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Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
Temperature and internal entropy production
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An explicit expression for the temperature of an open two-level quantum system is obtained as a function of
local properties under the hypothesis of weak interaction with the environment. This temperature is defined for
both equilibrium and out-of-equilibrium states and coincides with the environment temperature if the system
reaches thermal equilibrium with a heat reservoir. Additionally, we show that within this theoretical framework
the total entropy production can be partitioned into two contributions: one due to heat transfer and another,
associated to internal irreversibilities, related to the loss of internal coherence by the qubit. The positiveness of
the heat capacity is established, as well as its consistency with the well-known results at thermal equilibrium.
We apply these concepts to two different systems and show that they behave in analogous ways as their classical
counterparts.
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I. INTRODUCTION

Despite the enormous success of classical thermodynamics
during the first half century after its creation, some important
thermodynamic properties only acquired their deepest phys-
ical interpretation when considering the microscopic degrees
of freedom, that is, with the advent of statistical mechanics.
Entropy, for example, is a typical case of the above: The
famous Boltzmann equation S = kB ln � associates the clas-
sical entropy concept with the logarithm of the number of
microscopic configurations that are compatible with the actual
macroscopic state.

Something similar has occurred with the notion of tem-
perature. Its intrinsic phenomenological character associated
to our ability of distinguishing various degrees of cold and
hot objects made it difficult to express temperature in terms
of other well-established physical quantities. The first rele-
vant step came via the kinetic theory, which established the
proportionality between temperature and the average kinetic
energy of the microscopic components of the system in a
simple physical model. Once the relation between entropy and
microscopic world was clear, the equation

1

T
= ∂S

∂E
(1)

deduced in classical thermodynamics can be adopted as a
mechanical definition of temperature, for cases for which we
are able to write the number of microscopic configurations as
a function of the energy. For a recent review of the temperature
concept in statistical mechanics, see Ref. [1].

The statistical interpretation is important to shed light
onto the thermodynamic theory based on classical mechanics.
When considering quantum mechanics as the underlying the-
ory, the probabilistic nature of the theory and the fact that open
systems generally find themselves in mixed states, make the
statistical approach not only convenient but also mandatory.

In this case, the statistical description of the possible results of
the measurements performed on the system is made through
the reduced density matrix ρS , which allows us to obtain the
expected values of the local observables by means of the rule:

〈A〉 = tr[ρS A]. (2)

This inherently statistical behavior suggests that in the at-
tempt of extending thermodynamics to the quantum regime,
the natural candidates to occupy the role of thermodynamic
properties are the expected values of certain operators or, in
the general case, functions of them. Typical examples are the
internal energy, usually defined as the expected value of the
local Hamiltonian, HS , in the weak-coupling regime (i.e., if
the interaction energy can be neglected):

E = 〈HS 〉 = tr[HS ρS ], (3)

and the von Neumann entropy, which can be defined as the
expected value of the entropy operator − ln ρS ,

SvN = −tr
[
ρS lnρS

]
. (4)

Adopting this point of view, in this work we explore the
possibility of introducing the concept of temperature for a
qubit that undergoes an open dynamic. The question about the
need, convenience, or even the mere possibility of defining
the temperature of such a two-level system is not new [2].
More recently, several “temperatures” have been proposed
and demonstrated to be useful in order to explain certain
quantum thermodynamic processes [3–8]. Unlike these ap-
proaches, some of them very sophisticated, our approach here
is very simple and consists in explicitly applying Eq. (1),
but employing the von Neumann entropy SvN , instead of the
thermodynamic entropy S, an idea that, to the best of our
knowledge, has not been implemented. Unlike S, which is
only defined for equilibrium states, SvN can be assigned to
arbitrary states. As a consequence, the expression obtained for
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the temperature is valid even far from equilibrium, generaliz-
ing the usual equilibrium temperature. A completely different
perspective about the temperature problem in quantum me-
chanics is presented in Ref. [9], where the authors propose
that the temperature must be considered as an operator instead
of a realistic local variable. In the same direction, several
temperature-energy uncertainty relations have been found in
the context of statistical mechanics, and more recently in
quantum mechanics [10].

This work is organized as follows. In Sec. II, we establish a
thermodynamic theory for the qubit based on considering the
expected values of the spin operators as the elementary ther-
modynamic properties. In Sec. III, we deduce the expression
for the temperature of the system, the specific heat, and the
entropy production and we discuss the results. An analysis of
the behavior of the defined quantities for some simple two-
level models is developed in Sec. IV. Finally, some remarks
and conclusions are presented in Sec. V.

