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We employ the Ornstein-Zernike integral equation theory with the Percus-Yevick (PY) and modified-Verlet
(MV) closures to study the equilibrium structural and thermodynamic properties of metastable monodisperse
hard sphere and continuous repulsion Weeks-Chandler-Andersen (WCA) fluids under density and temperature
conditions where the system is strongly overcompressed or supercooled, respectively. The theoretical results
are compared to crystal-avoiding simulations of these dense monodisperse model one-component fluids. The
equation of state (EOS) and dimensionless compressibility are computed using both the virial and compressibility
routes. For hard spheres, the MV-based virial route EOS and dimensionless compressibility are in very good
agreement with simulation for all packing fractions, much better than the PY analogs. The corresponding MV-
based predictions for the static structure factor are also very good. The amplitude of density fluctuations on
the local cage scale and in the long wavelength limit, and three technically different measures of the density
correlation length, are studied with both closures. All five properties grow in a roughly exponential manner
with density in the metastable regime up to packing fractions of 58% with no sign of saturation. The MV-based
results are in good agreement with our crystal-avoiding simulations. Interestingly, the density dependences of
long and short wavelength quantities are closely related. The MV-based theory is also quite accurate for the
thermodynamics and structure of supercooled monodisperse WCA fluids. Overall our findings are also relevant
as critical input to microscopic theories that relate the equilibrium pair correlation function or static structure
factor to dynamical constraints, barriers, and activated relaxation in glass-forming liquids.

DOI: 10.1103/PhysRevE.101.042121

I. INTRODUCTION

The one-parameter hard sphere (HS) fluid is the most
foundational, generic, and minimalist model of strongly in-
teracting liquid matter [1,2]. Understanding its structure, dy-
namics, and crystallization has been of interest for half a
century. It continues to be relevant either literally or as a
reference system for various thermal liquid and soft matter
systems, including for questions of structure, glassy dynam-
ics, and kinetic vitrification at ultrahigh packing fractions in
the metastable to crystallization regime [2–6]. Reasonably
accurate statistical mechanical theories for the pair structure
and thermodynamics of equilibrium hard sphere fluids have
long existed based on the Ornstein-Zernike (OZ) integral
equation and an approximate closure [e.g., Percus-Yevick
(PY)] [1,2,7]. However, the facile crystallization of monodis-
perse spheres has largely precluded testing such theories in the
high packing fraction metastable regime relevant to strongly
activated glassy dynamics. Indeed, to access the latter has
typically required introducing polydispersity, i.e., quenched
disorder of particle diameter, or the use of binary mixtures,
both of which significantly complicate understanding the ba-
sic physics [8–11].

*kschweiz@illinois.edu

Recently, Zhou and Milner [12,13] have developed a
crystal-avoiding simulation method that allows very high
packing fraction equilibrated metastable fluid states of
monodisperse hard and soft repulsive spheres to be deter-
mined. In this article we employ this method to perform sim-
ulations which are of interest in their own right and serve as
benchmarks to test theories. This is especially relevant to mi-
croscopic theoretical approaches that connect slow dynamics
with structural correlations, e.g., ideal mode coupling theory
(MCT) [14], nonlinear Langevin equation (NLE) theory [15],
elastically collective nonlinear Langevin equation (ECNLE)
theory [6,16], and thermodynamic approaches to glass for-
mation based on configurational entropy such as the random
first order transition theory and its variants [17–19]. Most of
these theories require accurate pair structural information as
input at very high packing fractions, the regime where inte-
gral equation theories (e.g., OZ-PY) are most inaccurate and
thermodynamically inconsistent [1,2]. This limitation also im-
pacts making theoretical progress on the question of whether
a growing static length defined at the pair correlation level
and/or a thermodynamic property does or does not correlate
with ultraslow dynamics.

