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Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids
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Characterization of the non-Arrhenius behavior of glass-forming liquids is a broad avenue for research toward
the understanding of the formation mechanisms of noncrystalline materials. In this context, this paper explores
the main properties of the viscosity of glass-forming systems, considering super-Arrhenius diffusive processes.
We establish the viscous activation energy as a function of the temperature, measure the degree of fragility of the
system, and characterize the fragile-to-strong transition through the standard Angell’s plot. Our results show that
the non-Arrhenius behavior observed in fragile liquids can be understood through the non-Markovian dynamics
that characterize the diffusive processes of these systems. Moreover, the fragile-to-strong transition corresponds
to a change in the spatiotemporal range of correlations during the glass transition process.
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I. INTRODUCTION

The study of viscosity in glass-forming liquids has received
considerable attention in glass manufacturing and fundamen-
tal research in physics [1–9]. Glasses are basically noncrys-
talline materials, but they have some structural order on a
microscopic scale. This order is conditioned by their chemical
composition and the thermal history of the system, which
led the material to the glass transition process [1–3]. In this
regard, the characterization of its viscosity as a function of
temperature, during the cooling process, provides relevant
information about the structural properties of the forming
material, because it is associated with the local interactions
between moving molecules and their immediate neighbor-
hood [1–3].

In an earlier work by our group [4], a nonadditive stochas-
tical model was developed for the non-Arrhenius behavior
of diffusivity and viscosity in supercooled fluids, close to
the glass transition. This model consists of a nonhomoge-
neous continuity equation that corresponds to a class of
nonlinear Fokker-Planck equations [10–12], whose drag and
diffusive coefficients are associated with anomalous diffusion
processes, and its stationary solutions maximize nonadditive
entropies [4,13,14]. We also provided a reliable measurement
of the fragility index [1,4,15] and an estimation of the fragile-
to-strong transition [4,5,16,17] through the ratio Tt/Tg, where
Tg is the glass transition temperature and Tt is the threshold
temperature for the super-Arrhenius process.

Therefore, by utilizing a nonadditive stochastic model, one
can understand how the non-Arrhenius behavior of viscosity
is associated with the existence of disordered short-range
local structures [16,18], arising from local interactions be-
tween moving molecules and their neighborhood during the
glass transition process [4]. This explains why nonequilibrium
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viscosity is a function not only of temperature, but also of
thermal history and chemical composition of the forming
material, since nonlinear forms of the Fokker-Planck equation
are related to non-Markovian stochastic dynamics [4,10].

In this paper, we explore the main properties of the vis-
cosity of glass-forming liquids through its super-Arrhenius
behavior [4]. Following the Angell’s definitions [1,15], we
analyze the temperature dependence of viscosity and recalcu-
late the fragility index corresponding to the viscous activation
energy measured by the glass transition temperature. We
establish the relationship between the fragility index and the
characteristic exponent from which we classify the different
non-Arrhenius diffusive processes, providing an indicator of
the degree of fragility in supercooled liquids. Moreover, we
use a two-state model [16,18] in order to simulate the variation
of the activation energy in the fragile-to-strong transition,
observed in waterlike systems [16,17] and metallic glass-
forming liquids [5,19].

Our results show that the fragile-to-strong transition can be
understood as the change in the spatiotemporal range of corre-
lations as the glass-forming system reaches the glass transition
temperature. As a consequence, the standard Arrhenius behav-
ior corresponds to the short-range spatiotemporal correlations
in the dynamic properties of the system, associated with
linear forms of the Fokker–Planck equation. Likewise, the
non-Arrhenius behavior observed in fragile liquids can be
understood as a consequence of the non-Markovian dynamics
that characterize these diffusive processes. Therefore, this
work provides the literature with a path toward the physical
interpretation of the fragile-to-strong transition, observed in
supercooled liquids.

