be related to the microscopic properties of
the reference system. This was in a sharp contrast to the
phenomenological theories, see, e.g., Refs. [31–33] where
such Hamiltonians, used to analyze the near-critical behavior
of fluids and interface phenomena, had phenomenological
coefficients.

The derivation of the effective field-theoretical Hamilto-
nian has been completed in Ref. [13]. Here, all the coef-
ficients have been found and explicitly expressed in terms
of the thermodynamic and structural characteristics of the
reference hard-core fluid, namely, in terms of its compressibil-
ity and zero moments of multiparticle correlation functions.
The microscopic expression for the Gizburg criterion [32]
for fluid criticality has been also reported [13]. Somewhat
alternative approaches for the field-theoretical description of
simple fluids and liquid-vapor interface have been developed
in Refs. [10,12,14,28]. Although the microscopic expressions
for the coefficients of the field-theoretical Hamiltonian could
be, in principle, obtained in such approaches, this was beyond
the scope of the above studies; the physical nature of the field
was not also addressed.

As has been already mentioned, the KSSHE integral trans-
formation yields the Hamiltonian that depends on the statisti-
cal field, which mimics the magnetization field in magnetics
[13]. The magneticlike form of the Hamiltonian is very con-
venient to analyze critical and interface phenomena [24,33].
In particular, one can find an equilibrium space distribution
of the magnetization with an interface. Finding, then, the free
energy per unit area of the interface, one obtains the surface
tension. Still, this purely phenomenological approach does
not provide surface tension in terms of molecular parameters
but rather the expressions in terms of the phenomenological
coefficients of the magneticlike Hamiltonian [32]. It seems
also interesting to find a possible physical interpretation of
the formal field in the field-theoretical Hamiltonian.

In the present paper, we provide the microscopic molecu-
lar expressions for the parameters of the magneticlike field-
theoretical Hamiltonian and reveal the physical nature of the
stochastic field exploited in the field theories of fluids. Using
these microscopic relations and general theory of interface
phenomena for magnetics, we obtain an explicit expression
for the surface tension which is in good agreement with
simulation data. The rest of the article is organized as follows.
In Sec. II, we outline the Hubbard-Schofield transformation
and derivation of the microscopic expressions for the effective
magneticlike Hamiltonian. In Sec. III, we discuss the applica-
tion of the effective Hamiltonian to the liquid-vapor interface
and compute the surface tension; we also compare the theo-
retical results with the available simulation data. Finally, in
Sec. IV, we summarize our findings.

II. HUBBARD-SCHOFIELD TRANSFORMATION
AND MAGNETICLIKE HAMILTONIAN

A. Hubbard-Schofield transformation

There is a variety of approaches to perform integral trans-
formations that result in field-theoretical Hamiltonian. We
outline here the derivation of Ref. [6], which has been further

developed in Ref. [13], making focus on the derivation detail
that will help to understand the nature of the stochastic field.
In what follows, we will use the reference system with only
repulsive interactions [34].

We start from the fluid Hamiltonian H = HR + HA + Hex,

H =
∑
i< j

vr (ri j ) −
∑
i< j

v(ri j ) +
∑

j

g(r j ), (1)

where vr (r) denotes the repulsive part of the interaction po-
tential, −v(r)—the attractive part and g(r)—the external po-
tential; ri are the coordinates of the ith particle, i = 1, . . . , N
and ri j = ri − r j . The last two terms of the Hamiltonian (1)
may be written using the Fourier transforms of the density
fluctuations,

nk = 1√
�

N∑
j=1

e−ik·r j ,

of the attractive potential, vk = ∫
v(r)e−ik·rdr and of the

external potential gk = �−1/2
∫

g(r)e−ik·rdr as

−1

2

∑
k

vknkn−k + 1

2
v(0)N +

∑
k

gkn−k , (2)

where � = L3 is the volume of the system and summation
over kl = 2πnl/L with l = x, y, z, and nl = 0,±1, . . . is im-
plied. Let μ be the chemical potential of the system with the
complete Hamiltonian (1) and μR be the chemical potential of
the reference system with the Hamiltonian HR, which has only
repulsive interactions. If 〈N〉 = ∂�/∂μ is the average number
of particles in the system so that ρ = 〈N〉/� is the average
number density, we choose the reference system with such
chemical potential μR, that the average density ρ is the same
in both systems.