The above discussion provides our motivation to carry out
equilibrated monodisperse fluid simulations and revisit OZ
theory in search of a better closure relation in the metastable
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regime of monodisperse hard spheres. We also use the simu-
lation and theoretical results to provide insights concerning
the physics of ultradense highly correlated fluids. Concerning
our theoretical aspect, we consider the modified-Verlet (MV)
closure [20–23]. It was shown long ago [20,21] to produce
very accurate results for pair structure and thermodynamic
properties of monodisperse hard spheres in the “normal”
liquid regime below the crystallization packing fraction of
φ ∼ 0.495 where glassy dynamics has not yet emerged. The
predictions of OZ-MV theory in the metastable regime have,
for the most part, not been determined nor confronted with
monodisperse hard sphere fluid simulations. One exception
is the recent work of two of us which employed MV integral
equation theory to compute the equation of state which was
compared to crystal-avoiding simulations in the metastable
regime [24]. Excellent agreement between the OZ-MV virial
route results and simulation was found up to a packing
fraction of 0.58. However, the real purpose of Ref. [24]
was to study highly size-asymmetric hard sphere mixtures at
relatively high temperatures and low densities in the normal
fluid regime. This involves very different physics than in the
ultrahigh density one-component hard sphere fluid. Neither
simulation nor OZ theory studies of other thermodynamic
properties, the static structure factor, or real- and Fourier-
space correlation lengths were performed. Addressing these
issues is the primary purpose of the present article.

We theoretically focus on the high metastable packing
fraction regime of φ ∼ 0.5 to 0.6, which is still well below the
random close packing (RCP) or jamming limit [25]. The upper
limit of the latter range corresponds in the ECNLE theory
of viscous thermal liquids [6,16] to the laboratory kinetic
vitrification point, which exceeds the packing fraction that can
typically be equilibrated in colloidal suspension experiments
[9]. We also present a combined theory and simulation study
of several metastable supercooled states of the continuous
repulsive interaction Weeks-Chandler-Andersen (WCA) [26]
monodisperse fluid. Our highly limited prior work [24] for
this system was in the normal liquid regime at much higher
temperatures and lower densities.

Our results from the present study are relevant to con-
structing more accurate theories of the equilibrium behavior
of ultradense hard sphere fluids, density functional theories
of crystallization [27] and interfaces [28], phase separation
of hard sphere mixtures [29,30] and polymer-colloid mixtures
[31,32], etc., but our prime motivation is its relevance as input
to the dynamical theories mentioned above, which to date
have most often used the PY closure [10,14,33–35]. Extant
microscopic theories of glassy dynamics typically require to
high accuracy the Fourier-space static structure factor, S(q), or
the direct correlation function, C(q), including at very large
wave vectors not easy to accurately determine with simula-
tion. For the ideal MCT of the hard sphere fluid [14], use of a
more accurate structural theory will have little consequence
since the (unphysical) critical power law divergence of the
relaxation time occurs at φc ∼ 0.515 where errors incurred
by PY theory are rather modest. In strong contrast, NLE and
ECNLE theories that include activated hopping [6,15,16] do
not have any dynamical divergences below RCP, and make
predictions for values of φ well beyond 0.515 which may be
sensitive to including improved structural input.

In addition to studying the pair correlation function in real,
g(r), and Fourier, S(q), space and thermodynamic properties,
we also analyze how correlation lengths and density fluctua-
tion order parameters evolve with packing fraction. The nature
of growing static length scales defined at the pair level and
their possible correlation with activated glassy dynamics has
been an enduring question. A rather common presumption
in the literature is that such length scales vary little with
thermodynamic state in glass-forming liquids and/or such
information is not adequate to understand strongly activated
relaxation. We believe these notions are likely not valid, a
view supported by the recent successes of ECNLE theory of
strongly activated dynamics [6,16,36,37] and machine learn-
ing simulation [38,39] studies.

In Sec. II we briefly review OZ theory, the closures stud-
ied, and the crystal-avoiding simulation method employed.
Section III presents our core theoretical results for the
metastable hard sphere fluid, quantitatively compares them
to simulation, and deduces inter-relations. A sample result is
shown for the implications of using better structural input to
the ECNLE theory of activated glassy dynamics. Equilibrium
structural and thermodynamic results for the metastable WCA
fluid are presented in Sec. IV. The paper concludes with a
summary and discussion in Sec. V.

