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Emergence of a bicritical end point in the random-crystal-field Blume-Capel model
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We obtain the phase diagram for the Blume-Capel model with the bimodal distribution for random crystal
fields, in the space of three fields: temperature (T ), crystal field (�), and magnetic field (H ) on a fully connected
graph. We find three different topologies for the phase diagram, depending on the strength of disorder. Three
critical lines meet at a tricritical point only for weak disorder. As disorder strength increases there is no tricritical
point in the phase diagram. We instead find a bicritical end point, where only two of the critical lines meet on a
first-order surface in the H = 0 plane. For intermediate strengths of disorder, the phase diagram has critical end
points along with the bicritical end point. One needs to look at the phase diagram in the space of three fields to
identify various such multicritical points.
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I. INTRODUCTION

Multicritical points typically occur in systems described by
three or more thermodynamic fields. In these systems, there
can be critical points that can be reached only by fixing three
or more thermodynamic parameters. Hence the full phase dia-
gram of such systems is multidimensional [1–3]. Such critical
points are ubiquitous in nature, in systems like binary fluids
[4,5], metamagnets [6], alloys of magnetic and nonmagnetic
materials [7], He3-He4 mixtures [8], quantum metals [9],
polymer collapse [10], and quantum chromodynamics [11].
Among them the tricritical point (TCP) is one of the most
widely studied and well-understood multicritical points [12].
Solvable models which display higher-order critical points are
useful in outlining the topology of the phase diagrams [13]. In
this context, the mean-field Blume-Capel model [14,15] has
been very useful and is one of the most well-studied models.
It is the simplest model to exhibit a TCP. TCP is an example
of a multicritical point, which is a point of confluence of three
critical lines in the space of three fields (T,�, H ). Here T and
H are the temperature and external field, respectively, and �

is a nonordering field, known as the crystal field [12,16]. In
the (T,�) plane (with H = 0), TCP shows itself as a point
where the critical line ends in a first-order line.

Introducing randomness in bond strength or field strength
is known to affect the phase diagram. For example, in two
dimensions it was shown that even an infinitesimal amount of
random-field disorder can change a first-order transition to a
continuous transition or can destroy it altogether [17,18]. In
dimensions higher than two, similar behavior is expected for
strong disorder [19].

Blume-Capel model was introduced as an extension of
Ising model where in addition to ±1, spin at each site can
also be 0. It has an extra term to take care of crystal field
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anisotropy [14,15]. It was originally used to explain the
first-order magnetic transition in materials like UO2 [20].
Since then the model has found application in explaining
the behavior of wide range of physical systems like He3-He4

mixtures [8], ternary fluids [21], semiconductor alloys [22],
phenomena of inverse melting [23], and so on. Study of these
systems in random media is modelled by the Blume-Capel
model with random crystal field [24]. The phase diagram of
the model is known to change under the effect of disorder.
In particular, mean-field random crystal field Blume-Capel
model has been studied extensively using many different
techniques like mean-field approximation [25], effective field
theories [26], renormalization group [27,28], Bethe lattice
[29], pair approximation method [30], replica [31,32], and
large deviations [33]. All these work have focused on the
(T,�) plane. These different methods do not agree with each
fully in the prediction of the phase diagram, but they all
report that the first-order line and hence the TCP disappears
for higher strengths of disorder. Some of them [25,31,32]
predicted different topologies of the phase diagram depending
on the strength of disorder, with multicritical points like
critical end points, the ordered critical point, and the double
critical point.

Since TCP is a point of confluence of three critical lines, it
is important to look at the effect of disorder on the other two
lines meeting at the TCP. Hence, we revisit the problem and
obtain the phase diagram in the space of three fields, on a fully
connected graph by solving the model exactly, using large
deviation theory [34]. For the Blume-Capel model, the mean-
field solution is known to give the correct values of the critical
exponents at the TCP in three dimensions [12] and predicts the
correct topology of the phase diagram for d � 2, in the pure
case [35,36]. Similarly, we expect the change in topology of
the phase diagram as a function of disorder strength derived
in this paper to be robust and not restricted to mean-field
solutions. Note that the Landau approach cannot be used when
the external field H �= 0, as the value of the magnetization is
finite along the critical lines. We hence have to make use of
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the full free-energy functional even to determine the critical
lines.

