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We propose a unified framework for both Shannon-Khinchin and Shore-Johnson axiomatic systems. We do
it by rephrasing Shannon-Khinchine axioms in terms of generalized arithmetics of Kolmogorov and Nagumo.
We prove that the two axiomatic schemes yield identical classes of entropic functionals—the Uffink class of
entropies. This allows to re-establish the entropic parallelism between information theory and statistical inference
that has seemed to be “broken” by the use of non-Shannonian entropies.
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I. INTRODUCTION

Entropy is undoubtedly one of the most important concepts
in physics, information theory, and statistics [1]. The notion of
entropy was originally developed by Claussius, Boltzmann,
Gibbs, Carathéodory and others in the context of statistical
thermodynamics. There it supplemented a new state function
that was naturally extensive (due to its very formulation in
terms of the heat one-form) and in any adiabatically isolated
system it represented a nondecreasing function of its state
variables (on account of the Clausius theorem). Roughly a
half-century after these developments, the entropy paradigm
was further conceptualized in the theory of information
by Shannon [2]. In this later context the ensuing entropy
(Shannon’s entropy or measure of information) quantitatively
represented the minimal number of binary (yes/no) questions
which brings us from our present state of knowledge about
the system in question to the one of certainty. The higher
is the measure of information (more questions to be asked)
the higher is the ignorance about the system and thus more
information will be uncovered after an actual measurement. A
proper axiomatization of Shannon’s entropy is encapsulated
in the so-called Shannon-Khinchin (SK) axioms [3]. Only one
decade after Shannon’s seminal works, Jaynes [4,5] promoted
Shannon’s information measure to the level of inference
functional that was able to extract least biased probability
distributions from measured data. This procedure is better
known as the Maximum entropy principle (MEP). Since MEP
is, in its essence, a statistical inference method, it needs a
proper mathematical qualification to place Jaynes’ heuristic
arguments in a sound mathematical framework. The corre-
sponding mathematical qualification was provided by Shore
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and Johnson (SJ) in the form of axioms that ensure that the
MEP estimation procedure is consistent with desired prop-
erties of inference methods [6,7]. At this point, one should
emphasize that in the statistical inference theory (SIT) entropy
functionals serve only as convenient technical vehicles for
unbiased assignment of distributions that are compatible with
given constraints. In fact, one might say that it is the MEP
distribution that is the primary object in SIT while the entropy
itself is merely secondary (not having any operational role in
the scheme). This is very different from the information theory
or thermodynamics where entropies are primary objects with
firm operational meanings (given, e.g., in terms of coding
theorems or calorimetric measurements). In the original paper
[6,7] Shore and Johnson concluded that their axioms yield
only one “measure of bias”, namely Shannon entropy. It
might, however, seem a bit puzzling why “measure of bias”
should have anything to do with additivity (i.e., one of the
defining properties of Shannon’s entropy). In the end, any
monotonic function of such a measure should provide the
same MEP distribution but might (and as a rule it does)
yield nonadditive entropy. So, it is perhaps not so surprising
that with the advent of generalized entropies [8–16], the past
two decades have seen a renewed interest both in the SJ
axiomatics and the associated classes of admissible entropies
[17–22]. In particular, it has been shown in Ref. [21] that
the SJ axiomatization of the inference rule does account for
substantially wider class of entropic functionals than just
SE—the so-called Uffink class [22], which include Shannon’s
entropy as a special case.

The main aim of this paper is to answer the following
question: what generalization of the SK axioms would pro-
vide the Uffink class of entropic functional? This would not
only allow to re-establish the “broken” entropic parallelism
between information theory and statistical inference but it
should also cast a new light on the Uffink class of entropies
and its practical utility.
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We first recall the original set of SK axioms [3]:
Let A and B be two discrete random variables with respec-

tive sets of possible values A = {Ai}n
i=1 and B = {Bi}m

i=1. With
A one can associate a complete set of events {ai}n

i=1 so that ai

denotes the event that A = Ai (similarly for B). Elements ai

(and b j) are known as elementary events. Let

P(A = Ai ) = P(Ai ) = pi, P(Bj ) = q j ,

P(A = Ai, B = Bj ) = P(Ai, Bj ) = ri j ,

P(A = Ai|B = Bj ) = P(Ai|Bj ) = ri| j = ri j/q j ,

1 � i � m; 1 � j � n ,

be corresponding elementary-event, joint, and conditional
probabilities, respectively. For A and B we denote the ensuing
probability distributions as PA = {pi}n

i=1 and PB = {q j}m
j=1.