II. THEORY AND SIMULATION METHODS

A. Integral equation theories

The radial distribution or pair correlation function, g(r),
obeys the OZ equation [1]:

h(r) = c(r) + ρ

∫
c(| ⇀

r − ⇀
r

′|)h(r′)d⇀
r

′
, (1)

where ρ is the particle number density, h(r) ≡ g(r) − 1, and
Eq. (1) defines the direct correlation function c(r). It is
convenient to introduce the “cavity distribution function”:
y(r) = eβu(r)g(r), where u(r) is the pair potential and β is the
inverse thermal energy. The PY approximation for a general
pair potential, u(r), can then be expressed as [1]

c(r) = g(r) − y(r) = [e−βu(r) − 1]y(r) ≡ f (r)y(r), (2)

where β ≡ (kBT )−1 is the inverse thermal energy. For hard
spheres of diameter σ , this corresponds to c(r) = 0, r > σ .
The MV closure can be viewed as interpolating between the
PY and hypernetted chain (HNC) closures in γ -space [20],
where γ (r) ≡ h(r) − c(r). Specifically, one can generically
write the pair correlation function as

g(r) = exp[−βu(r) + γ (r) + b(r)], (3)

where if the bridge function, b(r), is exactly known then
Eq. (3) is exact. In the MV closure approximation one has

bMV(r) = − a1γ
2(r)

1 + a2|γ (r)| . (4)

For hard spheres a1 = 1/2 and a2 = 4/5 were used in the
original work [20] in order to exactly reproduce the fourth
virial coefficient while improving the fifth virial coefficient
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FIG. 1. Direct correlation function for packing fraction φ from
0.5 to 0.6 (bottom to top) based on PY (dash-dotted) and MV (solid)
closures. Inset is an expanded view of the near contact region.

compared to its PY value. The absolute value of γ enters the
denominator in Eq. (4) to avoid the singularity at γ = −1/a2,
which also assures that the first and second derivatives of
Eq. (4) with respect to γ are continuous [22]. We explore
the predictions of the PY- and MV-based theories in the high
packing fraction regime φ = 0.5 to 0.6. We also consider
the WCA fluid at reduced densities and temperatures in the
modestly supercooled regime accessible to simulation with
the same nonoptimized parameters a1 and a2 employed for
hard spheres.

The negative of c(r) in units of thermal energy plays the
role of a renormalized pair potential [1]. Figure 1 presents
numerical calculations of this quantity in the high density
regime. One sees significant differences between the PY and
MV results, with the absolute value of c(r) from PY larger
than its MV analog inside the hard core. Outside the hard
core the PY direct correlation function incorrectly vanishes,
while the MV predicts (inset) a short-range negative tail (an
effective attraction) which grows strongly with increasing
density, features in qualitative accord with the exact c(r)
[1,2,40]. The exact c(r) is also known [41,42] to weakly
oscillate outside the hard core. If one blows up the inset in
Fig. 1 we do find (not shown) oscillatory behavior with an
amplitude that grows with density. However, the oscillations
are not about zero since in the MV approximation (and also for
HNC) the direct correlation function is strictly non-negative.

B. Simulations

We employ the recently developed crystal-avoiding
method [12,13] to simulate monodisperse HS and WCA
equilibrium fluids. All simulation results presented in this
article are different from our previous results, except for the
hard sphere equation-of-state data [24].

Briefly, the crystal-avoiding simulations are based on
a hybrid Monte Carlo method, a short molecular dynam-
ics (MD) trajectory from a given amorphous configuration
is first generated, and then the difference in crystallinity is
measured using a bond-order parameter and the trajectory

is accepted or rejected using the Metropolis algorithm. If
the move is rejected, all particle velocities are randomized
from a Maxwell-Boltzmann distribution before the next trial.
This method essentially samples trajectories in phase space
for which crystallization did not occur. For hard spheres,
event-driven MD is used for generating short trajectories,
while for WCA fluids the standard leapfrog integration
method is employed. All technical details can be found in
Refs. [12,13].