II. BASIC THEORY FOR THE QUBIT

A. A state postulate

In addition to the well-known four laws of thermodynam-
ics, the classical theory makes use of the “state postulate,”
which establishes that the thermodynamic state of a system in
equilibrium is determined by knowing the values of a reduced
set of independent intensive properties. Typically, for a simple
compressible system without magnetic or other additional
effects, two independent properties completely determine the
state; i.e., any other property is a function of those two
properties [11].

In the framework of open quantum systems and following
the same philosophy, it would be useful to choose a set
of thermodynamic properties (in the sense discussed in the
Introduction) such that they allow to express any other one.
Since the reduced state of an open two-level system can be put
in correspondence with a point in the Bloch sphere, it is clear
that three parameters are necessary to fully describe the state.
A natural choice are the components of the Bloch vector:

�B = (Bx, By, Bz ), (5)

which can be obtained as the expected values of the spin
operators Sx, Sy, and Sz (aside from a factor h̄/2):

Bx = 〈Sx〉 = tr(ρS σx )

By = 〈Sy〉 = tr(ρS σy)

Bz = 〈Sz〉 = tr(ρS σz ),

(6)

where σx, σy, and σz are the Pauli matrices. Since they are
expected values of local operators, they satisfy our definition
of a thermodynamic property. Additionally, they completely
determine the thermodynamic state, considering that the re-
duced density matrix can be expressed in terms of the Bloch
vector components in the following way:

ρS = 1

2
[1 + �B · �σ ] = 1

2

(
1 + Bz Bx − iBy

Bx + iBy 1 − Bz

)
, (7)

where �σ is the vector whose components are the Pauli matri-
ces. This implies that any other conceivable thermodynamic
property (in particular the temperature) must be a function of

them. For example, the dimensionless von Neumann entropy
can be expressed in terms of the modulus of the Bloch vector
B as:

SvN

kB
= −

(
1 + B

2

)
ln

(
1 + B

2

)
−

(
1 − B

2

)
ln

(
1 − B

2

)
.

(8)

B. Internal energy, heat, and work

The unitary evolution of the total system (qubit plus en-
vironment) is governed by a Hamiltonian H , which in the
general case can be written as:

H = HS + HE + Hint, (9)

where HS is the qubit Hamiltonian, HE is the Hamiltonian of
the environment, and Hint describes the interaction between
both systems. Note that the qubit Hamiltonian HS can be writ-
ten as a linear combination of the Pauli matrices, aside from a
scalar multiple of the identity, without physical consequences
since it represents a shift in the energy eigenvalues:

HS = −�v · �σ , (10)

where �v is a vector which can be associated to an effective
magnetic field. Note also that ±|�v| are the eigenenergies of
the system.

In the weak-coupling limit, the internal energy can be
obtained using Eqs. (3), (7), and (10) and with the help of
the identity:

(�a · �σ )(�b · �σ ) = (�a · �b)I + i�σ · (�a × �b), (11)

resulting in:

E = −�B · �v, (12)

i.e., the projection of the Bloch vector on the effective mag-
netic field. If the Hamiltonian is time dependent, then we can
write an infinitesimal change in the internal energy as:

dE = −d �B · �v − �B · d�v. (13)

As usual, we identify the energy change due to variations in
the reduced state as heat [12]:

δQ = −d �B · �v. (14)

Since an isolated qubit undergoes an unitary evolution, and
therefore d �B ⊥ �v, we verify that in this case δQ = 0, as
expected. We also identify the energy change associated to
our possible control over the temporal evolution of the Hamil-
tonian, as work:

δW = −�B · d�v. (15)

Clearly, Eq. (13) can be considered as a statement of the first
law of thermodynamics in the quantum regime:

dE = δQ + δW. (16)

III. RESULTS

A. Temperature

If we assume that the von Neumann entropy, Eq. (8), is
a valid extension of the statistical entropy in the quantum
regime, then we can use Eq. (1) to obtain the temperature.
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FIG. 1. Dimensionless qubit’s temperature kBT/ε as a function
of the modulus B and the z component B‖ of the Bloch vector.

We note that the internal energy, Eq. (12), can be expressed in
terms of the projection B‖ = �B · v̂ of the Bloch vector on the
direction v̂:

E = −|�v|B‖, (17)

and therefore

1

T
= − 1

|�v|
∂SvN

∂B‖

∣∣∣∣
B⊥

. (18)

Since dSvN
dB = −kB tanh−1(B) and ∂B

∂B‖
|B⊥ = B‖

B , the expression
for the temperature is

T = εB

kBB‖ tanh−1(B)
, (19)

where we have denoted the eigenenergy |�v| by ε. Since
entropy and energy are defined for equilibrium and out-of-
equilibrium states, Eq. (19) applies in both cases, allowing us
to obtain the qubit’s temperature as a function of the reduced
state and the instantaneous Hamiltonian.