Following Hubbard and Schofield [6], we express the grand
partition function �(μ,�, T ) in terms of the grand partition
function �R(μR,�, T ) of the reference fluid as:

� = �R

〈
exp

{
βμ′N + β

∑
k

[vk

2
nkn−k − nkg−k

]}〉
R

. (3)

Here, β = (kBT )−1 with kB being the Boltzmann constant,
μ′ = μ − μR + 1

2v(0), and 〈 〉R denotes the average over the
reference system with the chemical potential μR. Using the
identity,

e(1/2)a2x2−bx = 1√
2πa2

∫ ∞

−∞
e−(y+b)2/(2a2 )+xydy

for each k in (3), we obtain, after some algebra, the ratio Q =
�/�R,

Q ∝
∫ ∏

k

dφk

〈
exp

{∑
k

φkn−k

}〉
R

exp

{
μ′

v0
�1/2φ0

}

× exp

{
− 1

2β

∑
k

v−1
k (φk + βgk )(φ−k + βg−k )

}
. (4)

The integration in Eq. (4) is to be performed under the
constraint φ−k = φ∗

k , and a factor which does not affect the
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subsequent analysis is omitted. Applying the cumulant theo-
rem to the factor, 〈exp {∑k φkn−k}〉R we arrive at [6]

Q ∝
∫ ∏

k

dφk exp(−βH),

βH = −h̃�1/2φ0 +
∞∑

n=2

�1−n/2
∑

k1,...,kn

ũnφk1 · · · φkn , (5)

where the coefficients of the effective magneticlike Hamilto-
nian H read for g(r) = 0 [13],

h̃ = μ′v−1
0 + ρ,

ũ2(k1, k2) = 1

2!
δk1+k2,0

{
β−1v−1

k1
− 〈

nk1 n−k1

〉
cR

}
,

ũn(k1, . . . , kn) = −�n/2−1

n!

〈
nk1 · · · nkn

〉
cR n � 3. (6)

Here 〈 〉cR denotes the cumulant average calculated in the
(homogeneous) reference system with density ρ = 〈N〉/�.
According to (5), Q has the form of a partition function of
the system with the field-theoretical Hamiltonian H, which
depends on the order parameter φ(r) (φk are the Fourier
components of the order parameter).

Let us analyze the physical meaning of the order parameter
φ(r). From Eq. (3) directly follows:

∂ ln �

∂g−k
= ∂ ln Q

∂g−k
= −β〈nk〉.

On the other hand Eq. (4) yields for g → 0,

∂ ln Q

∂g−k
= −v−1

k 〈φk〉,

where the averaging is to be understood as the integration over
all distributions of the order parameter. Thus, we conclude that
〈φk〉 = βvk〈nk〉, which may be written in terms of the space-
dependent field as

〈φ(r)〉 = β

∫
ρ(r1)v(r − r1)dr1 + φ̄, (7)

where ρ(r) = 〈n(r)〉 is the average density and we add an
arbitrary constant, φ̄. This equation suggests the following
physical interpretation of the order parameter: φ(r) gives
the microscopic one-body molecular potential at point r (in
units of kBT = β−1) emerging due to the attractive part of
interaction potential −v(r) from particles distributed in space
with microscopic density n(r) = ∑

i δ(r − ri ). Equation (7)
relates the average quantities. This microscopic potential is
associated with the microscopic force acting on a particle,
which may be written for the average values as

β〈 f (r)〉 = ∇〈φ(r)〉 = β

∫
∇ρ(r − r1)v(r1)dr1.

This force is zero in a uniform system with ρ(r) = const and
is directed along the density gradient for nonuniform systems.
In particular, such a force arises at an interface, pulling the
molecules towards a more dense phase, thus, manifesting the
interphase surface tension. This illustrates that the stochastic
field that formally appears in the KSSHE and HS transforma-
tions has a clear physical meaning.

B. Microscopic expressions for the coefficients
of the magnetic Hamiltonian

As is seen from Eq. (6), the coefficients of H depend
on the correlation functions of the reference fluid having
only repulsive interactions. Using the definition of l-particle
correlation functions gl (r1, . . . , rl ) [35,36], one can express
the cumulant averages 〈nk1 · · · nkn〉cR, and, thus, the coeffi-
cients ũn(k1, . . . kn) in terms of the Fourier transforms of gl .
Actually, ũn depends on the connected correlation functions
h1, h2, . . . , hn, defined as [13]

h1(r1) = δ(r1),

h2(r1, r2) = g2(r1, r2) − 1, (8)

h3(r1, r2, r3) = g3(r1, r2, r3) − g2(r1, r2)

−g2(r1, r3) − g2(r2, r3) + 2, (9)

etc. For instance, ũ2(k1, k2) depends on h̃2(k1) (h̃l is the
Fourier transforms of hl ) as

ũ2 = 1

2!
[(βvk )−1 − ρ(1 + ρh̃2(k1)]δk1+k2,0. (10)