II. VISCOSITY OF GLASS-FORMING LIQUIDS

The viscosity of glass-forming liquids can be defined as
the inverse of the generalized mobility of the fluid, such that
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for the stationary state of the system [4], its temperature
dependence can be written as

η(T ) = η∞

[
1 − (2 − m)

E

kBT

]−γ

, (1)

where η∞ is the viscosity in the high-temperature limit [4];
E is a generalized energy related to the molar energy in a
reaction-diffusion model [4]; kB is the Boltzmann constant;
and γ = (m − 1)/(2 − m) is a characteristic exponent, with
m being a generalized parameter which classifies different
non-Arrhenius behaviors [4,20]. The condition m = 2 im-
plies an Arrhenius standard plot,where the viscosity of the
supercooled liquid increases exponentially as cooling ap-
proaches the glass transition temperature; if m > 2, Eq. (1)
describes the sub-Arrhenius process, associated with the non-
local quantum effects on the dynamics of the system [21–24];
otherwise, if m < 2, the viscosity shows a super-Arrhenius
behavior, indicating that classical transport phenomena dom-
inate the diffusion process [22,24], and the viscosity, Eq. (1),
diverges when the temperature reaches the threshold value
Tt = (2 − m)E/kB.

Owing to the high variation of the viscosity during the
glass-forming process, it is usual to represent its measure-
ments in a logarithmic scale. Thus, we can rewrite Eq. (1) for
the super-Arrhenius case as

log10η = γ

∞∑
n=1

1

n

(
Tt

T

)n

+ log10η∞, (2)

where the sum corresponds to the power series expansion
of the logarithmic function. Therefore, the high-temperature
regime (T � Tt ) allows a first-order approximation in Eq. (2),
describing an Arrhenius-like behavior even though m �= 2.
These higher-order approximations correspond to some em-
pirical expressions proposed in the literature to fit viscosity
experimental data as a function of temperature [6,25].

In a thermally activated viscous process, the activation
energy corresponds to a potential barrier associated with
resistance to molecular motion due to the neighborhood action
[1]. From Eq. (1), the temperature dependence of the viscous
activation energy is given by

Evis(T ) = (m − 1)E

1 − (m − 1) E
γ kBT

. (3)

As can be seen from the above equation, Evis = (m − 1)EA,
where EA is the measurement of the activation energy mea-
surement, whose thermal behavior has been illustrated in
Ref. [4]. The viscous activation energy, Eq. (3), is an increas-
ing function with respect to the reciprocal temperature for
the super-Arrhenius processes (m < 2), decreasing for sub-
Arrhenius processes (m > 2), and temperature independent
for the condition m = 2, in which the generalized energy E ,
in Eq. (3), becomes the Arrhenius standard activation energy.
Furthermore, Evis → ∞ for T → Tt in the super-Arrhenius
processes reflects the viscosity divergence for the threshold
temperature.

III. FRAGILITY

Glass-forming liquids are classified into two categories,
fragile and strong [1], depending on the viscosity depen-
dence with temperature. A system is considered strong if its
behavior is close to the standard Arrhenius behavior, where
the viscosity presents a linear dependence with the reciprocal
temperature due to the temperature-independent behavior of
the activation energy [4], and fragile if they exhibit super-
Arrhenius behavior, where the activation energy increases
with the reciprocal temperature [4,26,27].

One method of characterizing the fragility index of
glass-forming systems is through the standard Angell’s plot
[1,15,28], which consists of the logarithmic dependence of
viscosity as a function of the ratio Tg/T . Therefore, from
Eq. (1), we can obtain

log10η = −γ log10

[
1 − Tt

T

1 − Tt
Tg

]
+ 12, (4)

where we consider the reference value 1012 Pa s as the
viscosity at the glass transition temperature [4]. Therefore, the
slope of the Angell’s plot for T = Tg defines the fragility index
of the liquid [1,15,28]. From Eq. (4), we can obtain this index
as

M (A)
η = γ

Tt/Tg

1 − Tt/Tg
. (5)

The smaller the difference between the glass transition tem-
perature (Tg) and the threshold temperature (Tt ), the more
fragile the glass-forming system will be. Moreover, as can
be seen from Eq. (3), the fragility index corresponding to
the measurement of the viscous activation energy at the glass
transition temperature can be expressed as

M (A)
η = Evis(Tg)

kBTg
. (6)

From this theoretical model, one can uniquely relate the
fragility index to the proposed γ exponent as

M (A)
η = γ (10B/γ − 1), (7)

where B = 12 − log η∞.
Figure 1 shows the fragility index M (A)

η as a function of
the exponent γ . As can be seen, this exponent represents
a reliable resolution for quantifying the fragility degree of
a glass-forming system. Experimental evidences indicate a
universal behavior for high-temperature viscosity [29], such
that η∞ ≈ 10−3 Pa s, which implies B ≈ 15. According to
Eq. (7), the fragility index has an asymptotic limit M (A)

η = 15
(dashed line) for the condition γ → ∞, which is the threshold
between fragile and strong regimes. Therefore, the glass-
forming system is classified as strong only at M (A)

η → 15. In
this limit, its viscosity follows Arrhenius’s standard behavior.
However, fragile systems obey the condition M (A)

η > 15 and
Eq. (1) describes the viscosity dependence of the temperature
at super-Arrhenius viscous processes.