III. HARD SPHERE FLUID RESULTS

A. Equation of state

As relevant background we recall our recent results [24]
for the hard sphere fluid equation of state (EOS) using two
formally exact statistical mechanical routes which emphasize
either the most local part of g(r) (virial route) or the long
wavelength integrated aspect (compressibility route). In the
former, the reduced pressure is directly related to the contact
value, g(σ ), as [1,43]

βP

ρ
= 1 + 2πρσ 3g(σ )

3
. (5)

The compressibility route is based on the isothermal com-
pressibility, κT = −V −1( ∂V

∂P )T , and its dimensionless analog
S0 = S(q = 0) defined as [1,43]

S0 = ρkBT κT = 1 + ρh(q = 0). (6)

The connection to thermodynamics is

S−1
0 = ∂βP

∂ρ
. (7)

The reduced pressure follows via integration yielding the
compressibility route EOS:

βP

ρ
= 1

ρ

∫ ρ

0
dρ ′ 1

S0(ρ ′)
. (8)

Figure 2 shows theoretical results [24] using the virial (v)
and compressibility (c) routes. For comparison, the empirical
Carnahan-Starling (CS) formula as a function of packing
fraction φ = πρσ 3/6 [40] is given by

βP/ρ ≈ (1 + φ + φ2 − φ3)/(1 − φ)3, (9)

which is also plotted, along with our simulation results [24]
which now include a single (highest shown) packing fraction
nonequilibrium data point. The simulations agree well with
the CS formula for φ < 0.545, but not beyond. The PY
virial and compressibility route results differ significantly,
with PY(v) strongly underestimating pressure, while PY(c)
agrees much better with simulation. In contrast, the MV
results are more thermodynamically consistent, with the virial
route results in good accord with simulation for all packing
fractions; only at the single highest equilibrated packing
fraction (0.585) simulated can one see deviations. Thus, MV
theory is accurate for the EOS, and also its derivative with
density of the reduced pressure which is an important property
per Eq. (7).
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FIG. 2. Dimensionless equation of state for various theoretical
calculations and our hard sphere crystal-avoiding simulation data
[24]. The green (long-dashed), blue (dashed), magenta (solid), pur-
ple (dotted), and cyan (dash-dotted) curves indicate results for PY
virial, PY compressibility, MV virial, MV compressibility, and CS
approximations, respectively. The black circle and red triangle data
are from the simulations under equilibrium [24] and nonequilibrium
conditions, respectively. Inset: expanded view of the same results for
high packing fractions (0.55–0.60).

We note in passing that Ref. [11] found that a polydisperse
version of the CS formula works well up to packing frac-
tions of ∼63%. However, this study employed an extremely
polydisperse hard sphere model, which is not relevant to our
present work.

B. Pair structure

The contact value of g(r) plays an essential role in deter-
mining the thermodynamics and dynamics of hard spheres.
Given Eq. (5), one can immediately deduce from Fig. 2 that
the high accuracy of the MV(v) reduced pressure implies
excellent results for the contact value, significantly superior
to those of the PY and CS approaches. Concerning the full
g(r), we refrain from showing plots since we find the MV and
PY calculations are both very accurate beyond the separation
that defines the first minimum of g(r). At smaller distances,

the MV results are much better and in good agreement with
our simulations.

Due to its relevance to scattering experiments and central
role in dynamical theories [1,14–16,44–47] we consider in
detail the Fourier-space static structure factor:

S(⇀
q) = 1

N
〈ρ(⇀

q)ρ(−⇀
q)〉, ρ(⇀

q) =
N∑

j=1

exp(i⇀
q · ⇀

r j ), (10)

which in our simulations is computed as

S(q) = 1 + 4πρ

∫ ∞

0
dr r2 sin(qr)

qr
[g(r) − 1]. (11)

Figure 3 shows our results. In all cases, PY overpredicts
the first peak, and is inferior to the MV results. The latter
are excellent for this feature except at the highest density
where small errors are incurred. As typically observed in g(r)
of glass-forming sphere liquids [4,9,48], the second peak of
S(q) also “splits” at high densities, which the theories do not
capture. However, except for this feature the MV results at
higher wave vectors are in excellent accord with simulation,
significantly better than PY.

C. Density fluctuation order parameters

The amplitude of the first peak of the structure factor,
Smax, quantifies the coherence or intensity of short-range
amorphous order. The main frame of Fig. 4 plots this quantity
as a function of packing fraction. Despite PY theory underpre-
dicting the contact value of g(r), it systematically overpredicts
this Fourier-space quantity. In contrast, MV theory is in near
perfect agreement with simulation for Smax. Interestingly, the
inset of Fig. 4 shows that Smax is well described by an expo-
nential form, A exp(Bφ), for both closures with fit parameters
reported in Table I. The parameter B is ∼5.2 and 6.5 for MV
and PY, respectively.