Similarly, ũ3 depends on h̃2(k1/2/3) and h̃3(k1, k2, k3), and ũ4

depends on h̃2, h̃3, and h̃4, and so on [13].
For the subsequent analysis, it is instructive to use in the

effective Hamiltonian the space-dependent order parameter
φ(r), instead of its Fourier components φk. Writing H in
terms of φ(r), we assume that φ(r) varies smoothly in space
and make the gradient expansion. This corresponds to small
k expansion of the coefficients ũn(k1, . . . , kn). We keep only
the square-order gradient terms ∼(∇φ)2 which correspond to
∼k2φkφ−k and omit high-order gradient terms and cross-terms
∼(∇φ)2φk with k > 0. In the square gradient approximation,
ũ2 should be expanded as ũ2 = ũ2(0) − ũ′′

2 (0)k2 + · · · since
(∇φ)2 ∼ k2φkφ−k. The other coefficients ũn, where n � 3
are to be taken at zero wave vectors as ũn(0, 0, . . . , 0) since
the terms ∼(∇φ)2φk should be omitted. Thus, as follows
from Eq. (10) and the discussion below (10), only h̃′′

2 (0)
and h̃l (0) ≡ h̃l (0, 0, . . . , 0) with l � 2, are needed. Using
the expansions vk = v0 − v′′

0 k2 + · · · and h̃2(k) = h̃2(0) −
h̃′′

2 (0)k2 + · · · (the functions vk and h̃2 are even), we obtain
for the coefficients,

ũ2 =
[
kBT

v0
− ρ − ρ2h̃2(0) + k2

(
kBT

v2
0

v′′
0 − ρ2h̃′′

2 (0)

)]
δ1,2,0,

ũ3 = −ρ[1 + 3ρh̃2(0) + ρ2h̃3(0)]δ1,2,3,0,

ũ4 = −ρ[1 + 7ρh̃2(0) + 6ρ2h̃3(0) + ρ3h̃4(0)]δ1,2,3,4,0, (11)

where we apply the shorthand notation δ1,2,...,n,0 ≡
δk1+k2+···kn,0/n!. In what follows, we will use the relation
for the isothermal compressibility χR = ρ−1(∂ρ/∂PR)T of the
reference fluid (PR is the pressure of the reference fluid),

1 + ρh̃2(0) = ρkBT χR ≡ z0. (12)

We will also use the general relation between the successive
l-particle correlation function gl (r1, . . . rl ) [35],

χρ2 ∂

∂ρ
ρ l gl = βρ l

[
lgl + ρ

∫
drl+1(gl+1 − gl )

]
.
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With Eq. (8), one can express the l-particle correlation func-
tions gl in terms of the connected correlation functions hl .
Applying the Fourier transform to the resulting equations for
hl , we finally arrive at the following relation for the Fourier
transforms of the functions h̃l , taken at zero wave-vectors
k1 = k2 = · · · kl = 0 [13]:

z0 ρ
∂

∂ρ
ρ l h̃l (0) = ρ l [l h̃l (0) + h̃l+1(0)]. (13)

Equation (13) will be applied for the reference system, where
z0 as defined by Eq. (12), is the reduced compressibility of the
reference fluid.

Equation (13) allows to express h̃l+1(0) in terms of h̃l (0)
and its density derivative. Using this equation iteratively along
with h̃1(0) = 1, one can express all functions h̃l (0) in terms
of the reduced compressibility z0 and its density derivatives.
With Eq. (11), we obtain for the coefficients of the effective
Hamiltonian,

ũ3 = −ρz0(z0 + z1)δ1–3 ≡ u′
3δ1,2,3,0,

ũ4 = −ρz0
[
z2

1 + z0(z0 + 4z1 + z2)
]
δ1,2,3,4,0 ≡ u′

4δ1,2,3,4,0,

(14)

where z1 = ρ(∂z0/∂ρ) and z2 = ρ2(∂2z0/∂ρ2). Similarly, one
can obtain all coefficients ũn of the magneticlike Hamiltonian.

For a reference system with only repulsive interactions, one
can use the hard-sphere fluid with an appropriately chosen
diameter [35,36]. For soft (not impulsive) repulsive forces, a
simple Barker-Henderson relation [36],

d =
∫ R

0
{1 − exp[−βvr (r)]}dr (15)

gives the effective diameter of the hard-sphere system, cor-
responding to a repulsive potential vr (r) vanishing at r � R.
The fairly accurate Carnahan-Starling equation of state for
this system [35,36] yields for the reduced compressibility,

z0 = (1 − η)4/(1 + 4η + 4η2 − 4η3 + η4), (16)

with the packing fraction η = π d3ρ/6. For the hard-sphere
reference system, one can also find h̃′′

2 (0). This may be
performed expressing h̃2(k) in terms of the direct correlation
function c̃2(k) as h̃2(k) = c̃2(k)/[1 − ρc̃2(k)] [35,36] and ex-
panding c̃2(k) as c̃2(k) = c̃2(0) − c̃′′