We find that the TCP persists for only very weak disorder
strengths. As the disorder strength increases, the TCP van-
ishes and a different multicritical point, a bicritical end point
(BEP) emerges where only two of the three critical lines end
on a first-order surface [37–39]. This point has been wrongly
reported as an ordered critical point in earlier studies in the
(T,�) plane [32]. BEP has been comparatively less observed
and studied in the literature. Two well-known examples where
BEP has been observed are as follows: anisoptropic con-
tinuous spin systems as an end point of the spin flop line
[37] and in spin-3/2 systems with crystal field [39,40]. We
also find that the model exhibits critical end points (CEP)
for intermediate strengths of disorder as reported in earlier
studies [32]. Critical end point is a critical point where a line
of second-order transitions terminates at a line of first-order
transitions [41]. Alternately, it can also be defined as a point
where two phases become critical in the presence of one or
more ordered phases, known as the spectator phases [42], in
systems with multiple phases. We thus find three different
phase diagrams depending on the strength of disorder. Recall
that for the pure Blume-Capel model, the phase diagram has
three critical lines (λ, λ+, λ−) which all meet at the tricritical
point [12]. In the mean-field limit, all the critical points along
these three lines fall in the Ising universality class. Along the
λ line there is a spontaneous symmetry breaking transition
from state with magnetization m = 0 to a state with |m| �= 0 in
the (T,�) plane. Switching on the magnetic field introduces
bias toward the m+ or m− state, depending on the sign of
the magnetic field. This results in the coexistence of m = 0
state with m+(m−) states for low H+(H−), respectively. These
two coexistence surfaces meet along a triple line in the (T,�)
plane. λ+/λ− lines separate this coexistence surface from the
ferromagnetically ordered phases with opposite magnetiza-
tion. Hence the pure Blume-Capel phase diagram has only one
ferromagnetic state and one paramagnetic state in the (T,�)
plane.

We find that for weak disorder, the three critical lines meet
at a tricritical point [see Fig. 1(a)]. But a new ferromagnetic
state appear now at very low temperature for all p > 0, which
is separated from usual ferromagnetic state via first-order
quadruple line, that ends in a CEP. The value of magnetization
in this phase depends on the strength of disorder and increases
with increasing disorder strength.

For intermediate disorder strengths, the two critical lines
with H �= 0 meet at a BEP and the line of continuous tran-
sition in the (T,�) plane (known as λ line) meets a line of
first-order transition at a CEP. CEP and BEP are connected
via a quadruple line, along which the four phases coexist [see
Fig. 1(b)]. The quadruple line separates two ferromagnetic
phases. This happens due to abrupt change in the number
of ±1 spins across this line. Unlike the new ferromagnetic
state that occurs at low temperature, entropy is important for
this ferromagnetic state as it occurs at a relatively higher
temperature and hence entropically it becomes useful to have
more spin particles. The system hence has three ferromagnetic
and one paramagnetic phase in this range of disorder.

For strong disorder, the BEP persists but CEP vanishes and
the λ line continues to � → ∞ [see Fig. 1(c)]. This phase

FIG. 1. Schematic phase diagram for different strengths of dis-
order: (a) 0 < p � p1, (b) p1 < p � p2, and (c) p2 < p � 0.5. The
value of p represents the strength of disorder (there is no disorder
for p = 0 and the disorder is maximum for p = 0.5). Solid lines
represent lines of critical points and dotted lines represent first-order
transition lines. Solid dot represents TCP, solid square represents
CEP, and star represents BEP. Wiggled lines are to show the infinite
length of wings. λ represents the line of critical points in H = 0 plane
and λ+ and λ− represent the critical lines for H > 0 and H < 0,
respectively. The value of p1 = 0.022 and p2 = 0.107875 for the
model studied in this paper.

has the same two ferromagnetic phases as the weak disorder
case and a paramagnetic phase. We will study these three
topologies in this paper.

The plan of the paper is as follows: In Sec. II we discuss
the Blume-Capel model in the presence of external field and
derive the equations for critical lines in the (T,�, H ) space.
In Sec. III we study the phase diagram for strong disorder and
intermediate disorder by using the full free-energy functional.
We also look at the magnetization, density, and magnetic
susceptibility near the BEP to understand the nature of BEP.
In Sec. IV we briefly discuss the case of weak disorder and in
Sec. V we show that a Landau expansion of the free-energy
functional cannot describe the BEPs and CEPs of this model.
We conclude with a short discussion in Sec. VI.

II. MODEL

We study the Blume-Capel model with random crystal field
disorder in the presence of external field on a fully connected
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graph. The Hamiltonian can be written as

H (CN ) = − 1

2N

( ∑
i

si

)2

−
∑

i

�is
2
i − H

∑
i

si, (1)

where �i represents the quenched random crystal field at
each site, H is the external field, and si are spin − 1 random
variables which can take ±1, 0 values. There are two order
parameters: magnetization, m = s̄, and density of ±1 spins,
q = s̄2. These are obtained by taking a quenched average of
the random variables s and s2, respectively [43]. We draw
random crystal fields from bimodal distribution of the kind:

P(�i ) = pδ(�i − �) + (1 − p)δ(�i + �). (2)

Since p = 0 or 1 will imply no disorder and p = 1/2 would
be the most random case, it is enough to look for 0 � p � 0.5.