Let us consider, as usual in physical implementations, of
the qubit as a spin in a magnetic field pointing along the z
direction. Therefore, the Hamiltonian adopts the form

HS = −εσz. (20)

In Fig. 1 we plot the qubit’s temperature as a function of B and
B‖. Two branches are appreciated, one associated to positive
temperature states (for B‖ > 0), and the other to negative
temperature states (for B‖ < 0). This means that the spin’s
temperature is positive if the projection of the Bloch vector
on the z direction is aligned with the field, negative in the
opposite case, and undefined if the expected value is zero (in
this case, the temperature diverges to ±∞ as B‖ goes to 0±).

B. Consistency with the equilibrium temperature

If the system reaches thermal equilibrium with a reservoir
at positive temperature TE , then the time-averaged reduced
state adopts the form [13,14]:

ρS = e−βE HS

tr(e−βE HS )
, (21)

where βE = (kBTE )−1. In this case, Eq. (7) reduces to

ρS = 1
2 [1 + �Beq · �σ ], (22)

FIG. 2. Isothermal surfaces in the Bloch sphere, corresponding
to the values of dimensionless temperature kBT1/ε = 1.5 (red, north-
ern hemisphere) and kBT2/ε = −2 (blue, southern hemisphere). Two
constant energy planes are also shown, one tangent to the isotherm
kBT1/ε = 1.5, which is associated to the equilibrium energy Eeq, and
another associated to an energy smaller than Eeq.

so the Bloch vector points along the v̂ direction and, after
some calculation we see that it has a modulus:

Beq = tanh

(
ε

kBTE

)
, (23)

so the environment temperature can be expressed in terms of
the modulus of the equilibrium Bloch vector as:

TE = ε

kB tanh−1(Beq )
. (24)

Observe that since in this case B = B‖ = Beq, the qubit’s
temperature, Eq. (19), coincides with the environment tem-
perature, Eq. (24). In this case, considering Eq. (20), one
notes that the natural populations, i.e., the eigenvalues of the
reduced density matrix (λ+/− = 1/2 ± B/2) are the equilib-
rium populations Pg and Pe of the ground and excited states,
respectively, so we reobtain the typical relation between the
environment temperature and the populations:

TE = T = 2ε

kB ln
(Pg

Pe

) . (25)

The second equality of Eq. (25) and other similar relations are
usually employed outside the equilibrium situation, when the
introduction of an “effective temperature” is useful in order to
characterize the evolution of the system [15–23].

Fixing the temperature, Eq. (24) allows to construct the
isothermal surfaces on the Bloch sphere, two of which are rep-
resented in Fig. 2. The larger the value of the temperature, the
lower the curvature of the corresponding isothermal surface,
and as T increases, the surfaces converge to the maximum
circle located in the horizontal plane. The surface of the sphere
is also an isothermal surface, corresponding to temperature 0,
except for the equator, located in the z = 0 plane, in which
the temperature is not defined. There are also represented
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two constant energy planes. The lower one corresponds to
the energy of the system in its thermal equilibrium state,
Eeq, when the system is embedded in an environment at
temperature T1. Such state is located at the intersection of the
corresponding isothermal surface with the vertical diameter.
Note that the upper plane does not intersect the isothermal
surface, so energy values lower than that of the equilibrium
at a certain temperature are only compatible with also lower
values of the temperature.

C. Internal entropy production

At the macroscopic level irreversible processes are accom-
panied by a positive entropy production δSgen, which for a
system that undergoes an infinitesimal process exchanging
only energy with the environment is defined, in terms of the
entropy change dS, and the entropy flux associated to the heat
exchanged, δQ/T , as follows:

δSgen = dS − δQ

T
, (26)

where T is the temperature of the surface region where heat
exchange takes place. Usually, heat reservoirs are modeled
as internally reversible, which means that no entropy is pro-
duced in their interior. This implies that if we consider a
control volume that includes the system we are studying, and
whose boundary is at the temperature of the heat reservoir,
application of Eq. (26) allows us to obtain the total entropy
generated. This value includes the entropy produced due to
irreversible heat transfer (if the temperature difference across
the boundary is not infinitesimal) and eventually contributions
associated to internal irreversibilities inside the system of
interest. In what follows, we will see that our notion of
temperature allows us to evaluate these contributions to the
total entropy production.