2 (0)k2 + · · · ,

h̃2(k) = h̃2(0) − z2
0 c̃′′

2 (0)k2 + · · · , (17)

where we use Eq. (12) for h̃2(0). Hence, h̃′′
2 (0) = z2

0 c̃′′
2 (0). The

value of c̃′′
2 (0) may be found from the the Wertheim-Thiele

solution for the direct correlation function of a hard-sphere
fluid [35,36],

c̃′′
2 (0) = πd5

120

(16 − 11η + 4η2)

(1 − η)4
. (18)

Substituting h̃′′
2 (0), expressed through c̃′′

2 (0) from Eq. (18),
into Eq. (11), we recast ũ2 into the form

ũ2 = (a′
2 + b′

2k2)δ1,2,0,

a′
2 = (βv0)−1 − ρz0,

b′
2 = (βv0)−1(v′′

0/v0) + ρ2z2
0 c̃′′

2 (0). (19)

Now, we perform a transformation from the variables φk to
the space-dependent field φ(r). Under this transformation, the
integration over the set {φk} in Eq. (5) converts into integration
over the field φ(r) and the term ∼k2φkφ−k transforms into
∼ (∇φk )2. As the result, we obtain

βH[φ] =
∫

dr
[

1

2
κ (∇φ)2 + W (φ)

]
, (20)

where

W (φ) = −h′φ(r) + a′
2

2!
φ2(r) + u′

3

3!
φ3(r) + u′

4

4!
φ4(r) + · · · ,

(21)

and we keep only terms up to the fourth order in φ(r). In
Eq. (21), h′ = h̃ is defined by Eq. (6), a′

2 is defined by Eq. (19),
and u′

3 and u′
4 are defined by Eq. (14). The coefficient at the

gradient term reads

κ = 3

40πd

[
λ2

eff

βεeff
− B

]
, (22)

where B = 4η2(1 − η)4(16 − 11η + 4η2)/(1 + 4η + 4η2 −
4η3 + η4)2 and the constants εeff and λeff characterize
the effective depth and effective width of the attractive
potential v(r),

εeff = 3

4πd3

∫
v(r)dr, (23)

λ2
eff = 5

3v0d2

∫
v(r)r2dr. (24)

To obtain κ , we use Eqs. (19) and (18) for b′
2 and c̃′′

2 (0),
respectively.

The cubic term in the potential W (φ) may be removed
by the shift of the field φ → φ + φ̄ with the constant field
φ̄, chosen to make the term ∼φ3 vanish. This results in
the celebrated Landau-Ginzburg-Wilson (LGW) Hamiltonian
(20) with

V (φ) = −hφ(r) + a2

2!
φ2(r) + u4

4!
φ4(r), (25)

and renormalized coefficients,

u4 = −ρz0
[
z2

1 + z0(z0 + 4z1 + z2)
]
,

a2 = (βv0)−1 − ρ
[
z0 + z2

3/(2ρu4)
]
,

h = μ′v−1
0 + [

a2 + z2
3/(6u4)

]
(z3/u4) + ρ, (26)

where z0, z1, and z2 have been defined above and z3 ≡
−ρz0(z0 + z1). The coefficient κ is not affected by the field
transformation.

The free energy of system F with the LGW Hamiltonian
may be written in terms of the functional integral over the
statistical field as

βF = − ln

(∫
D[φ(r)]e−βH (φ)

)
, (27)

where H[φ(r)] is given by Eq. (20) and D[φ] denotes the
functional (field) integration. For brevity, we skip in (27) the
normalization constant.
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III. SURFACE TENSION OF LIQUID-VAPOR INTERFACE

To illustrate some practical application of our approach,
we calculate the surface tension of the liquid-vapor interface
within the MF approximation. In the MF approximation,
only the extremal field φ∗(r), which minimizes the free
energy, δF [φ∗(r)]/δφ(r) = 0 is taken into account. Using
Eq. (27), we obtain for the mean-field free energy (see also
Refs. [24,33]),

Fmf = H[φ∗] =
∫

dr
[κ

2
(∇φ∗)2 + V (φ∗)

]

=
∫

dr f (φ∗,∇φ∗),

where f (φ∗,∇φ∗) = κ (∇φ∗)2/2 + V (φ∗) is the free energy
density for a general geometry.