It can be shown that the probability of a configuration CN

satisfies large deviation principle (LDP) in the presence of
random crystal field disorder [33,34,44], i.e.,

P

(
CN :

∑
i

si = x1N ;
∑

i

s2
i = x2N

)
∼ exp[−NI (x1, x2)].

(3)
The rate function I (x1, x2) for bimodal random crystal

field disorder in the absence of external field was calculated
recently using tilted LDP [33]. Using the same method, the
rate function in the presence of external field is as follows:

I (x1, x2) = x1 tanh−1
(x1

x2

)
+ x2

[
ln

z

2 cosh
(

tanh−1 x1
x2

)]

−p ln(1 + zeβ
�

) − (1 − p) ln(1 + ze−β
�

)

+p ln(1 + 2eβ
�

) + (1 − p) ln(1 + 2e−β
�

)

−βx2
1

2
− βHx1, (4)

where z is the solution of the equation:

x2

z
= peβ�

1 + zeβ�
+ (1 − p)e−β�

1 + ze−β�
. (5)

In the limit, N → ∞, for a given β, �, and H , the values
of x1 and x2 that minimize I (x1, x2) will give the value of
magnetization (m) and density (q). The minima of the rate
function in the (x1, x2) plane gives the free energy for a given
β(= 1/T ), �, and H . Hence the values of x1 and x2 which
minimize I (x1, x2) are the value of m and q, respectively, for
a given set of thermodynamic variables. Minimizing I (x1, x2)
with respect to x1 and x2 results in the following equations for
m and q:

tanh[β(m + H )] = m

q
, (6)

z = 2√
1 − m2/q2

, (7)

where z is related to q via the Eq. (5), i.e.,

q

z
= peβ�

1 + zeβ�
+ (1 − p)e−β�

1 + ze−β�
. (8)

In Sec. II A we will recap the results in the absence of
external field and then build the equations for phase diagram
in (T,�, H ) space in Sec. II B.

A. Two-field phase diagram in the (T,�) plane

For H = 0, the phase diagram has been studied earlier
[32,33]. We will briefly recap those results here: Assuming m
to be small the fixed-point equations, Eqs. (6) and (7) can be
linearized around m = 0. This gives q = 1/β and z = 2 at the
critical point. Substituting these values into Eq. (8) gives the
equation for a line of continuous transition in the H = 0 plane.
The line of continuous transition in H = 0 plane is known as
the λ line and satisfies the following equation:

5 − 4β = 2(βp − 1)eβ� + 2(β − βp − 1)e−β�. (9)

This is valid only when the higher-order terms in the ex-
pansion can be ignored. Taking q = (1 + ε)/β and expanding
in powers of ε we find that the coefficient of linear term in ε

becomes zero when

12β − 17+(3β−10) cosh(β�)−3β(1 − 2p) sinh(β�) = 0.

(10)
Solving Eq. (9) and (10) together we get the condition for

the break-down of the linear approximation as

cosh(β�) = 12β − 19

8
. (11)

Hence for a given �, there will be either no transition or a first-
order transition beyond the value of β that satisfy Eq. (11).

The value of (β,�) [or, equivalently, (T,�)] which satisfy
Eqs. (9) and Eq. (11) simultaneously gives the location of TCP
for a given p. It was found in Ref. [33] that beyond pc =
0.0454 the two equations cannot be satisfied simultaneously
and hence there is no TCP, and the λ line in the (T,�)
plane extends to � → ∞. This treatment is equivalent to
Taylor expanding the rate function to get an equivalent Landau
free-energy functional, which we will discuss in Sec. V.

B. Three-field phase diagram in (T,�, H ) space

Let us now take H �= 0 and look for the critical points in
the full (T,�, H) space. We know that at the TCP there are
two other continuous lines with H �= 0 which meet the λ line.
We call these, depending on the value of H, λ+ and λ−.

We wish to understand the effect of disorder on the two
critical lines λ+ and λ−. We will focus on the effect of disorder
on these two critical lines in this paper. Along these lines, m �=
0 and one cannot look for continuous transition by expanding
the free-energy functional like we did in the Sec. II A.

Note that at the fixed point the value of m and q are related
via Eq. (6). Since we are only interested in the fixed points, at
fixed points q is completely determined by m, and hence the
rate function can be replaced by a one parameter functional
f̃ (m), which comes out to be

f̃ (m) = βm2

2
− p log[1 + 2eβ

�

cosh β(m + H )]

− (1 − p) log[1 + 2e−β
�

cosh β(m + H )]

+ p log(1 + 2eβ
�

) + (1 − p) log(1 + 2e−β
�

). (12)
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From this we get the following self-consistent equation for m:

m = 2 sinh β(m + H )

[
peβ

�

1 + 2eβ
�

cosh β(m + H )

+ (1 − p)e−β
�

1 + 2e−β
�

cosh β(m + H )

]
. (13)

Since m �= 0 along the λ+ and λ− lines, expanding f̃ (m)
in powers of m to get a Landau free-energy functional will
not give the correct critical behavior. But in general along a
critical line, the first three derivatives of the free-energy func-
tional with respect to the order parameter should be zero. This
is because between two successive minimas, there must exist
two points of inflexion, i.e., f ′′ = 0 and hence also a point
where f ′′′ = 0. Hence at the continuous transition, all three
derivatives should vanish simultaneously. Hence to study λ+
and λ− critical lines we equate the first three derivatives of
f̃ (m) with respect to m to zero [12] (and fourth derivative
should be greater than zero). This is true also for the λ line, as
for H = 0 and m = 0 the third derivative is trivially zero and
second derivative gives the same condition as Eq. (9).