For an arbitrary infinitesimal change in the modulus of the
Bloch vector, from Eq. (8) the total entropy change of the
qubit is

dSvN = −kB tanh−1(B)dB. (27)

Let us consider the unit vectors B̂ = �B/B and v̂ = �v/ε. Since
dB = B̂ · d �B, and expressing B̂ in terms of its projections
along the direction of v̂ and its orthogonal complement, we
obtain

dSvN = −kB tanh−1(B)[(v̂ · B̂)v̂ + (B̂ − (v̂ · B̂)v̂)] · d �B.

(28)
Using Eqs. (14) and (19), the first term on the right-hand side
of the equation above is

−kB tanh−1(B)(v̂ · B̂)v̂ · d �B = δQ

T
. (29)

Thus we arrive at:

δSint
gen = dSvN − δQ

T
, (30)

where we have defined the internal entropy production δSint
gen

as

δSint
gen ≡ −kB tanh−1(B)[B̂ − (v̂ · B̂)v̂] · d �B. (31)

Unlike the previous discussion, in this case the temperature
appearing in Eq. (30) is the qubit’s temperature instead of the
environment temperature, and, consequently, the correspond-
ing entropy production is only a fraction of the total entropy
production, since the latter also includes the irreversible heat
transfer contribution associated to the possible finite tem-
perature difference between the qubit and the environment.
To clarify this point, we recall that at the quantum level
the total entropy produced during a process is linked to the
distance, measured in a particular way, between the initial and
the equilibrium states of the system, in case the latter exists
[24–26]. Specifically, Ref. [24] proposes that:

Stot
gen(t ) = kB

{
D

(
ρS (0) ‖ ρ

eq
S

) − D
[
ρS (t ) ‖ ρ

eq
S

]}
, (32)

where D(ρ ‖ ρ ′) = tr(ρ ln ρ) − tr(ρ ln ρ ′) is the Kullbak-
Leibler divergence (relative entropy) of the states ρ and ρ ′,
and ρ

eq
S is the equilibrium state. Assuming that the equilibrium

state is the thermal state at the environment temperature TE , it
is straightforward to see that:

δStot
gen = dSvN − δQ

TE
. (33)

Then, using Eqs. (30) and (33), we obtain:

δStot
gen = δSht

gen + δSint
gen, (34)

where we have defined

δSht
gen = δQ

(
1

T
− 1

TE

)
. (35)

Equation (35) can be interpreted as the entropy production
due the heat transfer at the system’s boundary, since this
term cancels when the temperatures of the system and the
environment coincide or when the heat exchanged is zero.
This confirms that the second term of Eq. (34), δSint

gen, must
be associated exclusively to internal irreversibilities. The clas-
sification of the total entropy production in the internal and
boundary contributions is the standard procedure in classical
thermodynamics, and it is plausible also in quantum mechan-
ics provided that the temperatures are well defined. However,
the existence of an intrinsic entropy generation even for such a
simple quantum system is a rather remarkable fact, and some
of its relevant aspects are discussed in Appendix.

D. Heat capacity

All qubit states located on a isothermal surface T = const
are out of equilibrium except for the thermal state, for which
the Bloch vector points in the direction of the applied field
(the vertical diameter). On the other hand, Eq. (12) shows that
the constant energy surfaces are horizontal planes such that
energy decreases with height. Observing Fig. 2, it is easy to
conclude that from all the states at a given temperature, the
equilibrium state is the one of least energy.

In order to formalize these ideas, we proceed to obtain a
general expression for the heat capacity of the system, as a
function of the state. Typically, the heat capacity is defined
considering a process in which the relevant work is zero
(for example, a constant volume process for a compressible
substance; or a constant magnetization process for a magnetic
substance). If the direction of �v is fixed, then the zero work
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FIG. 3. Dimensionless heat capacity Cε/kB, as a function of the
state defined through the modulus and z component of the Bloch
vector.

condition implies that the eigenenergy ε is fixed, so in general
it makes sense to define:

Cε =
(

∂E

∂T

)
ε

. (36)

But the energy depends only on the B‖ component, E =
−εB‖, so we obtain:

Cε = −ε

(
∂T

∂B‖

)−1

. (37)

After some algebra, the general expression for the qubit’s
heat capacity is

Cε = kBB(1 − B2)[tanh−1(B)]2B2
‖

tanh−1(B)(B2 − B2
‖ )(1 − B2) + BB2

‖
. (38)

It is interesting to test the behavior of a well-known partic-
ular case. For the equilibrium states of the system at positive
temperature we have that B = B‖; in this case:

Cε = kB(1 − B2)[tanh−1(B)]2. (39)

But as we have seen, the modulus of the equilibrium Bloch
vector is defined by the environment temperature, which
coincides in this case with the temperature of the qubit:

B = tanh

(
ε

kBT

)
(40)

so we obtain:

Cε = kB

[
ε/kBT

cosh (ε/kBT )

]2

. (41)

Equation (41) is the well-known expression for the specific
heat of a two-level system at thermal equilibrium, which
shows once again the consistency of the theory with the
equilibrium case [27].