Likewise, we write PA,B = {ri j}n,m
i, j=1, PA|B = {ri| j}n,m

i, j=1, and
PA|Bj = {ri| j}n

i=1. The entropy of the probability distribution
PA (which may also be called the entropy of A) will be, with a
slight abuse of the notation, denoted interchangeably as H(PA)
or H(A). Similar notation will be introduced for distributions
PB, PA,B, PA|B, and PA|Bj .

SK1 Continuity: Entropy is a continuous function with
respect to all its arguments, i.e., H(P) ∈ C.

SK2 Maximality: Entropy is maximal for uniform distribu-
tion, i.e., maxP H(P) = H(Un), where Un = {1/n, . . . , 1/n}.

SK3 Expandability: Adding an elementary event with
probability zero does not change the entropy, i.e.,

H(p1, . . . , pn, 0) = H(p1, . . . , pn).

SK4 S Shannon additivity:

H(A, B) = H(A|B) + H(B) = H(B|A) + H(A),

where H(B|A) = ∑
i piH(B|A = Ai ).

We note that the conditional entropy H(B|A) can be calcu-
lated in two ways: i) from the entropy of the joint distribution
of the pair (A, B) and marginal distribution of A, or ii) from
the marginal distribution A and entropy of the conditional ran-
dom variable B|A=Ai. This duality is crucial for the internal
consistency the SK axiomatic scheme. The aforestated set of
SK axioms has the unique solution—Shannon’s entropy 1

H(P) = −
∑

i

pi log pi .

With the advent of generalized entropies [8–16] there arose
two natural questions. First, is it possible to conceptualize
such entropies in terms of information-theoretic axioms (à la
SK axioms)? And second, can generalized entropies be used
as consistent inference functionals with sound mathematical
underpinning (à la SJ axioms)? As for the first question, it
is well known that one can “judiciously” generalize the addi-
tivity axiom SK4S to produce various generalized entropies.
Typical examples are provided by Rényi and Tsallis-Havrda-
Charvát (THC) entropies. For instance, for the Rényi entropy,
one keeps axioms SK1-3 and substitute SK4S with [8]

1Here and throughout we use the base of natural logarithms.
Entropy thus defined is then measured in natural units — nats, rather
than bits. To convert, note that 1 bit = 0.693 nats.

SK4R Rényi additivity: Rq(A, B) = Rq(A|B) + Rq(B)
= Rq(B|A) + Rq(A), where Rq(B|A)
= f −1(

∑
i ρ

A
i (q) f (Rq(B|A = Ai ))).

Here, ρA
i (q) = (pi )q/

∑
j (p j )q is the escort (or zooming)

distribution [23,24] and f is an arbitrary invertible and posi-
tive function on [0,∞). Corresponding axiomatics is stringent
enough to fix uniquely f (x) to be either f (x) = e(1−q)x (for
q �= 1) or f (x) = x (for q = 1), and yields the Rényi entropy

Rq(P) = log
∑

i pq
i

1 − q
,

as the unique solution.
Similarly, for the case of nonadditive THC entropy [9,10]

one can augment axioms SK1-3 with [25,26]

SK4T Tsallis additivity: Sq(A, B) = Sq(B|A) + Sq(A)
+(1 − q)Sq(B|A)Sq(A) where Sq(B|A)
= ∑

i ρ
A
i (q)Sq(B|A = Ai ),

where ρA
i (q) is again the escort distribution. The unique

solution of this axiomatic system gives the THC entropy

Sq(P) =
∑

i pq
i − 1

1 − q
.