In general, equating second and third derivative of f̃ (m) to
zero we get the following two conditions, respectively:

p(2x2 + xy)

(1 + 2xy)2
+ (1 − p)(2 + xy)

(x + 2y)2
= 1

2β
, (14)

p(x − 8x3 − 2x2y)

(1 + 2xy)3
+ (1 − p)(x2 − 8 − 2xy)

(x + 2y)3
= 0, (15)

here x = exp(β�) and y = cosh β(m + H ). For p �= 0, the
two equations are quartic and hexic in x.

For p = 0, they reduce to the following simpler equations:

2 + xy

[x + 2y]2
= 1

2β
, (16)

x2 − 8 − 2xy

[x + 2y]3
= 0. (17)

Solving these equations we get

y = cosh β(m + H ) = β − 2√
4 − β

, (18)

x = eβ
�

= 4√
4 − β

. (19)

Hence, we reproduce the classic results of Blume, Emery, and
Griffiths [45]: There is a line of critical points for 4 � β � 3
for H > 0 and another for H < 0. Both critical lines extend
to � → ∞. These two lines enclose two first-order surfaces
which meet in the H = 0 plane along a triple line (line with
three-phase coexistence). Above β = 4 there is no value of x
and y that can satisfy Eqs. (16) and (17) simultaneously. The
magnetization along these two critical lines is not zero and is
equal to

m = ±
√

β − 3

β
. (20)

This can be used to get the value of H along the critical lines,
which comes out to be

H = ± 1

β
log

(
β − 2 +

√
β2 − 3β√

4 − β

)
− m. (21)

These two critical lines meet in the H = 0 plane at a point with
TTCP = 1/3 and

�
TCP = 0.462098. This is the well-known

TCP in the (T,�) plane for p = 0 [can be obtained by solving
Eq. (9) and (11) simultaneously for p = 0].

For p �= 0, we use Mathematica [46] to solve Eq. (14)
and Eq. (15) simultaneously to get the two critical lines
numerically. To solve the equations for any arbitrary p, we
scan different values of β and � and hence x and solve
Eq. (14) [corresponding to f̃ ′′(m) = 0] exactly to get the
corresponding value of y. Then we substitute the value of
x and y in Eq. (15) to check if (x, y) satisfy the condition,
f̃ ′′′(m) = 0.

For each set of (x, y) that satisfy Eq. (14) and Eq. (15)
simultaneously, we can calculate m using the equation:

m = ±2
√

y2 − 1

[
px

1 + 2xy
+ (1 − p)

y + 2x

]
. (22)

The above equation is derived from Eq. (13) by taking
cosh β(m + H ) = y and exp(β�) = x. The corresponding
value of H along the critical lines can then be calculated by
inverting y = cosh β(m + H ).

For a TCP to exist the two critical lines in the H �= 0
plane should meet in the H = 0 plane at the point where the
second-order line ends in a first-order transition line in the
(T,�) plane. We can put H = 0 and m = 0 in Eqs. (14) and
(15) to directly look for this point. Hence, we separately solve
the two equations for y = 1. Interestingly, we find that for
y = 1, the two equations can be solved simulatenously only
for p � pc(= 0.0454). This is also the value of p beyond
which linear stability analysis breaks down and Eq. (9) is
not valid anymore. More interestingly even though the two
equations can be solved for H = 0 to p � 0.0454, we find that
for p > 0.022, one more solution shows up, with m �= 0 and
H = 0. For p > 0.0454, all possible solutions have m �= 0.

We find that the two critical lines, λ+ and λ− meet λ

line at a TCP for p < 0.022. For p > 0.022, the two critical
lines, λ+ and λ−, meet inside the first-order surface, i.e., at
a point where m �= 0. This point hence is not a TCP but a
BEP. Furthermore, we find that for p > 0.022 there are two
different kinds of phase diagrams possible: For 0.022 < p �
0.1078 the phase diagram is as shown in Fig. 1(b): In H = 0
plane there is a four-phase coexistence line starting from the
BEP which separates the two ordered phases. This line meets
the λ line defined via Eq. (9), giving rise to a CEP. From CEP
there is a three-phase coexistence line which ends in another
CEP. For 0.1078 < p � 0.5 the phase diagram is as shown
in Fig. 1(c): There is a four-phase coexistence line from BEP
which never crosses the λ line defined via Eq. (9) and goes all
the way to T = 0. Moreover, we find that λ+ and λ− critical
lines exist for all strengths of disorder (i.e., for all values of p).
We give more details of these multicritical points and phase
topologies in the next few sections.
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FIG. 2. Concentration (q) vs. � plot for p = 0.2 for different
values of T .