More in general, we note that since |B‖| � B � 1, Eq. (38)
always leads to Cε � 0 (see Fig. 3).

We also notice that pure states, and those located on the
plane B‖ = 0, have zero heat capacity. This implies that, for
these states, very small energy variations are able to produce
large temperature changes, which agrees with our previous
observations on the temperature behavior.

Particularly remarkable also is the fact that, for any process
starting from a zero temperature state (B = 1), and evolving
toward an infinite temperature state (B‖ = 0), the value of

the heat capacity increases from zero, reaches a maximum
value, and then diminishes and tends asymptotically to zero.
This effect, known as the Schottky anomaly is well known
in equilibrium statistical mechanics and typically occurs in
systems with a finite number of energy levels [28]. The
analysis of Fig. 3 shows that the effect is present even in
the out-of-equilibrium situation. In particular, Cε presents two
global maxima in the regions B = B‖ and B = −B‖, with
values:

Cmax
ε 
 0.4392, (42)

in agreement with the known result for a two level system in
thermal equilibrium [27].

In the following section we will apply these results to some
simple two-level models, with emphasis in the behavior of the
temperature and the internal entropy production.

IV. APPLICATIONS

A. Two two-level atoms exchanging photons

Let us consider a system S composed of two two-level
atoms separated a distance R and embedded in a common ther-
mostat at zero temperature. If we focus on the case where only
spontaneous emission is taken into account, then the system
undergoes a dissipative process governed by the Markovian
master equation [29]

∂ρ

∂t
= 1

2

∑
k,l=A,B

γkl (2σ k
−ρσ l

+ − σ k
+σ−ρ − ρσ k

+σ k
−), (43)

where

σ A
± = σ± ⊗ I2, σ B

± = I2 ⊗ σ± σ± = 1
2 (σx + iσy). (44)

Above, γAA = γBB = γ0 is the single atom spontaneous emis-
sion rate, and γAB = γBA = γ = g(R)γ0 � γ0 is the photon-
exchange relaxation constant, where the function g(R) ap-
proaches 1 as R → 0.

The explicit solution of Eq. (43) for an arbitrary initial
density matrix can be found in Ref. [29], where it is used to
evaluate the level of transient entanglement produced between
the atoms due to the photons exchange. Here we are interested
in the thermodynamic aspects of the evolution, so we consider
such exchange as a heat transfer process between the atoms,
with losses to the environment. This is so because considering
the atoms at different locations implies that γ < γ0, and con-
sequently, the system composed of both atoms loses energy
and asymptotically relaxes toward the product of the ground
states, |0〉 ⊗ |0〉, regardless of the initial state. This kind of
process is adequate to study the behavior of the temperature
definition proposed in this work.

In Fig. 4 we present the comparative time evolution of
the temperatures and internal energies for both atoms. The
global initial state is a product state, with atom a in its ground
state (Ea/ε = −1, Ta = 0), and atom b in a mixed state such
that Eb = −0.8, T2 > 0. Initially atom a absorbs a fraction
of the energy emitted by atom b, while its own emission is
negligible, since it starts from the ground state, so both its
energy and temperature grow. Meanwhile, atom b releases
energy and its temperature decreases. At some point, Ta is
large enough, and Tb low enough, so that the emission by atom

042132-5



VALLEJO, ROMANELLI, AND DONANGELO PHYSICAL REVIEW E 101, 042132 (2020)

FIG. 4. Temperature, internal energy, and entropy production
time evolutions, as a function of γ0t for two interacting two-level
atoms a and b. (a) Dimensionless temperature kBT/ε. (b) Dimension-
less internal energies E/ε. (c) Dimensionless internal entropy pro-
duction. The initial reduced state is a product state of local densities
defined by the Bloch vectors �Ba = (0, 0, 1) and �Bb = (0.2, 0.2, 0.8),
and g(R) = γ /γ0 = 0.5. The environment temperature is zero (black
dash-dotted line.)

a exceeds its absorption, so Ta and Ea reach a maximum value
simultaneously and subsequently start to decrease. Finally, we
observe that thermal equilibrium between the atoms occurs
before thermal equilibrium with the environment. In fact,
once Ta equals Tb, no energy flux occurs between the atoms
and the composed system behaves as a unique system since
the temperature and energy of both atoms are the same for
all subsequent times. From this moment onward, they cool
together and thermalize with the environment. This behavior
is reminiscent of the one that undergo two macroscopic bodies
at different temperatures in thermal contact between them, and
with an environment at a temperature less than or equal to the
lowest of those of the systems involved.