For a flat interface with ∇ = d/dx, the equation for the
extremal field reads [24,33]

κ
d2φ∗

dx2
= dV (φ∗)

dφ∗ . (28)

In the bulk of the two phases, i.e., far from the surface,
the order parameter takes constant values, φ∗

1 at x → −∞,
and φ∗

2 at x → ∞, which are related to the mean densities of
these phases—of the liquid ρl and of the vapor ρg density,
respectively. As stated above and follows from Eq. (7), the
extremal fields φ∗

1,2 in the bulk of the phases are linearly
related to the densities of the phases φ∗

1,2 = βv0ρl,g + φ̄.
Hence, the standard phase equilibrium conditions for the
free energy density f ′(ρl ) = f ′(ρg) and f (ρl ) + ρl f ′(ρl ) =
f (ρg) + ρg f ′(ρg) for two bulk phases may be written as

V ′(φ∗
1 ) = V ′(φ∗

2 ),

V (φ∗
1 ) + φ∗

1V ′(φ∗
1 ) = V (φ∗

2 ) + φ∗
2V ′(φ∗

2 ),

which is the double-tangent construction for fields φ∗
1 and φ∗

2 .
If we choose the interface located at x = 0, the first integral

of Eq. (28) yields

1

2
κ

(
dφ∗

dx

)2

=
{

V (φ∗) − V (φ∗
1 ), x � 0,

V (φ∗) − V (φ∗
2 ), x > 0.

(29)

The surface tension γ is equal to the difference per unit area
between the free energy, calculated for the space-dependent
φ∗(r) and that for φ∗

1 for x < 0 and φ∗
2 for x > 0. If the order

parameter at the interface equals φ∗
0 , which may be chosen

from the condition φ∗
1 < φ∗

0 < φ∗
2 , V ′(φ∗

0 ) = 0, straightfor-
ward calculations yield for the surface tension with V1,2 =
V (φ∗

1,2) (see also Refs. [24,33]),

βγ =
∫ φ∗

0

φ∗
1

√
2κ[V (φ) − V1]dφ +

∫ φ∗
2

φ∗
0

√
2κ[V (φ) − V2]dφ.

(30)

Now, we choose the system for which the coefficient h in
(26) vanishes, that is, V = 1

2 a2φ
∗2 + 1

4! u4φ
∗4. For this system,

φ∗
1,2 = ±(−6a2/u4)1/2, φ∗

0 = 0, and the solution to Eq. (28)
reads

φ∗(x) = (−6a2/u4)1/2 tanh(x/ξ0),

with the interface width ξ0 = (−κ/2a2)1/2 [24,33]. The so-
lution is symmetric and has zero volume average φ̄∗ ≡
�−1

∫
φ∗(r)dr = 0.

Averaging Eq. (7) over the volume yields φ̄∗ =
βρ̄v0 + φ̄ = 0, implying that φ̄ = −βv0ρ̄, where ρ̄ =
�−1

∫
ρ(r)dr = N/� is averaged over the volume density.

Since φ∗
1 = −φ∗

2 and, simultaneously, φ∗
1,2 = ±βv0ρl,g + φ̄,

we conclude that ρ̄ = (ρl + ρg)/2, i.e., that the averaged
density of our system is the mean between the liquid and the
vapor density. Naturally, this is the density of our homoge-
neous reference system with the same volume and number of
particles. With the above values of φ∗

1,2 and φ∗
0 , the integration

in (30) is easily performed yielding

γ /kBT = 4
( − 2κa3

2/u2
4

)1/2
, (31)

where microscopic expressions for the constants a2, u4, and
κ , are given by Eqs. (22) and (26) where the density ρ = (ρl +
ρg)/2 of the reference fluid is to be used.

Not far from the critical point (ρc, Tc), one can approximate
(ρl + ρg)/2 � ρc and, thus, use ρc as the reference density. In
particular, one can write for a2: a2 � a2(β, ρc) = (βv0)−1 −
ρc[z0 + z2

3/(2ρu4)]c [see (26)]. If we, then, use the the mean-
field condition for the critical point a2(βc, ρc) = 0 [1], we
obtain a2 = (βv0)−1 − (βcv0)−1 = −ατ , and finally, for the
surface tension,

γ

kBT
= 4

(
2κcα

3

u2
4c

)1/2

τ 3/2, (32)

where α = (βcv0)−1, τ = (Tc − T )/Tc, and the coefficients
u4,c and κc are to be calculated at ρ = ρc, T = Tc. Equation
(32) is the main result of the present paper. It gives an explicit
analytical expression for the surface tension in terms of tem-
perature, density, and parameters of the interaction potential.
It is worth noting that Eq. (32) demonstrates (as expected for
the mean-field analysis), the classical critical exponent 3/2,
that is, γ ∼ τ 3/2, as was first observed by Widom [32,37].

The theoretical predictions, Eq. (32), have been compared
with the available data of numerical experiments for the
Lennard-Jones (LJ) and hard-core Yukawa (HCY) fluids. For
these systems, the standard Weeks-Chandler-Andersen parti-
tion (see, e.g., Ref. [36]) of the potential into attractive and
repulsive parts has been applied [13]. The numerical data
have been obtained for the LJ fluid by means of molecular
dynamics (MD) [38,39] and Monte Carlo [40]. For the HCY
fluid the MC and MD [41] have been also applied. The critical
parameters for the LJ fluid were taken from Ref. [40]. For the
HCY fluid, we used the critical parameters from Ref. [42] for
the curves 2–4 and parameters from Ref. [43] for the curve
2′. The values of σ and ε for the LJ potential were taken
from Ref. [40] and σ, ε, and λ for the HCY potential from
Ref. [41].