III. STRONG DISORDER AND BEP

For p > 0.022, the two critical lines for H �= 0 do not meet
at the potential TCP point as given by simultaneous solution of
Eqs. (9) and (11). Instead they meet inside the ordered plane.
We find that the two wings are separated by a first-order line
in H = 0 plane, which behaves differently for 0.022 < p �
0.1078 and for 0.1078 < p � 0.5. Hence we will look at these
two regimes separately.

A. 0.1078 < p � 0.5

For this range of p, along the first-order line in the H =
0 plane there is a four-phase coexistence, which ends in
a bicritical end point [see Fig. 1(c)]. This line is a first-
order transition line between two ordered states with different
values of magnetizations. These two different ordered states
are a result of disorder and are not present in the pure system.
At low temperatures, the system prefers ±1 spin states when
� is small. As � increases, due to disorder, states with finite
fraction of zero spins compete with the states with only ±1
spins. This can be seen by looking at the order parameter q as
a function of �, as shown in Fig. 2.

One can see all the transitions clearly by plotting f̃ (m)
in different regions of the phase diagram as shown in Fig. 3
for p = 0.2. From the plots we can see that the H = 0 line
separates the two ordered phases. Along H �= 0 critical lines,
two of these phases become critical and at BEP the two critical
phases coexist.

To understand the nature of transition especially at BEP, we
looked at the magnetization (m) and magnetic susceptibility
(χ ) = ∂m

∂H |H→0. Let us first look at the magnetization as a
function of T in the H = 0 plane for different fixed values of
� (see Fig. 4). We find that for � < �BEP, the magnetization
changes its slope near T = TBEP, the change becomes sharper
as one approaches � = �BEP. For � > �BEP (but close to
�BEP), the magnetization undergoes a first-order transition as
it crosses the quadruple line and then changes slope near T =
TBEP. For � much larger than �BEP, as we increase T there is
no first-order jump or change of slope around T = TBEP. We
also looked at m as a function of � for three different values of
T (see Fig. 5). First-order jump as one crosses the quadruple

FIG. 3. Free-energy functional [ f̃ (m)] as a function of m in
different regions of the phase diagram [see Fig. 1(c)]. We have
taken p = 0.2 for which BEP is at � = 0.596376 and T = 0.2058.
The numbers on the plots refer to the numbers in Fig. 1(c).
In (1) we plot f̃ (m) in the H = 0 plane just below the λ line
(T = 0.27, � = 0.606, H = 0), in (2) just above the λ line (T =
0.27, � = 0.864, H = 0). In (3) we show f̃ (m) at the BEP and one
can see the coexistence of two critical phases (T = 0.2058, � =
0.596376, H = 0) and (4) shows the f̃ (m) along the quadruple co-
existence line (T = 0.1736, � = 0.59735, H = 0). In (5) we show
the functional along the first-order wing surface for positive H (T =
0.166, � = 0.608, H = 0.01) and (6) shows the functional along
the critical line enclosing the wing (T = 0.2012, � = 0.615, H =
0.018). Figures 7 (T = 0.1736, � = 0.586, H = 0) and 8 (T =
0.1736, � = 0.61, H = 0) show the f̃ (m) on two sides of the first-
order line in the H = 0 plane.

line is clear for T < TBEP. For T > TBEP there is no signature
of any transition.

It is hard to deduce the nature of transition at BEP by
looking at the magnetization alone. Hence we studied the
magnetic susceptibility near BEP. First, we look at it for fixed
value of �. As we fix � = �BEP and vary T , we find that there
is an infinite peak at the T of λ transition. There is another
peak at T = TBEP, but this peak is finite (see Fig. 6). This
behavior can be contrasted with the behavior at � > �BEP as
shown in Fig. 7. We find a discontinuity where it crosses the
first-order line and a finite peak near T = TBEP.
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FIG. 4. Magnetization (m) vs. T plot for p = 0.2 for different
values of � for H = 0. At BEP the first-order jump vanishes and
near T = TBEP one sees a change in slope for broad range of �.

