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Characterizing network topology using first-passage analysis
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Understanding the topological characteristics of complex networks and how they affect navigability is one of
the most important goals in science today, as it plays a central role in various economic, biological, ecological,
and social systems. Here we apply first-passage analysis tools to investigate the properties and characteristics
of random walkers in networks with different topology. Starting with the simplest two-dimensional square
lattice, we modify its topology incrementally by randomly reconnecting links between sites. We characterize
these networks by first-passage time from a significant number of random walkers without interaction, varying
the departure and arrival locations. We also apply the concept of first-passage simultaneity, which measures
the likelihood of two walkers reaching their destination together. These measures, together with the site
occupancy statistics during the processes, allowed us to differentiate the studied networks, especially the random
networks from the scale-free networks, by their navigability. We also show that small-world features can also be
highlighted with the proposed technique.
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I. INTRODUCTION

Modern society is undergoing a major change since it has
become a massively connected community, forming complex
networks with distinctive features, such as the small-world
(SW) phenomenon [1–3]. Thus, identifying, characterizing
the topology, and understanding the dynamics and naviga-
bility properties of these networks have become essential
objectives of the research community [1,4–13]. Currently, a
significant effort has been made to quantify and improve the
efficiency of these networks [14–16].

Beyond the complex network phenomena, in recent years
increasing interest has been addressed to first-passage phe-
nomena (FPP). FPP underlies a great variety of processes
in nature and in human activities and has enormous poten-
tial for applications [17]. In biology, for example, statistical
analysis of first-passage times for stem-cell ageing models
allows for a better understanding of cellular mutation and
disease spreading [18]. Recently, contingent convertible bond
pricing methods have been derived from analysis based on
two-dimensional stochastic processes [19]. The proposed dy-
namic capital-ratio model considers that a stock price follows
geometric Brownian motion, and the first-passage time is
defined as the stopping time, i.e., when the capital ratio
attains a certain value. Another interesting application of first-
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passage analysis is the integrate-and-fire model [20], in which
a neuron fires only when a floating voltage reaches a specific
level for the first time.

Within the wide range of applications, there is one feature
that is always present: All systems involved are structured
in discrete elements interacting across a network. In such
a context, a central question to be addressed is how to
quantitatively characterize the topology of a network. To that
end, one is often concerned about statistical properties of the
node distribution, as well as the nature of the connections
between them. Additionally, one might be also interested in
characterizing the navigability of the network, as well as the
dynamics of link formation and interaction between nodes. A
robust tool for this purpose is the analysis of Brownian motion
along the network [21–27].

Advances in complex networks theory [8,11] have in-
creased the interest in applying the ideas of FPP analysis
on networks, such as the exact expression for the mean
first-passage time (MFPT) between two nodes on a network
[28,29]. In Ref. [21], for example, the authors have shown
that there is a lower bound for the MFPT of a random walk to
a target site averaged over its starting position.

In this paper we present a new technique to characterize
quantitatively the topology of complex networks. It is based
on the analysis of first-passage properties and of sample-to-
sample fluctuations of random walks on such networks. The
rest of this paper is organized as follows. In Sec. II, we de-
scribe the method employed to generate the networks, as well
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as the tools used to perform statistical analysis of first-passage
related quantities. In Sec. III, we discuss the results obtained
for a few types of networks with different boundary conditions
(BCs). Finally, in Sec. IV, we draw some conclusions.

II. METHODOLOGY

In this section we present the methodology to build the
different types of networks and, in the next subsection, the
FPP tools employed to analyze the data.

A. Generating the networks

We consider a few types of networks and analyze the
effects of rewiring between their sites. Real networks are com-
plex dynamic systems that are constantly evolving. Adding
or removing elements can cause significant changes to their
structures. In addition, new relationships between members
may emerge or be extinguished. Depending on how these
relationships are established, significant changes between the
communication of their elements may occur. To better under-
stand these topological network changes, we consider differ-
ent rebinding methods to produce different types of complex
networks, as described below.

We start with a square lattice (104 sites), with von Neu-
mann neighborhood [30], and proceed by performing N
rewiring operations in order to obtain each of the following
types of network: conservative random network, nonconser-
vative random network, and scale-free network. In each case,
we apply the following rules for rebinding links: (i) each site
must keep at least one link and (ii) rebinds cannot reinstate the
original links.

To get the conservative random network, we reconnect the
square network links by randomly choosing two unconnected
sites and connecting them. To do this, a random link from each
site is chosen to be rewired. If these sites are not already con-
nected, then we will connect them. Otherwise, we choose two
other links to reconnect. Thus, the degree of each location re-
mains at 4 [Fig. 1(b)]. This operation is repeated until all links
in a square network are reconnected, as shown in Fig. 1(b).