In parallel with this there has been several successful
attempts to classify entropic functionals according to various
desirable information-theoretic properties. Here, we should
mention, e.g., the class of strongly pseudoadditive entropies
(SPA) based on generalization of Rényi entropy axioms for
nonadditive entropies [27], Z-entropies based on group prop-
erties of the entropic functionals [28], or classification accord-
ing to the asymptotic scaling leading to (c, d)-entropies [13]
and ensuing generalizations [29].

As for the second question, there has been notable progress
in recent years in the classification of entropic functionals
satisfying SJ axioms [21,22,30]. Our aim here is to employ
generic arithmetical principles to generalize, in a logically
sound way, the SK axiomatic scheme. To this end we will
use the framework of Kolmogorov-Nagumo (KN) arithmetics
[31,32], KN quasiarithmetic means [33–35], and escort dis-
tributions [23,24]. Ensuing class of admissible entropies will
be compared with the class of entropies solving SJ axioms—
Uffink class. We will see that both classes not only coincide,
and hence bolster the entropic parallelism between informa-
tion theory and statistical inference, but there also is a close
parallelism between the two axiomatic schemes.

The rest of the paper is organized as follows. In Sec. II, we
briefly summarize the concept of generalized arithmetics and
outline the key role that Kolmogorov-Nagumo functions play
in this context. In Sec. III, we introduce the class of Shannon-
Khinchin axioms based on the Kolmogorov-Nagumo gener-
alized arithmetics and derive the generic class of entropic
functionals satisfying these axioms. In Sec. IV, we show
the equivalence of the aforementioned class and the Uffink’s
entropic class. This will, in turn, cast new light on the rela-
tionship between SK and SJ axiomatic schemes. This will in
turn re-establish the entropic parallelism between information
theory and statistical inference. The last section is devoted to
some further observations, remarks, and conclusions.
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II. GENERALIZED ARITHMETICS AND KOLMOGOROV
AND NAGUMO FUNCTIONS

Let us now introduce the concept of generalized arith-
metics. From abstract algebra it is known that arithmetic
operations can be defined in various ways, even if one assumes
commutativity and associativity of addition and multiplica-
tion, and distributivity of multiplication with respect to addi-
tion [31,32]. In consequence, whenever one encounters “plus”
or “times” one has certain flexibility in interpreting these
operations. A change of realization of arithmetic, without
altering the remaining structures of equations involved, plays
an analogous role as a symmetry transformation in physics.

Let us considering a bijection f −1 : M �→ N ⊂ R, where
M is some set. The map f allows us to define ad-
dition, subtraction, multiplication, and division in M,
as follows:

x ⊕ y = f ( f −1(x) + f −1(y)) ,

x 	 y = f ( f −1(x) − f −1(y)) ,

x ⊗ y = f ( f −1(x) f −1(y)) ,

x � y = f ( f −1(x)/ f −1(y)) .

(1)

One can readily verify the following standard properties:
(1) associativity (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), (x ⊗ y) ⊗ z =
x ⊗ (y ⊗ z), (2) commutativity x ⊕ y = y ⊕ x, x ⊗ y = y ⊗ x,
(3) distributivity (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z). For a future
convenience we will explicitly affiliate with the arithmetic
operations ⊕,	,⊗, and � the symbol of the function f , so
for instance, we will write ⊕ f instead of ⊕, etc.

This generalized arithmetical structure motivated Kol-
mogorov and Nagumo [33,34] to formulate the most general
class of means, so-called quasilinear means, that are fully
compatible with the usual Kolmogorov postulates of probabil-
ity theory [36], with interesting applications in thermostatis-
tics [35].

The aforementioned generalized arithmetics can be ex-
tended quite naturally to real multivariate functions. For in-
stance, for a function of two variables G(x, y) it can be defined
as

G f (x, y) ≡ f (G( f −1(x), f −1(y)).