We also studied magnetic susceptibility as we vary �

at TBEP. As expected, we found that there is a finite peak
at � = �BEP For T < TBEP, there was instead a first-order
jump in magnetic susceptibility. We scanned a large region
in the (T,�) plane near BEP. We find that the effect of the
presence of BEP is felt even far away from the point. But the
magnetization and susceptibility plots are smooth near BEP
(though susceptibility shows a cusp). It was shown via scaling
arguments [38] that if the two critical lines meeting at BEP
are in the same universality class and are symmetric, then the
singular behavior contribution to the phase boundary cancels
out [38,39]. In our case the two critical lines λ+ and λ− lie in
the Ising universality class. Looking at the three-dimensional
phase diagram it is clear that there is only one phase in the
system in the sense that there exist a path between any two
nonsingular points in the phase diagram which does not have
to encounter a singularity. At BEP the first three derivatives of
f̃ (m) with respect to m are zero and hence the free energy
is not analytic at this point. Hence, we conclude that BEP
is a point of two-phase coexistence and there is no critical
transition from one phase to another at BEP.

As p increases we find that the critical lines enclosing the
wings become flatter and the temperature at which they meet
in H = 0 plane decreases. We have tabulated the range of T
for different p in Table I.

FIG. 5. Magnetization (m) vs. � plot for p = 0.2 for different
values of T .

FIG. 6. Magnetic susceptibility (χ ) vs. T plot at �BEP for p = 0.2.

B. 0.022 < p � 0.1078

In this region the wings meet at BEP as before, but the
first-order quadruple line now intersects the λ line at a critical
end point (we will call this critical end point as CEP1 to
distinguish it from the other critical end point in the phase
diagram at a lower temperature, which we will call as CEP2).
After that it becomes a line of triple point [see Fig. 1(b)].
In Fig. 8, we plot the free-energy functional along this line.
Along the first-order line there is a line of four-phase coexis-
tence between BEP and CEP1 and then there is a usual triple
line between CEP1 and CEP2. As shown in Fig. 8(3), CEP1
itself is neither a quaduple or a triple point. It is instead a point
where a critical state coexists with two ordinary stable phases.
Between CEP2 and 0 temperature there is again a quadruple
line as shown in Fig. 8(5).

The CEP is a point where two phases become critical in the
presence of one or more noncritical spectator phase. At CEP,
f̃ (m) for m = 0 and for m �= 0 should be equal [i.e., f̃ (m =
0) = f̃ (m �= 0)] along with their derivative with respect to m
[ f̃ ′(m = 0) = f̃ ′(m �= 0)]. If this point lies on the λ line, then
we get the condition for CEP. Hence to find CEP, we explore
the λ line for a point where f̃ (m = 0) = f̃ (m �= 0) along
with f̃ ′(m = 0) = f̃ ′(m �= 0). We find that for p > 0.1078 the
condition cannot be satisfied.

In Ref. [32], Santos et al. also reported the presence of
CEP1 and CEP2 for 0.022 < p < 0.074 by looking at the

FIG. 7. Magnetic susceptibility (χ ) vs. T plot for p = 0.2 for
� > �BEP.
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TABLE I. Width of the wing lines for different p. Tlc and �lc

represent the values of T and � for H = 0, where the λ+ and λ−
lines meet and Tuc is the value along the critical line as � → ∞ and
H → ∞.

0.022 < p � 0.5

p Tlc �lc Tuc δT

0.0453 0.28043 0.501175 0.23866 0.0417665
0.05 0.276396 0.50468 0.237473 0.038923
0.07 0.26185 0.518896 0.23245 0.029399
0.1 0.2451 0.538417 0.224972 0.020128
0.2 0.2058 0.596376 0.2 0.0058
0.3 0.17643 0.6490843 0.174978 0.001452
0.4 0.15024 0.69968 0.1499 0.000248
0.5 0.125016 0.7499884 0.12498 0.000036

point of intersection of the λ line with the first-order line.
We find that this topology extends to p = 0.1078. In order
to understand the discrepancy, we have plotted λ line given by
Eq. (9) along with a line parallel to T axis at � = (1 + p)/2
in Fig. 9. The line � = (1 + p)/2 is a good approximation
to the first-order line in the (T,�) plane as we found that the
first-order line is almost parallel to T axis. As shown in Fig. 9,
� = (1 + p)/2 line crosses the λ line once till p ≈ 0.07
and thrice for 0.07 < p < 0.11. For p >= 0.11 there is no
intersection. More careful analysis using the full free-energy

FIG. 8. Free-energy functional f̃ (m) plots for p = 0.0044. (1)
f̃ (m) at the BEP with T = 0.281532, � = 0.500195, H = 0; (2)
f̃ (m) along the first-order line between BEP and CEP1 (T =
0.2777, � = 0.500183, H = 0). (3) f̃ (m) at the CEP1 with T =
0.27585, � = 0.500186, H = 0, (4) shows the functional along the
first-order line from CEP1 to CEP2 (T = 0.2, � = 0.5088, H =
0), and (5) shows functional along the first-order line from CEP2
at T = 0.02 to T = 0 (at T = 0.001667, � = 0.5226, H = 0).