Concerning the exponential fits, it is the best two-
parameter description of the above (and below) theoretical
results we have found. However, we are not arguing for a
fundamental significance of this form, and have tested it only
over the packing fraction range studied here. At even higher
densities we do not expect the exponential form will continue
to be accurate since eventually the RCP jammed state is

FIG. 3. Static structure factor as a function of dimensionless wave vector for three packing fractions φ = 0.52, 0.56, and 0.58 based on the
PY (red dashed lines) and MV (green solid) closures and the crystal-avoiding simulation results (black circles). Insets show an expanded view
of the first peak region.
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TABLE I. Parameters A and B of the exponential fits, A exp(Bφ) in Figs. 4–8 for the PY and MV closure theoretical results. Length scales
are in units of the hard sphere diameter. From left to right the quantities are as follows: the value of S(q) at its first peak, inverse dimensionless
compressibility computed from the q = 0 limit of the static structure factor per Eq. (6); inverse dimensionless compressibility computed
using the virial route relation of Eq. (7); a Fourier-space derived correlation length extracted from the full width at half maximum, λ, of S(q); a
Fourier-space derived correlation length defined in Eq. (14); and the density correlation length extracted from an exponential fit of the envelope
of |rh(r)|.

Smax 1/S0 =1/S(q = 0) 1/S0 (virial) l = π/λ � ξρ

PY A 0.0125 0.3097 0.5913 0.1179 0.0534 0.0746
B 6.535 10.663 8.581 6.107 7.023 6.404

MV A 0.224 0.543 0.213 0.117 0.0937 0.105
B 5.200 9.182 11.277 6.056 5.671 5.5152

approached [25], which is not correctly captured by PY- or
MV-based OZ theory.

A very different “scalar order parameter” is the dimen-
sionless amplitude of long wavelength density fluctuations,
S(q = 0) = S0. Although a thermodynamic property, it is di-
rectly related to an integrated measure of nonrandom structure
over all length scales given, Eq. (6). Moreover, it plays a
central role in the predictive mapping employed in ECNLE
theory of activated relaxation to treat molecular and polymeric
thermal liquids in terms of an effective hard sphere fluid
[16,49]. Figure 5 shows PY and MV theory results for this
quantity plotted in an inverse representation and log-linear
format. Results are shown based on both the direct calculation
of S(q = 0) and an indirect route corresponding to differenti-
ation of the virial route EOS using Eq. (7). Both theories are
thermodynamically inconsistent, but MV far less so than PY.
Interestingly, all theoretical results are again empirically well
described by a nearly exponential growth of 1/S0 with packing
fraction, as indicated by the straight line fits with parameters
given in Table I.

0.44 0.48 0.52 0.56 0.60
2

3
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8

S
m

ax

PY
MV
Sim

0.44 0.48 0.52 0.56 0.60

3

4

5
6

PY
MV
Sim

FIG. 4. Value of the first peak of the structure factor as a function
of packing fraction for PY (black dashed curve) and MV (red solid
curve) closures and our hard sphere simulations (green triangles).
Inset shows the same results as the main frame but in a log-
linear manner. The straight lines in the inset are exponential fits:
Smax = A exp(Bφ), where the fit parameters are listed in Table I.

Our discrete equation-of-state simulation data of Fig. 2 are
fit to interpolating curves and 1/S0 extracted using Eq. (7).
Results up to packing fractions that this numerical exercise
can be accurately carried out are shown in Fig. 5. Compared
to these simulation data, both the MV(v) and PY(c) results are
quite accurate with B ∼ 11 in the exponential fit. Interestingly,
the numerical results in the metastable regime are generically
well captured by an exponential form for both the local and
long wavelength order parameters, Smax and S0, with the value
of B for 1/S0 roughly double that of Smax, and hence 1/S0 ∝
S2

max based on the MV-virial analysis.