Let us state in this connection a couple of important conse-
quences that can be easily verified:

(i) when z = x ⊗ f y, then g(z) = g(x) ⊗g· f g(y),
(ii) x ⊕ f y = x ⊗ f ·log y . Here, by f · g we implicitly mean

the composition of two functions. Particularly important for
our purposes will be the so-called q-deformed algebra where

f (x) ≡ fq(x) = logq(x) = (x1−q − 1)

(1 − q)
.

Ensuing operation ⊗ fq is traditionally denoted as q-addition
and the notation ⊕q is often used instead.

(iii) For the generalized product ⊗ f the function f is not
determined uniquely. In fact, there exists a two-parametric

class of functions fa,b, so that f (x) �→ fa,b(x) = f (axb),
which yield the same product. Indeed,

x ⊗ fa,b y = f (a[( f −1(x)/a)1/b( f −1(y)/a)1/b]b)

= x ⊗ f y . (2)

This result will be particularly important in Sec. III.

III. KOLMOGOROV-NAGUMO GENERALIZATION
OF SHANNON-KHINCHIN AXIOMS

Let us now generalize the Shannon-Khinchin (SK) entropic
axioms in terms of the Kolmogorov-Nagumo arithmetics in
the following way:

SK1 Continuity: Entropy is a continuous function with
respect to all its arguments, i.e., S(P) ∈ C.

SK2 Maximality: Entropy is maximal for uniform distribu-
tion, i.e., maxP S(P) = S(Un), where Un = {1/n, . . . , 1/n}.

SK3 Expandability: Adding an elementary event with
probability zero does not change the entropy, i.e.,

S(p1, . . . , pn, 0) = S(p1, . . . , pn).

SK4 Composability: Joint entropy for a pair (A, B) of
random variables can be expressed as

S(A, B) = S(A|B) ⊗ f S(B),

where S(A|B) is conditional entropy satisfying consistency
requirements I), II) (see below).

In passing, we can observe from the two illustrative ax-
iomatic schemes SK4R and SK4T that viable entropic func-
tionals should obey two natural conditions:

I) For two independent random variables A and B the joint
entropy S(A, B) should be composable from entropies S(A)
and S(B), i.e., S(A, B) = F (S(A), S(B)).

II) Conditional entropy should be decomposable into
entropies of conditional distributions, i.e., S(B|A) =
G(PA, {S(B|A = Ai )}n

i=1).
Here, F and G are functionals to be determined shortly. The

motivation for these two conditions is taken from the original
SK axioms for Shannon, Rényi, and Tsallis entropy. They all
are composable from marginal entropies if the subsystems are
independent and they all are decomposable into conditional
entropies and (escort) marginal distributions.

Let us also note that the conditional entropy S(A|B) auto-
matically fulfills several important properties:

(a) Entropic Bayes’ rule: S(A|B) = S(B|A) � f S(B) ⊗ f

S(A),
(b) Generalized Gibbs inequality: S(A|B) � S(A).
The Bayes rule is easy to show from the interchangeability

of S(A, B) = S(B, A) and by using the definition of condi-
tional entropy. The second law of thermodynamics is easy to
show because S(A, B) � f S(B) � S(A).

Moreover, we can define the mutual information as

I (A, B) = S(A, B) � f
(
S(B) ⊗ f S(A)

)
.

The composition requirement I) is equivalent to I (A, B) =
f (1) for independent random variables. We might note that
the requirement I) is equivalent to strict composability axiom
introduced in Ref. [28].
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Let us now prove the following theorem:
Theorem 1. The most general class of entropic functionals

S satisfying the aforestated axioms SK1-4 can be expressed as

S f
q (P) = f

⎡
⎣

(∑
i

pq
i

)1/(1−q)
⎤
⎦, (3)

where f (x) is a generic strictly increasing function defined on
x ∈ [0,∞).

In passing it is useful to note that Eq. (3) can be equiva-
lently expressed as

S f
q (P) = f

[
expq

(∑
i

pi logq

(
1

pi

))]
, (4)

where expq(x) = [1 + (1 − q)x]1/(1−q). Equation (4) is a sim-
ple consequence of the fact that

expq

∑
i

pi logq

(
1

pi

)

=
(

1 + (1 − q)
∑

i

pi
p1−q

i − 1

1 − q

)1/(1−q)

=
(∑

i

pq
i

)1/(1−q)

.