As follows from Fig. 1, our theory is in good agreement
with the numerical experiments. It is expected, however, that
the agreement would be worse in the very close vicinity of
the critical point where the mean-field theory loses its accu-
racy. The accuracy of numerical simulations also decreases
in the vicinity of the critical point [44]. Equation (32) is
quite sensitive to the critical parameters ρc and Tc. Although
these are known rather accurately for the LJ fluid, they are
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FIG. 1. Reduced surface tension γ σ 2/ε as a function of the re-
duced temperature kBT/ε. Curves: theory Eq. (32); points: numerical
data. LJ fluid: curve 1, diamonds [38,39] and circles [40]. HCY
fluid: curves 2, 2′, 3, and 4, stars and triangles up (λ = 1.8 [41]),
triangles down (λ = 3.0, [41]), and squares (λ = 4.0, [41]). Critical
parameters and σ, ε, and λ are taken from Refs. [40–43], see the text
for details.

estimated with much larger uncertainty for the HCY fluid.
This is demonstrated in Fig. 1 where two theoretical curves
(2 and 2′) correspond to the same HCY fluid but with ρc and
Tc taken from different sources (ρc and Tc differ by about 4%).

IV. CONCLUSION

We develop a theory of inhomogeneous simple fluids based
on the microscopic one-body potential in fluid, which natu-
rally emerges in the HS transformation. We demonstrate that
the “technical” field variable φ(r), associated with the HS
transformation, possesses a clear physical meaning. It gives
the molecular potential at point r (in units of kBT ) from the at-
tractive part of the interparticle potential of molecules located
in the vicinity of r. Hence, φ(r) depends on both the particle

density ρ(r) and the attractive potential v(r), being the con-
volution of ρ(r) and v(r). As the result, the microscopic field
φ(r) varies much more smoothly, even in the interface region
than the local density ρ(r) itself. The smooth variation of
φ(r) guarantees the accuracy of the small gradient expansion,
applied for the field-dependent Hamiltonian. Moreover, any
additional smoothing procedure is not required. This makes
the approach more simple and presumably more reliable. In
contrast, the density functional theory, based on the local
density, see, e.g., Ref. [45], exploits the smoothing of ρ(r) due
to its sharp variation at the interface. The smoothing weight
function is commonly chosen ad hoc, see, e.g., Refs. [45–47].

Using the microscopic molecular field approach, which
steams from the HS transformation, we calculate the surface
tension γ for the liquid-vapor interface. Here, we apply the
mean-field approximation which considers only the average
molecular field and ignores the field fluctuations. We obtain
an explicit analytical result for γ , which expresses this quan-
tity in terms of temperature and density of the system and
parameters of the intermolecular potential. The theoretical
predictions for the surface tension are in good agreement
with the results of numerical experiments. The mean-field ap-
proach loses, however, its accuracy in the very close vicinity to
the critical point where the near-critical fluctuations become
important. The account of the critical fluctuation for γ is
straightforward and may be performed applying the technique
developed in Ref. [24]. Our paper reports a simple analytical
expression for the surface tension that agrees well with the
numerical experiments.
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[19] N. Adžić and R. Podgornik, Eur. Phys. J. E 37, 49 (2014).
[20] G. V. Efimov and E. A. Nogovitsin, Physica A 234, 506 (1996).
[21] S. A. Baeurle, Phys. Rev. Lett. 89, 080602 (2002).
[22] R. R. Netz, Eur. Phys. J. E 5, 557 (2001).
[23] L. Lue, Fluid Phase Equilib. 241, 236 (2006).
[24] E. Brézin and S. Feng, Phys. Rev. B 29, 472 (1984).
[25] N. V. Brilliantov, C. Bagnuls, and C. Bervillier, Phys. Lett. A

245, 274 (1998).