Note that, although the internal entropy generated associ-
ated to atom a has a negative initial transient, the sum of the
contributions of both atoms is monotonically increasing. The

decrease in entropy of atom a is associated to the fact that
it was initially in thermal equilibrium, so when it interacts
with atom b it starts moving away from the z axis. Since the
variation of the distance to this axis is a measure of the internal
entropy generated (see Appendix), this explains the excursion
into negative entropy values in the case of this atom.

B. Two-level system interacting with a heat reservoir:
The Jaynes-Cummings model

The interaction between a two-level atom and the elec-
tromagnetic field is described by the multimode Jaynes-
Cummings Hamiltonian:

H = h̄

2
ω0σz + h̄

∑
k

[ωkb†kbk + λkσ+bk + λ∗
kσ−b†k], (45)

where bk and b†k are the creation and annihilation operators
associated to the kth mode of the field with frequency ωk

and coupling constant λk , and w0 is the atomic transition
frequency.

For thermal radiation at temperature TE , explicit expres-
sions for the elements of the atom’s reduced density matrix,
in the weak-coupling and low-temperature approximation,
can be found in Ref. [30]. The analysis of this expression
shows that, independently of the initial state, the atom reaches
thermal equilibrium with the field at the temperature

kBTeq = h̄ω0

tanh−1
[
1 − 2 exp

(− h̄ω0
kBTE

)] . (46)

The transition to equilibrium is shown in Fig. 5, where we plot
the atom’s temperature, its internal energy, and the internal
entropy production. Since the temperature of the environment
changes during the evolution in an unknown way, the eval-
uation of the total entropy production cannot be performed.
Nevertheless, the growing behavior of the internal entropy
production can be appreciated.

More interesting conclusions arise if one studies the system
under the Markovian approximation, valid in the limit of high
temperature. In Ref. [24] it is shown that the master equation
for the atom in the interaction picture is

∂ρS

∂t
= γ0(N + 1)

(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)

+ γ0N
(

σ+ρσ− − 1

2
σ−σ+ρ − 1

2
ρσ−σ+

)
, (47)

where γ0 is the spontaneous emission rate and N is the Planck
distribution at the transition frequency ω0:

N = 1

eβE h̄ω0 − 1
. (48)

The master equation can be solved with the help of Pauli
matrices algebra, and the explicit components of the Bloch
vector can be found in Ref. [24]. With the time dependence
of the three basic thermodynamic properties at hand, we can
implement the thermodynamic analysis of the model.

In Fig. 6 we plot the dimensionless atom’s temperature,
Eq. (19), and the dimensionless internal energy for two differ-
ent initial states. Note that if the initial temperature is greater
than the environment temperature TE , the internal energy

042132-6



OUT-OF-EQUILIBRIUM QUANTUM THERMODYNAMICS IN … PHYSICAL REVIEW E 101, 042132 (2020)

FIG. 5. Temperature, internal energy, and entropy time evolu-
tions for a two level-system interacting with a heat reservoir. (a) Di-
mensionless temperature kBT

ε
, as a function of γ0t . (b) Dimensionless

internal energy E
ε

. (c) Internal entropy production, in units of kB. The
temperatures of the initial states considered are 0.5Teq (red full line)
and 1.5Teq (blue dashed line). The initial environment temperature
is kBTe/ε = 0.15. The equilibrium temperature of the system is
represented by the black dash-dotted line.

decreases in time. This implies that the system releases heat to
the environment. On the other hand, for an initial temperature
lower that TE , the internal energy increases, so the system re-
ceives heat from the reservoir. As expected, when the asymp-
totic state is reached, in all cases the qubit’s temperature co-
incides with the environment temperature. These observations
leads to consider Eq. (19) as a real indicator of how “warm”
the qubit finds itself in the corresponding reduced state.

In this case, a complete entropy balance is possible since
the environment remains at constant, finite temperature dur-
ing the process. This allows to separate the total entropy
production into its internal [Eq. (31), Fig. 7(a)] and bound-
ary [Eq. (35), Fig. 7(b)] contributions, as well as their sum
[Fig. 7(c)]. The monotonically increasing behavior of these
three quantities is verified in Fig. 7.