Proof of Theorem 1: First, we see that the functional has to
be symmetric in all components of P = {pi}. This is because
by relabeling points in a set of elementary events should not
change the information about the underlying stochastic pro-
cess. Consequently, S must be symmetric. Second, the entropy
of the uninform distribution S(n) ≡ S(1/n, . . . , 1/n) can be
obtained from composability axiom. To this end we denote the
random variable with uniform distribution as Unm = UnUm.
We abbreviate S(Un) as S(n). Then [see Eq. (1)]

S(nm) = S(n) ⊗ f S(m) ⇒ S(n) = f (n) .

Here, we have explored the freedom in the definition of the
function f [see Eq. (2)] and scaled back the generic solution
S(n) = f (nx ), x ∈ R to the solution S(n) = f (n).

Third, let us take two random variables A and B with
distributions PA = {pi}n

i=1 and PB = {q j = 1/m}m
j=1. Let us

also introduce the so-called Daróczy mapping [27,37], i.e.,
S �→ f −1S. After this mapping we get multiplicative entropy.
From the definition of S(A|B) we then obtain that

m f −1S(p1/m, . . . , pn/m) = f −1S(p1, . . . , pn) , (5)

since the conditional entropy is for each random variable just
the usual unconditional one. Therefore, entropy must be a first
order homogenous, symmetric function. According to [38] the
solution of homogeneous equation (5) can be (under mildly
restrictive assumptions) expressed as

f −1S(x1, . . . , xn) = b
n∏

i=1

xai
i where

∑
i

ai = 1 . (6)

Here, ai and b are constants to be specified later. However, this
solution is not symmetric in its variables. This can be achieved
by symmetrization of Eq. (6) that can be then rewritten in the

following form:

f −1S(p1, . . . , pn) = b
∑

{ j1,..., jn}∈σ (n)

n∏
i=1

p
ajk
i .

This expression can be equivalently recast to

f −1S(p1, . . . , pn) = b
n∏

i=1

⎛
⎝∑

ki

pai
ki

⎞
⎠ ,

that can further be rewritten as

f −1S(p1, . . . , pn) = b
n∏

i=1

⎛
⎝∑

ki

pai
ki

⎞
⎠

c/(1−ai )

, (7)

which still keeps the entropy to be a homogeneous function
of the first order. The parameter c is a free parameter that
will be determined later. Note that this representation is also
mentioned in [39].

Let us now show that in order to fulfill the decomposability
axiom II), only one a j must be nonzero. To this end, we
explicitly express f −1S(A|B) as

f −1S(A|B) =
(∑

k1,l1
(rk1|l1 ql1 )a1

)c/(1−a1 )

(∑
l1

qa1
l1

)c/(1−a1 )

× · · · ×
(∑

kn,ln
rkn|ln qan

ln

)c/(1−an )

(∑
ln

qan
ln

)c/(1−an ) .

This can be more explicitly rewritten as

f −1S(A|B) =
⎛
⎝∑

l1

ρB
l1 (a1)

∑
k1

(rk1|l1 )a1

⎞
⎠

c/(1−a1 )

× · · · ×
⎛
⎝∑

ln

ρB
ln (an)

∑
kn

(rkn|ln )an

⎞
⎠

c/(1−an )

,

where ρB
l (a) = qa

l /
∑

l qa
l is the escort distribution [23,24].

This expression is an unconditional entropy of the conditional
distribution only if one of a j is nonzero and the remaining
ones are zero. With this we get that

f −1S(A|B) =
(∑

l

ρB
l (a)

∑
k

(rk|l )a

)1/(1−a)

=
{∑

l

ρB
l (a)[S(A|B = bl )]

1−a

}1/(1−a)

,

which directly implies the decomposability function G. With
this result Eq. (7) boils down to

f −1S(p1, . . . , pn) = b

(∑
k

pa
k

)c/(1−a)

= b

[
expa

(∑
k

pk loga
1

pk

)]c

,
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which by Eq. (2) is equivalent to Eq. (3) provided we identify
a with q.