042135-6

https://doi.org/10.1063/1.1724399
https://doi.org/10.1063/1.1724399
https://doi.org/10.1063/1.1724399
https://doi.org/10.1063/1.1724399
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1016/0375-9601(72)90675-5
https://doi.org/10.1016/0375-9601(72)90675-5
https://doi.org/10.1016/0375-9601(72)90675-5
https://doi.org/10.1016/0375-9601(72)90675-5
https://doi.org/10.1088/0370-1328/85/4/301
https://doi.org/10.1088/0370-1328/85/4/301
https://doi.org/10.1088/0370-1328/85/4/301
https://doi.org/10.1088/0370-1328/85/4/301
https://doi.org/10.1080/14786435908243288
https://doi.org/10.1080/14786435908243288
https://doi.org/10.1080/14786435908243288
https://doi.org/10.1080/14786435908243288
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1016/0031-8914(60)90199-3
https://doi.org/10.1080/0026897031000068488
https://doi.org/10.1080/0026897031000068488
https://doi.org/10.1080/0026897031000068488
https://doi.org/10.1080/0026897031000068488
https://doi.org/10.5488/CMP.8.4.665
https://doi.org/10.5488/CMP.8.4.665
https://doi.org/10.5488/CMP.8.4.665
https://doi.org/10.5488/CMP.8.4.665
https://doi.org/10.5488/CMP.13.23602
https://doi.org/10.5488/CMP.13.23602
https://doi.org/10.5488/CMP.13.23602
https://doi.org/10.5488/CMP.13.23602
https://doi.org/10.1103/PhysRevE.58.2628
https://doi.org/10.1103/PhysRevE.58.2628
https://doi.org/10.1103/PhysRevE.58.2628
https://doi.org/10.1103/PhysRevE.58.2628
https://doi.org/10.1088/1361-648X/ab4d38
https://doi.org/10.1088/1361-648X/ab4d38
https://doi.org/10.1088/1361-648X/ab4d38
https://doi.org/10.1088/1361-648X/ab4d38
https://doi.org/10.1088/1361-648X/aad3ee
https://doi.org/10.1088/1361-648X/aad3ee
https://doi.org/10.1088/1361-648X/aad3ee
https://doi.org/10.1088/1361-648X/aad3ee
https://doi.org/10.1016/j.fluid.2019.02.021
https://doi.org/10.1016/j.fluid.2019.02.021
https://doi.org/10.1016/j.fluid.2019.02.021
https://doi.org/10.1016/j.fluid.2019.02.021
https://doi.org/10.1007/BF02557350
https://doi.org/10.1007/BF02557350
https://doi.org/10.1007/BF02557350
https://doi.org/10.1007/BF02557350
https://doi.org/10.1140/epje/i2014-14049-6
https://doi.org/10.1140/epje/i2014-14049-6
https://doi.org/10.1140/epje/i2014-14049-6
https://doi.org/10.1140/epje/i2014-14049-6
https://doi.org/10.1016/S0378-4371(96)00279-8
https://doi.org/10.1016/S0378-4371(96)00279-8
https://doi.org/10.1016/S0378-4371(96)00279-8
https://doi.org/10.1016/S0378-4371(96)00279-8
https://doi.org/10.1103/PhysRevLett.89.080602
https://doi.org/10.1103/PhysRevLett.89.080602
https://doi.org/10.1103/PhysRevLett.89.080602
https://doi.org/10.1103/PhysRevLett.89.080602
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1007/s101890170039
https://doi.org/10.1016/j.fluid.2005.11.007
https://doi.org/10.1016/j.fluid.2005.11.007
https://doi.org/10.1016/j.fluid.2005.11.007
https://doi.org/10.1016/j.fluid.2005.11.007
https://doi.org/10.1103/PhysRevB.29.472
https://doi.org/10.1103/PhysRevB.29.472
https://doi.org/10.1103/PhysRevB.29.472
https://doi.org/10.1103/PhysRevB.29.472
https://doi.org/10.1016/S0375-9601(98)00398-3
https://doi.org/10.1016/S0375-9601(98)00398-3
https://doi.org/10.1016/S0375-9601(98)00398-3
https://doi.org/10.1016/S0375-9601(98)00398-3


MOLECULAR FIELDS AND STATISTICAL FIELD THEORY … PHYSICAL REVIEW E 101, 042135 (2020)

[26] R. Storer, Aust. J. Phys. 22, 747 (1969).
[27] D. di Caprio and J. P. Badiali, J. Phys. A: Math. Theor. 41,

125401 (2008).
[28] J.-M. Caillol, O. Patsahan, and I. Mryglod, Physica A 368, 326

(2006).
[29] A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).
[30] H. Frusawa, Phys. Rev. E 98, 052130 (2018).
[31] H. E. Stanley, Introduction to Phase Transitions and Critical

Phenomena, International Series of Monographs on Physics
(Oxford University Press, New York, 1971).

[32] L. Landau and E. Lifshitz, Statistical Physics, Course of Theo-
retical Physics (Elsevier, Amsterdam, 2013), Vol. 5.

[33] V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.-C. Desplat, and
P. Bladon, J. Fluid Mech. 440, 147 (2001).

[34] In a recent study [48], the authors applied the approach of
Ref. [13] for systems with a repulsive and short-range attractive
potential.

[35] C. G. Gray and K. E. Gubbins, Theory of Molecular Flu-
ids: Vol. 1: Fundamentals, International Series of Mono-
graphs on Chemistry (Oxford University Press, New York,
1984).