Moreover, from Eq. (7), we determine the ratio Tt/Tg for
different values of γ to obtain the Angell’s plot through
Eq. (4). Figure 2 shows the standard Angell’s plot obtained
from a nonadditive stochastic model for the viscosity in
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FIG. 1. The fragility index as a function of the exponent γ .
The curve (solid blue line) corresponds to Eq. (6) for B = 15. The
horizontal line (dashed black line) corresponds to the value of M (A)

η =
15 and is an asymptotic limit between fragile and strong behaviors.

supercooled fluids; it reproduces the pattern displayed by
the original Angell’ graphic [28]. We establish a relationship
between the fragility index, as defined by Angell, and the
characteristic exponent γ of our nonadditive stochastic model.
Therefore, the γ exponent can also provide an indicative of
the fragility index of glass-forming liquids. In this context,
the fragility corresponds to a measurement of the change in
the spatiotemporal correlations on the dynamic properties of
these systems throughout the glass transition process, which
is equivalent to assessing the dependence of the viscosity with
the thermal history and chemical composition of the system.

IV. FRAGILE-TO-STRONG TRANSITION

Some glass-forming systems do not follow the fragility
curves shown in Angell’s plot and undergo a transition

FIG. 2. Angell’s plot of the non-Arrhenius behavior of diffusivity
and viscosity in supercooled fluids, obtained from our nonadditive
stochastic model. Equation (4) was plotted as a function of Tg scaled
by the reciprocal temperature for different γ values. The plotted
dashed lines represent super-Arrhenius liquids with different levels
of fragility, whereas the solid black line corresponds to the typical
Arrhenius behavior of strong liquids.

between the fragile and strong behaviors as the system
approaches the glass transition temperature, leading to a
crossover between the super-Arrhenius behavior and the stan-
dard Arrhenius behavior (solid black line in Fig. 2). Both
types of behaviors have distinct activation energies as the
system approaches the glass transition temperature. This phe-
nomenon is known as fragile-to-strong transition [16,17].

The theoretical basis of the fragile-to-strong transition in
supercooled liquids has been unclear in glass science; hence, it
has been the subject of study in several experimental and phe-
nomenological works in the past few years [5,16,17,30–34].
Because this transition corresponds to the shift in viscosity
measurements between the super-Arrhenius and standard Ar-
rhenius behaviors for viscosity measurement, as the system
cools [16,17], it is not possible to classify the glass-forming
system as either fragile or strong liquid. However, the physical
nature of the fragile-to-strong transition can be explained by
our nonadditive stochastic model, since the Tt/Tg ratio in
Eq. (4) acts as an indicator of the fragile-to-strong transition
attributable to this model because its variation changes the
fragility index and the slope rate of the curves in the standard
Angell’s plot. This implies that the generalized energy E in
Eq. (1) is no longer constant, as a result of the changes in the
dynamic properties of the supercooled liquid produced by the
transition.

In this regard, we calculate the viscosity in a system
undergoing a fragile-to-strong transition by applying the two-
state model [18,35], which has shown promising results in
characterizing the dynamic properties of supercooled water
[16]. It is worth noting that the two-state model is not
the microscopic correspondent of our nonadditive stochastic
model; we present a macroscopic model for the dynamics of
supercooled liquids without the construction of a correspond-
ing microscopic model. Thus, we take the two-state model
[18,35], only to simulate the variation in the generalized
energies E . In this two-state model, the supercooled liquid
is a dynamic mixture of two distinct liquid states, which we
labeled as state I and state II, corresponding to different local
structures at the molecular level. The proportion of liquids
in the system is a function of the pressure and temperature
[16,35]. For temperatures farther from Tg, state I will dominate
the system, while state II is dominant near the glass transition
temperature. Therefore, we define the generalized energy E as

E = E (I) + (E (II) − E (I) )sI, (8)

where E (I) and E (II) are the generalized energies for state I
and II, respectively, and sI is the fraction of state I whose
dependence on temperature is empirically characterized by
the Boltzmann factor [16].