The function f must be must be strictly monotonic because
in the proof we needed inverse of f , and must be strictly
increasing because S has by SK2 the maximum for uniform
distribution [and not, for instance, for P = (1, 0, 0, , 0)]. This
concludes the proof. �

Let us finally note that the original axiom SK4S is recov-
ered from SK4 by taking f (x) = ln x and the decomposability
function G(xi, yi ) = ∑

i xiyi.

IV. EQUIVALENCE WITH SHORE-JOHNSON AXIOMS

Let us now turn our attention to MEP and corresponding
consistency requirements. The MEP can be formulated in the
following way [4,5]:

Proposition (Maximum entropy principle). Given the set of
linear constraints

∑
i piE

(k)
i = 〈E (k)〉, the least biased estimate

of the underlying distribution P = {pi} is obtained from max-
imization of the entropic functional S(P) under normalization
constraint and set of constraints 〈E (k)〉, i.e., by maximizing the
Lagrange functional

S(P) − α

N∑
i=1

pi −
ν∑

k=1

β (k)
N∑

i=1

piE
(k)
i . (8)

In Eq. (8) the index “i” runs over all possible states, i.e.,
over all elements from the set of possible outcomes associated
with a given random system.

Shore and Johnson formulated the set of consistency re-
quirements that the MEP should satisfy [6,7]:

SJ1 Uniqueness: the result should be unique.
SJ2 Permutation invariance: the permutation of states

should not matter.
SJ3 Subset independence: It should not matter whether one

treats disjoint subsets of system states in terms of separate
conditional distributions or in terms of the full distribution.

SJ4 System independence: It should not matter whether one
accounts for independent constraints related to independent
systems separately in terms of marginal distributions or in
terms of full system.

SJ5 Maximality: In absence of any prior information, the
uniform distribution should be the solution.

Let us now state without proof the theorem that provides
the most general class of admissible entropic functionals
consistent with the aforestated SJ axioms:

Theorem 2 (Uffink theorem). The class of entropic func-
tionals S satisfying the axioms SJ1-5 can be expressed as

S f
q (P) = f

⎡
⎣

(∑
i

pq
i

)1/(1−q)
⎤
⎦, (9)

for any q > 0 and for any strictly increasing function f .
In particular, the Uffink theorem shows that members of

this entropic class admit representation in the form given
by Eq. (3), and hence the SK and SJ axiomatic systems are
equivalent. A detailed proof of Theorem 2 can be found in
Ref. [21].

Let us now discuss some salient results of the proof. First
two axioms assert that the entropic functional must be a

symmetric functional in the probability components. The third
axiom determines the function in the sum form, i.e., in the
form S(P) = f (

∑
k g(pk )), with g being an arbitrary increas-

ing concave function. The fourth axiom gives us the final form
of the entropic functional (without specifying the range for
q’s), and finally the fifth axiom guaranties that q > 0. Note
that the class obtained from Theorem 1 and epitomized by
Eq. (3) is the same as the class given by Eq. (9) from the
Uffink theorem. Therefore, we immediately see that in axiom
SK4 the requirement II) (decomposability) corresponds to
axiom SJ3, while requirement I) (composability) corresponds
to axiom SJ4. Moreover, the interpretation of f and q is now
clear. The function f determines the scaling of the entropy
for uniform distribution (as it is independent of q), see also
[29], while the parameter q determines the correlations in the
system through MaxEnt distribution, which can be expressed
as (see Ref. [21])

pi = 1

Zq
expq (−β�Ei ) ,

Zq =
∑

i

[expq (−β�Ei )] ,

β = β

q f ′(Zq) Zq
,

where �Ei = Ei − 〈E〉. The connection of the q parameter
with correlations can be understood from the MaxEnt distribu-
tion of a joint system composed from two disjoint subsystems.
Let us denote the MaxEnt distribution of the joint system as
pi j and the MaxEnt distribution of the subsystems as ui and v j .
In [21] it was shown that the MaxEnt distributions involved
fulfill the composition rule that can be formulated as