[36] J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
[37] B. Widom, J. Chem. Phys. 43, 3892 (1965).
[38] M. Mecke, J. Winkelmann, and J. Fischer, J. Chem. Phys. 107,

9264 (1997).
[39] C. D. Holcomb, P. Clancy, and J. A. Zollweg, Mol. Phys. 78,

437 (1993).
[40] J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 112, 6411

(2000).
[41] M. Gonzalez-Melchor, A. Trokhymchuk, and J. Alejandre,

J. Chem. Phys. 115, 3862 (2001).
[42] E. Lomba and N. G. Almarza, J. Chem. Phys. 100, 8367 (1994).
[43] D.-M. Duh and L. Mier-Y-Terán, Mol. Phys. 90, 373 (1997).
[44] N. Brilliantov, and J. Valleau, J. Chem. Phys. 108, 1123 (1998).
[45] D. Henderson, Fundamentals of Inhomogeneous Fluids (Marcel

Dekker Inc., New York, 1992).
[46] S. Iatsevitch and F. Forstmann, J. Chem. Phys. 107, 6925

(1997).
[47] S. Iatsevitch and F. Forstmann, J. Phys.: Condens. Matter 13,

4769 (2001).
[48] A. Trokhymchuk, R. Melnyk, M. Holovko, and I. Nezbeda,

J. Mol. Liq. 228, 194 (2017).

042135-7

https://doi.org/10.1071/PH690747
https://doi.org/10.1071/PH690747
https://doi.org/10.1071/PH690747
https://doi.org/10.1071/PH690747
https://doi.org/10.1088/1751-8113/41/12/125401
https://doi.org/10.1088/1751-8113/41/12/125401
https://doi.org/10.1088/1751-8113/41/12/125401
https://doi.org/10.1088/1751-8113/41/12/125401
https://doi.org/10.1016/j.physa.2005.11.010
https://doi.org/10.1016/j.physa.2005.11.010
https://doi.org/10.1016/j.physa.2005.11.010
https://doi.org/10.1016/j.physa.2005.11.010
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1103/PhysRevE.98.052130
https://doi.org/10.1103/PhysRevE.98.052130
https://doi.org/10.1103/PhysRevE.98.052130
https://doi.org/10.1103/PhysRevE.98.052130
https://doi.org/10.1017/S0022112001004682
https://doi.org/10.1017/S0022112001004682
https://doi.org/10.1017/S0022112001004682
https://doi.org/10.1017/S0022112001004682
https://doi.org/10.1103/RevModPhys.48.587
https://doi.org/10.1103/RevModPhys.48.587
https://doi.org/10.1103/RevModPhys.48.587
https://doi.org/10.1103/RevModPhys.48.587
https://doi.org/10.1063/1.1696617
https://doi.org/10.1063/1.1696617
https://doi.org/10.1063/1.1696617
https://doi.org/10.1063/1.1696617
https://doi.org/10.1063/1.475217
https://doi.org/10.1063/1.475217
https://doi.org/10.1063/1.475217
https://doi.org/10.1063/1.475217
https://doi.org/10.1080/00268979300100321
https://doi.org/10.1080/00268979300100321
https://doi.org/10.1080/00268979300100321
https://doi.org/10.1080/00268979300100321
https://doi.org/10.1063/1.481204
https://doi.org/10.1063/1.481204
https://doi.org/10.1063/1.481204
https://doi.org/10.1063/1.481204
https://doi.org/10.1063/1.1384553
https://doi.org/10.1063/1.1384553
https://doi.org/10.1063/1.1384553
https://doi.org/10.1063/1.1384553
https://doi.org/10.1063/1.466781
https://doi.org/10.1063/1.466781
https://doi.org/10.1063/1.466781
https://doi.org/10.1063/1.466781
https://doi.org/10.1080/00268979709482617
https://doi.org/10.1080/00268979709482617
https://doi.org/10.1080/00268979709482617
https://doi.org/10.1080/00268979709482617
https://doi.org/10.1063/1.475474
https://doi.org/10.1063/1.475474
https://doi.org/10.1063/1.475474
https://doi.org/10.1063/1.475474
https://doi.org/10.1063/1.474943
https://doi.org/10.1063/1.474943
https://doi.org/10.1063/1.474943
https://doi.org/10.1063/1.474943
https://doi.org/10.1088/0953-8984/13/21/309
https://doi.org/10.1088/0953-8984/13/21/309
https://doi.org/10.1088/0953-8984/13/21/309
https://doi.org/10.1088/0953-8984/13/21/309
https://doi.org/10.1016/j.molliq.2016.10.020
https://doi.org/10.1016/j.molliq.2016.10.020
https://doi.org/10.1016/j.molliq.2016.10.020
https://doi.org/10.1016/j.molliq.2016.10.020