The situation in which the system starts with the same
temperature as the environment but in an out-of-equilibrium

FIG. 6. Temperature and internal energy evolution of a two-
level system interacting with the reservoir within the Markovian ap-
proximation. (a) Dimensionless temperature kBT

ε
. (b) Dimensionless

internal energy E
ε

as a function of γ0t . The time evolution of the
internal entropy generated for this system is shown in Fig. 6(a).
The dimensionless environment temperature is 10 (black dash-dotted
line), and the initial states considered are selected in such a way that
the qubit’s initial dimensionless temperatures are 5 (red full line) and
15 (blue dashed line).

state was also studied. For all initial states considered satis-
fying this condition, the evolution of the system is essentially
isothermal, as can be seen in Fig. 8. This results, as in the
classical case, in the reversibility of the heat transfer, and
as a consequence, that the boundary contribution to the total
entropy production is negligible. In this case, the growing
behavior of the total entropy production, and of the correla-
tions between the system and the bath, can be understood in
a purely geometrically way, since they are due exclusively
to the tendency of the Bloch vector to point along the z
direction, reducing the Euclidean distance between the point
representing the reduced state, and the z axis.

The fact that systems in out-of-equilibrium states with a
temperature given by Eq. (19) that coincides with the envi-
ronment temperature, evolve on isothermal surfaces is rather
remarkable, and in our opinion is a strong argument in favor
of adopting that expression as the qubit’s temperature.

V. FINAL REMARKS AND CONCLUSIONS

In this work we have presented a natural extension of the
temperature concept, valid for two-dimensional open quantum
systems in generic out-of-equilibrium processes, under the
hypothesis of weak interaction with the environment. The
construction is based on the fact that the von Neumann
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FIG. 7. Components of the entropy production for a two-level
system interacting with a heat reservoir. (a) Internal entropy produc-
tion. (b) Entropy production due to heat transfer. (c) Total entropy
production, in units of kB. The initial states and respective illustration
codes are the same of Fig. 6.

entropy and the expected value of the Hamiltonian are well-
defined in the out-of-equilibrium situation.

The use of the von Neumann entropy guarantees consis-
tency with the equilibrium temperature when thermal equilib-
rium states are considered. In the model systems analyzed, this
temperature has a behavior that is reminiscent of the classical
behavior, correctly indicating the senses of the heat fluxes
between initially uncorrelated systems.

We have observed that the adoption of this temperature
allows to identify the internal and heat transfer contributions
to the total entropy production. Although the geometrical
interpretation of the internal entropy generated is clear, the
understanding of the physical reasons associated to the ex-
istence of internal irreversibilities requires further analysis,
as well as its interpretation from the information-theoretical
perspective. A first step in this study is given in Appendix
A 1, where we show that, for a system of two qubits, the total

FIG. 8. Isothermal trajectories in the Bloch sphere. The trajecto-
ries represented correspond to the initial value kBT/ε = 1 and remain
very close to the isothermal surface. For large t they reach the thermal
state located on the z axis.

entropy generated can be directly put into correspondence
with the change in quantum mutual information between
the qubits. Furthermore, in Appendix A 2 we show that the
internal entropy contribution to the total generated entropy can
be measured through the loss of quantum coherence in each of
the qubits.

We have also obtained an explicit expression for the heat
capacity of the system as a function of the state. The resulting
expression is non-negative for all possible states, assuring the
standard relation between heat fluxes and temperature when
no work is involved. It also allows to recover the results
obtained in the thermal equilibrium situation, such as the
Schottky anomaly, and to show the existence of a similar
behavior outside equilibrium.

The exploration of this theoretical framework for other
two-level models is currently under investigation, as well as
its implications in relevant tasks, such as work extraction.
Generalizations to quantum systems with a more complex
structure are also been considered.
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APPENDIX: ABOUT THE INTERNAL ENTROPY
PRODUCTION, EQ. (31)

1. Entropy production and correlations in a two-qubit system

Note that Eq. (34) does not include internal entropy pro-
duction associated to the reservoir. It is an approximation valid
in the limit of a large heat bath, so that it is reasonable to
assume that it remains in the canonical state at temperature
TE during the process (which is consistent with the internal
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reversibility hypothesis of thermal reservoirs in macroscopic
systems). But in the case of interactions with a finite environ-
ment, the existence of an additional term of internal entropy
production is expected. This can be illustrated considering the
limit case: a system composed of two qubits. We start from
the following identity for the von Neumann entropy (denoted
by S) of a bipartite system AB:

SA + SB − SAB = I (A : B) � 0, (A1)

where I (A : B) is the quantum mutual information:

I (A : B) = D(ρAB ‖ ρA ⊗ ρB), (A2)

and represents a measure of the total correlations (quantum
and classical) between A and B [31].