(a) (b)

(c) (d)

FIG. 9. The λ line plotted along with � = (1 + p)/2. (a) p =
0.05, (b)p = 0.07, (c)p = 0.10, and (d) p = 0.11. For p <= 0.07 the
� = (1 + p)/2 line intersect the λ curve only once. For 0.07 < p <

0.11 it intersects it three times and only for p >= 0.11 it is fully on
the left of the curve and hence does not intersect.

functional, gives us the value to be around p = 0.1078. This
matches with the value obtained by equating the free-energy
functional and its first derivative along the λ line, as described
in the previous paragraph.

In Table II we tabulate the location of BEP, CEP1, and
CEP2 for different values of p. The first-order line between
CEP2 and � axis is similar to the first-order line reported
in Sec. III A, which separates the states with almost all ±1
spins from a state with p fraction of ±1 spins. The presence
of CEP1 and a four-phase coexistence line between BEP and
CEP1 is due to the occurrence of a new magnetic state. This
state has more than p fraction of ±1 spins, as it occurs at a
higher temperature, very close to the λ line.

We plot the magnetic susceptibility as a function of � for
T = TBEP and for T = TCEP in the H = 0 plane. As expected,
the first plot shows two peaks: a finite peak at BEP and an
infinite peak at intersection with the λ line (see Fig. 10), while
the second plot shows one peak only at CEP1 (see Fig. 11).

IV. WEAK DISORDER AND TCP

Along the region 0 � p � 0.022 the wings meet the λ line
at the TCP and the phase diagram is similar to the pure case.
Along the first-order line there is three-phase coexistence. As
p increases, the TCP shifts toward smaller T and larger �.
At p = 0.022 the TCP becomes a fourth-order critical point.

TABLE II. Coordinates of the BEP and CEP’s for 0.022 < p <

0.107.

0.022 < p � 0.107578

p TBEP
�

BEP TCEP1
�

CEP1 TCEP2
�

CEP2

0.03 0.2961208 0.489187 0.295197 0.489166 0.03 0.4977229
0.044 0.28153 0.500195 0.27585 0.500186 0.04401 0.521585
0.07 0.26185 0.518896 0.24036 0.519398 0.07099 0.533953
0.107 0.24166 0.542 0.15972 0.547514 0.13975 0.549068
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FIG. 10. Magnetic susceptibility (χ ) vs. � plot for p = 0.044 at
T = TBEP.

Again, at very low temperature there is a CEP similar to the
case discussed in the Sec. III B for all p > 0, which is a state
with p fraction of ±1 spins and occurs at low temperatures on
a complete graph. For 0.017 < p < 0.022, there is re-entrance
region in the phase diagram, as the TCP does not coincide
with the maximum of λ line given by Eq. (9).

V. LANDAU THEORY

In the previous sections we studied the phase diagram by
looking at the full free-energy functional and its derivatives.
Usually, Landau theory is a very useful tool to classify
different kinds of transitions and even though it might not
be accurate quantitatively, it helps in understanding different
possible topologies of the phase diagram. But while very
successful in explaining ordinary critical point, it is not always
possible to find a Landau description for higher-order critical
point, i.e., it is perhaps possible to define a free functional
always, but it might not always be Taylor expandable [47]. In
this section we expand the free-energy functional to check if
we can explain the phase diagrams based on the coefficients
of different powers of the order parameter. For example, the
Ising universality class critical point can be determined easily
by expanding to fourth power in m, provided that the next
higher-order coefficient is positive. For TCP one needs to

FIG. 11. Magnetic susceptibility (χ ) vs. � plot for p = 0.044 at
T = TCEP.

expand to sixth order. A sixth-order Landau theory hence
allows only for ordinary critical points and TCPs. We expect
that we need to keep more terms in the expansion, if we
expect to find higher-order critical points like CEP and BEP
[48]. Hence we expanded the free-energy functional to eighth
power of m. We get

f̃ (m) = a2m2 + a4m4 + a6m6 + a8m8, (23)

where ai’s are Landau coefficients, as follows:

a2 = β

2

[
1 + 2β(p − 1)

2 + eβ�
− 2βpeβ�

1 + 2eβ�

]

a4 = β4

12

[
(−4 + eβ�)(p − 1)

(2 + eβ�)2
+ peβ�(−1 + 4eβ�)

(1 + 2eβ�)2

]

a6 = β6

360

[
(64 − 26eβ� + e2β�)(p − 1)

(2 + eβ�)3
(24)

− peβ�(1 − 26eβ� + 64e2β�)

(1 + 2eβ�)3

]

a8 = β8

20160

[
(1188eβ� − 2176 − 120e2β� + e3β�)(p − 1)

(2 + eβ�)4

+ peβ�(−1 + 120eβ� − 1188e2β� + 2176e3β�)

(1 + 2eβ�)4

]
.