D. Real-space density correlation length

We now study the real-space density correlation length.
Motivated by the classic idea that h(r) is of a damped oscil-
latory Yukawa form [1,2,50] characterized by a single decay
length (density correlation length) at large enough interparti-
cle separations, Fig. 6 plots MV theory results for |(r/σ ) h(r)|
versus r/σ in a log-linear manner over a wide range of high

FIG. 5. Inverse dimensionless compressibility computed directly
from S(q = 0) as a function of packing fraction for PY (black square)
and MV (red circle) closures. Corresponding results based on the
virial route of Eq. (7) are shown for PY (purple star) and MV
(green triangle) approximations, and our simulation (blue diamond)
data. The lines are exponential fits: S−1

0 = A exp(Bφ), where the fit
parameters are listed in Table I.
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FIG. 6. Main frame: Absolute value of rh(r)/σ calculated using
OZ-MV theory as a function of normalized radial distance r/σ
for three packing fractions. Inset: Packing fraction dependence of
the real-space density correlation length (in units of hard sphere
diameter) for the PY (black) and MV (red) closures. The lines in
the inset are exponential fits: ξρ = A exp(Bφ), with the fit parameters
listed in Table I.

packing fractions. Beyond r ∼ 3−4 σ the decay envelope is
extremely well described by an exponential, ∼ exp(−r/ξρ ).
Curiously, the lines extrapolate back to a common intersec-
tion point at r = 0. The inset shows the extracted density
correlation length, ξρ , based on PY and MV calculations,
which grows from ∼1.5σ at φ ∼ 0.5 to ∼3σ at φ ∼ 0.6. Both
theoretical results follow quite well an exponential growth of
ξρ with packing fraction, with B ∼ 5.5 and 6.4 for MV and
PY, respectively.

Figure 7 presents our analogous simulation results
in the metastable regime. We follow standard procedure
and fit rh(r) from r ∼ 2σ−6σ to the analytic form

[1,41,42,51]:

rh(r) = Ae−α0rcos(α1 r − θ ), (12)

where ξρ = 1/α0. Figure 7(a) shows the simulation data are
very well described by Eq. (12). The main frame of Fig. 7(b)
compares our simulation, PY and MV results for the den-
sity correlation length. We find the theoretical correlation
lengths extracted using Eq. (12) are identical to those obtained
from simply fitting the envelope of ln |(r/σ ) h(r)| in Fig. 6
to an exponential. An important simulation finding is the
correlation length continues to grow beyond the equilibrium
melting packing fraction φm = 0.545, reaching ∼2.7 particle
diameters at φ = 0.58. The MV-based OZ theory agrees well
with our simulation data, while the PY approximation predicts
a length scale that is too large and grows too strongly with
density.

The inset of Fig. 7(b) plots the two key fit parameters in
Eq. (12) extracted by analyzing our simulation and theoretical
results. This representation is shown to allow comparison with
the monodisperse hard sphere fluid simulations of Statt et al.
[51] who used a standard, not crystal-avoiding, algorithm. We
note that the analysis in [51] also employed Eq. (12) and per-
formed fits over the range of 1.5 < r/σ < 4. One sees there
is excellent agreement between the two simulation studied up
to φ ∼ 0.545. Beyond that, a rough saturation was found in
Ref. [51], and perhaps even a hint of nonmonotonicity. We
do not find these latter trends intuitive, and they are likely not
reliable since crystallization occurred in the simulations, more
so with increasing packing fraction, and the simulation runs
were short [51,52].

Other recent simulation studies of monodisperse hard
sphere fluids [41,42] have only been performed in the lower
density normal fluid regime. Our simulations results, those of
Ref. [51], and the MV calculations are all in good agreement
with each other and the data of Refs. [41,42] in this normal
fluid regime; an explicit example of this can be seen in
Fig. 7(b) where results down to φ = 0.45 are shown. Finally,

1 2 3 4 5 6

-30
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ln
|rh

(r)
/

|

r/

= 0.52

= 0.58

= 0.56

= 0.54

= 0.50

(a)

0.45 0.50 0.55 0.601

2

3

4

/

(b)

6.8 7.0 7.2 7.4

0.4

0.6

0.8

MV
PY

Sim (Crystal-avoiding)
Sim (Statt et al. [51].)