Each system satisfies the relation:

dSA/B = δQA/B

TA/B
+ δSint

gen(A/B), (A3)

so integrating in time and replacing in Eq. (A1), we obtain:∫ t

0

δQA

TA
+ Sint

gen(A)(t ) +
∫ t

0

δQB

TB
+ Sint

gen(B)(t )

= I (A : B)(t ) − [SA(0) + SB(0) − SAB(t )]. (A4)

Since entropy is preserved by the unitary evolution of the
global system, we have that SAB(t ) = SAB(0), and we can iden-
tify the terms between brackets on the right-hand side of the
last equation as the initial mutual information: I (A : B)(0) =
SA(0) + SB(0) − SAB(0). Then, using that δQA = −δQB ≡
δQ, it follows that:

Sint
gen(A)(t ) +

∫ t

0
δQ

(
1

TA
− 1

TB

)
+ Sint

gen(B)(t )

= I (A : B)(t ) − I (A : B)(0). (A5)

As before, we can interpret the second term as the entropy
production due to heat transfer, Sht

gen. So we conclude that the
total entropy production can be obtained by adding the inter-
nal contributions produced in each system plus the boundary
term, and it equals the change of mutual information:

Stot
gen = Sint

gen(A) + Sint
gen(B) + Sht

gen = �I (A : B). (A6)

Eqution (A6) establishes, for the present system, the equiva-
lence between the production of entropy and the creation of
correlations. The relation between both phenomena has been
reported in Ref. [32], for a system placed in contact with one
(or several) reservoirs, each one of them in a thermal state.

Observe that if I (A : B)(0) = 0, i.e., in absence of initial
correlations, then the non-negativity of the mutual information
leads to:

Stot
gen = Sint

gen(A) + Sint
gen(B) + Sht

gen � 0 (A7)

and the non-negativity of the entropy production is guaran-
teed. The observation that previous correlations (i.e., before
the systems are placed in interaction) must be negligible for
the second law to be true in its classical form can be tracked
to Boltzmann himself [33].

Nevertheless, in the case of initially correlated systems, it
is known that mutual information can decrease, and violations
of the classical statements of the second law are expected. In

particular, the existence of an anomalous heat flow (from a low
temperature to a high temperature) has been predicted [34,35],
and experimentally demonstrated in the case of a two-qubit
system, prepared in a correlated initial state such that the
marginal states are thermal [36]. Such anomalous heat flow
does not necessarily imply an inversion of the arrow of time,
since the system can be understood as acting as a refrigerator,
using the work potential stored in the correlations [37]. More-
over, it has been shown that no system-bath correlations are
necessary in order to reverse the heat flow, but only internal
correlations associated to quantum coherences [38].

The interplay between correlations, entropy production and
work extraction in quantum systems is an active field of
research, with major implications in our theoretical under-
standing of the physical world [39–44].

2. Internal entropy production as coherence loss

In order to give a physical interpretation to the internal
entropy production, it is convenient to express Eq. (31) in
spherical coordinates. Choosing the z axis in the direction
v̂ (now considered fixed), and setting d �B = dBB̂ + Bdθ êθ +
B sin θdϕêϕ , we obtain:

δSint
gen = −kB tanh−1(B) sin θ [dB sin θ + B cos θdθ ]. (A8)

Since dB sin θ + B cos θdθ = d (B sin θ ), and B sin θ is the
Euclidean distance between the point representing the reduced
state and the z axis, which coincides with the value of the
coherence of the state measured using the l1 norm, Cl1 [45]:

Cl1 ≡
∑
i �= j

|ρSi j | = B sin θ, (A9)

we can write:

δSint
gen = −kB tanh−1(B) sin θdCl1 . (A10)

We note that in the case that the system evolves over incoher-
ent states, �B ∝ �v, sin θ = 0, no entropy is produced. In this
case total reversibility is not assured, since the temperatures
of the system and the environment may be different, which
would imply an irreversible heat transfer. However, if the
system is initially in thermal equilibrium, and the temperature
of the environment changes slowly enough for the system to
stay in thermal equilibrium throughout the process, then the
heat transfer contribution to the total entropy production will
be also zero. Such processes are frequently employed in the
theoretical construction of quantum power cycles [46].

A second case of interest is when the evolution is unitary. In
this case the Bloch vector rotates around v̂ at constant angular
speed, keeping its modulus and angle θ fixed. This implies
that the coherence is constant, dCl1 = 0, and consequently,
δSint

gen = 0, as in the previous case.
These two cases suggest that internal reversibility can be

considered as equivalent to the preservation of the coherence.
On the other hand, we note, considering Eq. (A10), that
whenever coherence is lost, dCl1 < 0, entropy is produced
δSint

gen > 0. This is typically the case when the system evolves
toward an equilibrium state. The relation between entropy
production and quantum coherence has been recently studied
from a more general perspective in Ref. [47].
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