The second-order transition is given by a2 = 0, provided
a4 > 0. Equating a2 = 0 gives us:

1 + 2β(p − 1)

2 + eβ�
= 2βpeβ�

1 + 2eβ�
. (25)

This equation is same as Eq. (9), obtained by linear expan-
sion around m = 0. According to the Landau theory, a new
universality class, namely the TCP occurs when a4 becomes
equal to 0, provided a6 > 0. We find that the condition for
a4 = 0 along the λ line is the same as given by substituting
Eq. (11) into Eq. (9). For p > pc = 0.0454, a4 is never 0
and hence beyond pc the condition for occurence of TCP
cannot be satisfied. For p > 0.022, a6 < 0 at the point where
a4 = 0. Hence sixth-order Landau theory, while sufficient for
p < 0.022, is not enough for p > 0.022.

Hence for a6 < 0, we consider the expansion to eighth
order, since a8 > 0 for all ranges of the parameters. CEP will
be a point along the λ line [given by Eq. (25)] where the
f̃ (Tc, mc) = 0 and f̃ ′(Tc, mc) = 0 and mc �= 0. Solving these,
we get the condition for the existence of CEP to be

a2
6

4a4a8
= 1. (26)

We find that Eq. (26) can be satisfied only for 0.022 <

p � 0.0454 and that, too, at a point very close to the point
where a4 = 0. For example, for p = 0.044 from Eq. (26), we
get (TCEP1,�CEP1) = (0.267, 0.497) and for p = 0.03 we get
(TCEP1,�CEP1) = (0.294, 0.489). Hence we find that the value
obtained via Eq. (26) is different from the ones obtained by
looking at the full free-energy functional in Sec. III B (see
Table II). The difference increases with increasing p. More
importantly, in Sec. III B we had found numerically that CEP
is present for a much larger range of p: 0.022 < p � 0.1078.
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To estimate BEP using truncated f̃ (m), we equate the first
three derivatives of the truncated f̃ (m) in Eq. (23) with respect
to m to 0. For m �= 0, this gives the condition for BEP to
be a6 = −

√
8a4a8

3 . Again this condition gets satisfied only for
0.022 < p � 0.0454. This gives a BEP very close to CEP
and the actual location does not match with the numerical
estimates of Sec. III. Hence, a Landau description of this
system predicts the phase diagram correctly for p < 0.022
(except for CEP present at very low temperatures for all
p > 0) and gives a qualitatively similar diagram for 0.022 <

p < 0.0454, though the location of BEP and CEPs does not
match the actual value. For p > 0.0454 it is inadequate in
predicting the phase diagram. We tried including more terms
in the expansion of f̃ (m), but we could not locate BEP using
a truncated f̃ (m), suggesting that full f̃ (m) is needed for
locating the BEP.

VI. DISCUSSION

Blume-Capel model is a very useful model due to its
simplicity and rich phase diagram. Its phase diagram in the
presence of disorder in the (T,�) plane has been studied
extensively using many different techniques. In this paper
we studied the three-field phase diagram in the presence of
disorder, which has not been studied earlier. This is use-
ful especially to correctly predict the nature of multicritical
points. We found as the disorder strength increases, the two
wings meet at a BEP. We showed that this is actually a point
of coexistence of two critical phases, where the magnetic
susceptibility is finite. Hence despite the three derivatives of
the free energy being zero at BEP, it is not critical. This point
was identified as an ordered critical point in earlier studies

[31,32]. Also, we corrected the estimate of onset of topology
III as a function of disorder strength compared to earlier esti-
mate [32]. In Ref. [25] a different bimodal distribution of the
random crystal field [P(�i ) = pδ(�i − �) + (1 − p)δ(�)]
was studied using Landau theory. They observed that as the
disorder anisotropy increases, the first-order line meets the
second-order line such that there is a re-entrant part in the
phase diagram. By analogy with binary fluids, they conjec-
tured that when the second-order line has a re-entrant part,
it will end in a double critical point (or bicritical end point)
followed by a CEP as in Fig. 1(b). Since their work was based
on Landau expansion, they could not identify the bicritical end
point and critical end point precisely. Also they did not report
a topology similar to Fig. 1(c) for strong disorder.

It would be interesting to see whether similar phase dia-
grams are realized in finite dimensions using numerical sim-
ulations [49–51]. The origin of BEP in our model is different
than that for the pure anisotropic continuous spin systems,
where the BEP was seen as an end point of spin flop tran-
sition line [37]. A two-parameter Landau theory description
exists for spin-flop [41]. Our free-energy functional is a one-
parameter function which shows BEP. It would be interesting
to see whether a one-parameter Landau theory can be built,
which has a BEP as seen in the strong disorder case in our
work. A study of a three-field diagram for the random-field
Blume-Capel model would also be useful to understand the
nature of TCPs reported in Ref. [52] in the (T,�) phase
diagram [53].
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