0/

1/

FIG. 7. (a) Plot of ln |rh(r)/σ | for metastable monodisperse hard spheres based on crystal-avoiding simulation method. The black curves
are fits to Eq. (12). (b) Correlation length ξρ = σ/α0 obtained from simulation compared with the predictions of OZ-PY and OZ-MV theories.
Inset: comparison of the values of α0 and α1 in Eq. (12) determined from crystal-avoiding simulations, standard simulation methods [51], and
the PY and MV approximations.
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FIG. 8. Packing fraction dependence of the two density fluctua-
tion correlation lengths deduced from S(q) as defined in the text, as
predicted based on the PY and MV closures. The lines in the main
frame and inset are exponential fits with parameters listed in Table I.

we note that experiments and other simulations up to a pack-
ing fraction of φ = 0.6 [53] have studied various real-space
correlation lengths, but these employed polydisperse systems
and focused on locally favored structures and hence are not
germane to our present work.

E. Fourier-space correlation length

We now study correlation lengths and other quantities
that can be extracted from S(q). As expected, we find
(see Table I) that the exponential growth of the real-space
correlation length and its associated B value agrees well with
the behavior of Smax in Fig. 4. This connection between real-
and Fourier-space is buttressed by extracting a correlation
length from S(q) in two ways. The first is from the full width
at half height of the primary peak of the structure factor, λ

from which we define a length scale as l = π/λ. The second
is to quadratically expand 1/S(q) around its first peak at
q = q∗ (a local Lorentzian approximation) thereby defining
a correlation length �:

S−1(q) ≈ S−1(q∗)[1 + �2(q − q∗)2]. (13)

Using the exact relation S−1(q) = 1 − ρC(q), the length scale
in Eq. (13) is

� =
√

−1

2
S(q∗)

[
d2ρC(q)

dq2

]
q=q∗

. (14)

Figure 8 shows theoretical results for these length scales.
Their exponential density dependences are nearly identical,
and almost the same as the real-space analog ξρ , with B ∼ 6
to 7 (Table I). Based on the most accurate MV calculations,
Table I suggests that to leading order these three length scales
and Smax grow exponentially with packing fraction with a very
similar B value.

Interestingly, the four local quantities discussed above all
exhibit an exponential packing fraction dependence, as does
the long wavelength thermodynamic quantity 1/S0. Based
on MV theory, the value of B for the inverse dimensionless

FIG. 9. Comparison of the local cage barrier (FB), collective
elastic barrier (Fel), and total dynamic barrier (Ftotal) of the activated
relaxation ECNLE theory [16,36] based on S(q) input computed
using the PY (dash-dotted) and MV (solid) closure approximations.
Inset: schematic of the conceptual elements of the ECNLE theory
where the activated structural relaxation event is of a coupled local-
nonlocal nature.

compressibility computed using the more accurate virial route
is roughly twice that of the various correlation lengths ex-
tracted by analysis of finite length scale structural features.
This suggests an interesting correlation between the density
dependent growth of different metrics of static density correla-
tions, with potentially significant dynamical implications. For
example, if there is a deep connection between equilibrium
properties and the alpha relaxation time in supercooled or
overcompressed liquids, then our results suggest a type of
degeneracy of interpretation with regard to the existence of
practical empirical correlations between slow dynamics and
thermodynamic and/or local structural order quantities based
on density fluctuations. The elementary reason is that any
function that varies exponentially with density when raised
to any power remains of an exponential form. Moreover, if
the dynamic barrier relevant to the alpha relaxation process is
proportional to any of the aforementioned quantities (raised
to any power), the corresponding relaxation time will empir-
ically be a double exponential function of packing fraction.
The above logic does not apply for other mathematical func-
tions of density such as power laws or an exponential of a
multiterm polynomial.

Concerning the quality of MV versus PY closure predic-
tions, the former is significantly better for both thermody-
namic properties and the real- and Fourier-space structure,
g(r) and S(q). However, both closures predict that all five
quantities in Table I grow exponentially with packing frac-
tion to a good approximation. Quantitatively, the absolute
value and increase with packing fraction of the three density
correlations lengths and cage peak amplitude Smax are all
larger for PY than for MV, reflecting the systematic difference
between these two approximations. Though these differences
may seem modest for these properties, they are manifested in
significant differences for the EOS.
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FIG. 10. Dimensionless pressure of WCA fluids in the
metastable regime as a function of reduced temperature at reduced
densities of ρσ 3 = 1.2 (red) and 1.4 (green) based on MV virial
(solid) and compressibility (dash-dotted) route calculations.
Simulation data are the red and green circles; note the lower x-axis
is for the solid circles and a reduced density of 1.2, while the upper
x-axis is for the open circles and a reduced density of 1.4.