Figure 3 shows the transition curve (solid black line) on the
Angell’s plot; this curve is bounded by the super-Arrhenius
behavior (dotted blue line) on the lower side and by the
Arrhenius standard behavior (dashed red line) on the upper
side. In order to show the applicability of our model, we fit a
set of experimental data of glass-forming systems selected in
the literature [17,36–39].

As can be seen, we fit the γ coefficient for the super-
Arrhenius behavior (fragile liquid) presented by the selenium
melt [36,37], where we found γ = 15.3(5). In contrast, for
liquid silica (SiO2) [38], a linear fit is a sufficient condition to
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FIG. 3. Angell plot of experimental results obtained in the litera-
ture [17,36–39] and the respective fits obtained from our nonadditive
stochastic model. Dashed red line describes the fit of the super-
Arrhenius behavior (fragile liquid) presented by the selenium melt
(red open squares) [36,37]; the dotted blue line represents the linear
fit of the standard Arrhenius behavior (strong liquid) observed for
liquid silica, SiO2 (blue crosses) [38]; solid black line shows the
fragile-to-strong transition calculated for the GeSe3 glass-forming
system in comparison with its viscosity measurements reported in
the literature (black open circles) [17,39].

achieve its standard Arrhenius behavior (strong liquid). Thus,
rewriting Eq. (4) at the limit that γ goes to infinity in Eq. (1)
we found the viscous activation energy E = 0.51(5) MJ/mol
for the liquid silica, while the value reported in the literature
is 0.515 MJ/mol [38]. Moreover, we simulate the fragile-to-
strong transition of the glass-forming system GeSe3, based on
its viscosity measurements reported in the literature [17,39].
The transition curve (solid black line) was obtained using the
two-state model for the variation of the generalized energy,
Eq. (8), where we estimate the generalized exponent γ in each
state, for which γ = 4.05 is associated with the fragile regime
(state I), whereas γ = 37.69 is associated with a strong liquid
regime (state II).

According to the two-state model, in the high-temperature
regime, disordered short-range local structures dominate over
the supercooled liquid; such condition allows the association
of state I to a fragile liquid. On the other hand, state II is
characterized by the presence of ordered short-range local
structures, which causes the supercooled liquid to follow
standard Arrhenius behavior near Tg. In this context, the
spatiotemporal correlations in the dynamic properties of the

system are different for each state. Due to this fact, the
non-Arrhenius behavior observed in fragile liquids can be
understood in terms of the non-Markovian dynamics that
characterize these diffusive processes as a natural condition
of our nonadditive stochastic model. Therefore, the physical
nature of the fragile-to-strong transition can be interpreted as
a change in the spatiotemporal range of correlations as the
glass-forming system attains the glass transition temperature.

V. CONCLUSION

In summary, our main result was to provide to the literature
the theoretical basis of the physical interpretation of the
fragile-to-strong transition in supercooled liquids. Through a
nonadditive stochastic model, we characterized the most rel-
evant properties associated with the measurement of the vis-
cosity in glass-forming systems. We established the fragility
index, M (A)

η , in terms of the characteristic exponent, γ , of our
nonadditive stochastic model, providing an alternative method
to characterize the degree of fragility of the glass-forming
system. Finally, we show the applicability of our model fitting
a set of viscosity measurements for glass-forming systems
selected in the literature. The fragile-to-strong transition was
calculated for the GeSe3 glass-forming system in the An-
gell’s plot, by varying the generalized energies through the
two-state model and determining the viscosity of the super-
Arrhenius behavior in the high-temperature regime as well
as the standard Arrhenius behavior near the glass transition
temperature. Thus, we show that our model describes the
fragile-to-strong transition and the non-Arrhenius behavior of
glass-forming liquids, based on experimental results reported
in the literature.

Therefore, the non-Arrhenius behavior observed in the
viscosity of fragile liquids is shown to be a consequence of
the non-Markovian dynamics that characterize the diffusive
processes of these systems, and the fragile-to-strong transi-
tion, observed in waterlike systems and metallic glass-forming
liquids, can be understood as the change in the spatiotemporal
range of correlations during the glass transition process. Thus,
a nonadditive stochastic model provides the theoretical basis
for a consistent physical interpretation of the dynamic prop-
erties of the glass-forming systems, opening a broad avenue
for research in glass science toward the understanding of the
formation mechanisms of noncrystalline materials.
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