For nonconservative random network topology, we ran-
domly choose two sites to connect whether they have no
links in common and disconnect one link from each site,
also randomly. We continue this operation until the desired
number of reconnections is performed. It is noteworthy that
we are careful not to allow any site to be disconnected from
the network, ensuring that the final network is connected
[Fig. 1(c)]. Typically, the algorithm executes up to approx-
imately 90% of the original square network links has been
removed [Fig. 1(c)].

To obtain a scale-free network, we reconnect the square
network links using the preferential attachment [11], so we
assume that the probability P of a new connection to site
Si depends on its connectivity ki, so that P(ki ) = ki/P(ki ) =
ki/

∑
j k j . We randomly choose two sites to connect if they do

not have links that link them. Thus, these two sites are more
likely to receive new links from other sites in the network.
Then all sites are traversed and, according to their connectivity
ki, can get a new connection from a randomly chosen site. For
each new link one of original link is disconnected. We con-
tinue this operation until the desired number of reconnections

FIG. 1. (a) Square network (L × L, L = 5) with periodic BCs.
Each site has four links and the border sites are connected to the
symmetric sites of the opposite border. (b) Conservative random
network. Starting from a square network two unconnected sites are
randomly chosen and a new connection is established between them.
A site adjacent to each of these sites is chosen randomly to disconnect
from these sites and establish a new connection. These steps are
repeated until all the links to be rewired and, at the end, each site
keeps four links. (c) Nonconservative random network. Starting from
a square network two unconnected sites are randomly chosen and a
new connection is established between them. A single site next to
one of these sites is chosen to lose a link. Theses steps are typically
repeat to approximately 90% of original links.

is performed. Typically, the algorithm executes up to approx-
imately 90% of the original square network links has been
removed, Fig. 2(c). As the network topology changes, the
format of the link distribution changes. Initially, there is a peak
centered at four original neighbors, but performing rewiring of
links the distribution becomes scale free; see Fig. 3.

We implemented the SW random network proposed by
Watts-Strogatz [6], starting with a ring of 104 sites and eight
nondirected links by site. Clockwise, each site has an original
link reconnected to another network site. These procedure are
repeat until the desired N .

B. First-passage analysis

Once we have generated a network as described in
Sec. II A, we perform random walks (RWs) on it. The walk
consists of random jumps between nearest-neighbor sites. We
let the walker start on a determined site of the lattice and
record its first-passage time τ to another given site of the
network.
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FIG. 2. Rewiring a square network using the preferential attach-
ment. (a) Square network (L × L, L = 5) with periodic BCs. Each
site has four links and the border sites are connected to the symmetric
sites of the opposite border. In the first step S1 and S2 are connect,
and S3 and S4 will be disconnect. (b) After N = 20, the site S1
earned more links than the others. (c) With approximately 90% of
links rewired, the site S1 is the hub of network.

The first-passage time τ is a random variable defined as the
number of steps executed by a random walker when it reaches
a given target for the first time. The distribution �(τ ) can be
obtained exactly only for very few special situations [31] and
one must often resort to computer simulations.

Furthermore, �(τ ) depends on several topological fea-
tures, such as geometry, dimensionality, and boundary con-
ditions [32–34]. For RWs in unbounded domains �(τ ) is
typically broad, i.e., it decays as a power law. In such a case it

does not possess all moments, even the first moment (i.e., the
mean first-passage time 〈τ 〉).

This behavior is also observed in stochastic dynamics in
which scale-free waiting times or topologies are considered
[35,36]. In such cases, typical statistical quantities such as
the mean and the variance do not yield useful information
regarding sample-to-sample fluctuations, which are important
if one is interested in determining the efficiency of search
processes, for example [31].

On the other hand, for RWs in bounded domains �(τ )
is typically a narrow distribution, possessing moments of
arbitrary order. In such cases, one is often interested in
standard statistical quantities such as, e.g., averages, standard
deviations, skewness, and kurtosis.

In order to address this issue, we refer to the concept
of simultaneity, which corresponds to the event in which
two independent Brownian particles arrive at an absorbing
boundary at the same time, given that they have departed from
the same site. We define the uniformity index

ω = τi

τi + τ j
, (1)

where ω is a random variable in the interval [0,1] which
measures the likelihood that two independent random walkers
departing from the same site reach a target at the same time.
If the distribution P(ω) is bell shaped, with a maximum at
ω = 1/2, then it is likely that two independent walkers will
reach the target at the same time and the dynamics is uniform.

On the other hand, if P(ω) is M shaped, with a minimum
at ω = 1/2, then the system is strongly nonuniform and
sample-to-sample fluctuations play a key role in the dynamics
[31,37,38].

Since the shape of P(ω) depends on topological character-
istics of the domain, it can be used to identify the topology of
a network.