1

pi j Uq(P)
= 1

ui Uq(U )
⊗q

1

v j Uq(V )
, (10)

where x ⊗q y = [x1−q + y1−q − 1]1/(1−q)
+ (with x, y > 0) is the

so-called q-product [40], and Uq(P) = (
∑

pq
i j )

1/(1−q), and
similarly for U and V . For q → 1, Eq. (10) reduces to pi j =
uiv j . The reverse is true as well. By re-expressing Eq. (10) in
terms of escort distributions Pi j (q), Ui(q), and Vj (q) (associ-
ated with pi j , ui, and v j , respectively) as

Pi j (q)

pi j
= Ui(q)

ui
+ Vj (q)

v j
− 1 , (11)

and using pi j = uiv j , we obtain Ui(q) = ui, Vk (q) = vk (for
all i, k). Latter have a unique solution [23] q = 1. This implies
that q parametrizes correlations between system’s subsystems
since only for q = 1 the Pearson correlation coefficient is
zero.

As discussed, e.g., in [30], a monotonic function of an
entropic functional gives the same MEP distribution and
redefines only the Lagrange multipliers but does not change
the actual form of the distribution. This can be interpreted as
a sort of gauge invariance S(P) �→ f (S(P)). Finally, let us
mention that the q = 1 case corresponds to uncorrelated MEP
distributions for disjoint systems, for which we get a stronger
version of system independence axiom [21]:
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SJ4SSI Strong system independence: Whenever two sub-
systems of a system are disjoint, we can treat the subsystems
in terms of independent distributions.

The solution is then

S f
1 (P) = f

(
exp

[∑
i

pi log (1/pi )

])
,

which is equivalent (through Daróczy mapping) to Shannon
entropy—as expected. In this case, the composition rules in
Eqs. (10) and (11) reduce to the composition rule of indepen-
dent systems, i.e.,

pi j = uiv j .

On the other hand, if we require that the entropy must be in
the trace form [13,28], i.e., S(P) = ∑

i g(pi ), then we get that
f (x) = logq(x) and we end up with the class of THC entropies

S
logq
q (P) =

∑
i

pi logq (1/pi ) .

V. CONCLUSIONS

Here we have reformulated Shannon-Khinchin axioms of
information theory in terms of generalized arithmetics of
Kolmogorov and Nagumo. Apart from the axiomatic structure
itself, the novelty of this work is in showing that the general
class of entropic functional satisfying such SK axioms is
identical with the Uffink class of entropies. Since the Uffink
class is known to represent the general solution of Shore-
Johnson axioms of statistical-inference theory, both axiomatic
systems have to be equivalent. We have shown that Uffink

functionals S f
q are characterized by the Kolmogorov-Nagumo

function f and a positive parameter q, where f determines
a scaling behavior of entropy for uniform distributions and
q quantifies correlations of MEP distributions for disjoint
subsystems. In passing, we can note that the form (4) of the
class S f

q can also be found in the literature under the name
strongly pseudoadditive (SPA) entropies [41] or Z-entropies
[28].

The outlined entropic parallelism between information
theory and statistical inference can serve as a good starting
point for further research. In this context it would be particu-
larly interesting to investigate how robust the aforementioned
equivalence between the two axiomatic systems is and assess
the extent and consequences resulting from a prospective
breakdown. One might instigate such a breakdown by work-
ing, e.g., with more general constraints (nonlinear constraints
or scalings as in noninductive inference) or by relaxing some
of the presented axioms. In fact, it is well known that many
complex systems do not satisfy SK axioms, not even in
our generalized sense [13,29,42]. By relaxing some of these
axioms, one might gain further maneuvering space allowing
to accommodate entropies of such systems as path-dependent
and super-exponential systems or complex systems with non-
trivial constraints.
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