III. RESULTS

First, we consider a square lattice (N = 104 sites) bounded
by reflective and absorbing sites, as shown schematically in
Fig. 4(a). We perform 104 independent RWs, all departing
from a common given site S0. In such walks, a time step
t → t + 1 consists of a jump from site St to a randomly

FIG. 3. Distribution of links during the topological change from square network to scale-free network topology. (a) One thousand links
and (b) 18 577 links were rewired.
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FIG. 4. (a) Square lattice with mixed BCs: Black dots correspond
to reflecting boundaries and white dots correspond to absorbing
sites. The nodes highlighted correspond to F (far from the absorb-
ing boundary), C (central region of the lattice), and N (near the ab-
sorbing boundary). (b) P(ω) for 104 independent RWs for each case.

chosen nearest-neighbor site. When a walker tries to jump
into a reflective site, it rebounds such that St+1 = St . On the
other hand, when a walker reaches an absorbing site, the walk
terminates and the number τ of steps executed by the walker
so far is recorded.

We consider three different starting points on the truss: F
(far from the absorption limit), C (central lattice), and N (near
the absorption limit). We record the result for τ and the result
for P(ω) as shown in Fig. 4(b).

The results in Fig. 4(b) show that the change in P(ω)
format depends on the initial location of the random walker in
the network. When the walker departs from a location far from
an absorbing boundary, the dynamics is uniform. Otherwise,
when they depart from a location near an absorbing boundary,
the dynamics is very heterogeneous.

We then consider all sites on the square network boundary
as reflective and rewire the links of the initial network to
get the conservative random network. The number of clicks
separating any site from the target site can be seen in Fig. 6;
note the reduction in clicks as links are reconnected. With
all links reconnected, the network displays SW features, as
shown in Fig. 6(d).

By characterizing the influence of the starting position,
P(ω), it is possible to investigate some topological features, as

FIG. 5. Results in the conservative random network with reflec-
tive BCs. P(ω) for 104 independent RWs for each case. (a) The target
site far from the start site on the network without N . (b) The target
site near from the start site on the network without N . In both cases
we increase the N between the links.

shown in Fig. 5. While the network is being rewired, the num-
ber of clicks between two sites decreases, Fig. 6, and P(ω)
change shape, Fig. 5. Note that from 1000 reconnections,
P(ω) becomes stable, indicating that the network topology has
changed to SW.

FIG. 6. Click distribution during the topological change from
square network to conservative random network topology, respec-
tively, for N = 0, N = 100, N = 1000, and N = 20 000.
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FIG. 7. Results in the SW random network. P(ω) for 104 inde-
pendent RWs for each case.

We repeat the analysis on the nonconservative random
network. In this case, just over 90% of links on a square
network have been reconnected. The results obtained are very
similar to those of the conservative random network. Again,
starting at 1000 reconnections, P(ω) is stable, indicating that
the network has begun to exhibit the characteristics of SW.

Next we investigate the characteristics of the first passage
in the SW random network proposed by Watts-Strogatz [6]. In
this model, we vary the place of departure and fixed the place
for arrival.

First, we investigate a regular network with eight links per
site, which can be represented as a ring, without any N . Due
to network regularity, the three forms of P(ω) can possibly be
identified depending on the initial site, Fig. 7(a).

FIG. 8. Results in the scale-free network. P(ω) for 104 indepen-
dent RWs for each case.

FIG. 9. Distribution of occupation of the sites for a random walk
with 106 steps, for each case.

Second, we got P(ω) after the initial ring was completely
rewired, Fig. 7(d). In this case, the maximum number of clicks
between two sites is six and the distribution is essentially flat,
both results indicating that the network is a SW.

To investigate the scale-free network, we start from the
square network without BCs and rewire the links, as described
in Sec. II A. Figure 8(a) shows the results for the square
network without N . In this case, the maximum distance
between two sites is 100 clicks. After rebinding the links, the
maximum number of clicks between two sites is 6 clicks, and
Fig. 8(d) displays the behavior in this case. Clearly, we again
notice a change in the network topology.

P(ω) has allowed us to identify whether a network has the
characteristics of SW but is not able to differentiate between a
random network that displays SW properties from a scale-free
network.

In order to distinguish such topologies, we analyze the
distribution of site occupancy for a random walk with
106 steps. In the case of the random network, the distribution
shows a characteristic number of visits per site, while for
the scale-free network, the distribution follows an power law,
shown in Fig. 9.

IV. CONCLUSIONS

We have explored the problem of random walks in complex
networks. We applied first-passage analysis to characterize
different types of networks, such as the conservative and
nonconservative random networks, small-world networks, and
scale-free networks. The networks were generated by recon-
necting links and different kinds of BCs, such as reflective and
absorbing, were considered. By recording first-passage times
to an absorbing boundary, we were able to apply first-passage
analysis in order to map topological changes in the networks
studied, after reconstructing their link structure.

We have shown that first-passage analysis is an efficient
tool for characterizing network navigation and topology. We
have shown that a change in the shape of the distribution of
uniformity index P(ω) reveals a change in the topology of the
network.
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