F. Dynamic implications

We emphasize that a static length scale associated with
a two-point correlation function that grows with packing
fraction is also relevant to isobaric experiments on super-
cooled liquids where, typically, density increases with cool-
ing. Moreover, isobaric experiments on a variety of fragile
glass-forming liquids find the primary wide angle peak of
S(q) grows significantly with cooling, and suggestions for its
connection to glassy dynamics have been proposed [54,55].
Since glassy dynamics is known to be very sensitive to small
changes of thermodynamic state and structure, the predictions
of microscopic theories of activated relaxation are expected
to be nontrivially sensitive to using PY versus MV structural

input. Though this topic is beyond the scope of this article, it
is a primary motivation for our present work. This motivates
our presentation in Fig. 9 of an illustrative calculation of how
the local cage, collective elastic, and total dynamic barriers in
the units of thermal energy evolve with packing fraction for a
hard sphere fluid based on ECNLE theory [16]; we note that
the mean structural relaxation time scales as the exponential
of βFtotal. In the present context, the relevant point is ECNLE
theory requires only S(q) as input, which we have shown
in this article is significantly more accurately predicted in
the metastable regime based on the MV closure than its PY
analog. The differences in the barriers based on the structural
input from the two closures seen in Fig. 9 are significant, and
their consequences will be studied in a future publication.

IV. WCA FLUID

We have also performed OZ-MV calculations for super-
cooled metastable states of the WCA fluid and compared
the results with our crystal-avoiding simulations. The WCA
potential is defined as [1]:

uWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r � 21/6σ

0, r > 21/6σ
, (15)

where ε is the energy scale and σ the nominal length scale.
The reduced density and temperature are defined as ρσ 3 and
kBT/ε, respectively, where kB is the Boltzmann constant. Here
we employ for simplicity the same values of a1 and a2 in
Eq. (4) which were optimized for hard spheres. Hence, we
expect the theoretical results will not be as accurate for the
WCA fluid as found for hard spheres. We emphasize that all
the simulation results in Figs. 10–12 are in the metastable low
temperature and high density regime, in contrast to our prior
brief study [24] of the equation of state of the WCA fluid in
the normal fluid regime.

Figure 10 shows the dimensionless EOS as a function of
reduced temperature for the two high reduced densities of 1.2
and 1.4. Rather good thermodynamic consistency and agree-
ment with simulation is found, albeit not as quantitatively

FIG. 11. Pair correlation function of WCA fluids in the metastable regime at dimensionless densities and temperatures of (a) ρσ 3 = 1.2
and kBT/ε = 0.9, and (b) ρσ 3 = 1.4 and kBT/ε = 2.0. Solid curves are the MV theory and open circles the simulation data.
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FIG. 12. Structure factor as a function of dimensionless wave vector of WCA fluids in the metastable regime for dimensionless densities
and temperatures of (a) ρσ 3 = 1.2 and kBT/ε = 0.9, and (b) ρσ 3 = 1.4 and kBT/ε = 2.0. Solid curves are the MV theory and open circles
the simulation data.

good as found for hard spheres. Overall, the virial route-based
results are modestly better than their compressibility route
analogs, a conclusion that also applies to hard spheres.

Figures 11 and 12 show representative structural results in
real- and Fourier-space, respectively. For each density, only
the results for the lowest temperature studied is presented
since it provides the most incisive test of theory. The predicted
g(r)’s in Fig. 11 are in excellent accord with simulation, with
(again) the exception of no weakly split second peak. The
analogous structure factors in Fig. 12 are also quite accurate,
albeit the intensity of the first peak is overpredicted. The
latter deviation is much smaller at higher temperatures (not
shown), and modestly worse at higher density. As expected,
the theoretical predictions for S(q) are not as good as we
found for hard spheres.

V. SUMMARY

We have applied OZ integral equation theory with the
PY and MV closures to study the equilibrium structural and
thermodynamic properties of monodisperse hard sphere and
WCA fluids under density and temperature conditions where
the system is overcompressed or supercooled (metastable
relative to crystallization). The theoretical results were com-
pared to our present crystal-avoiding simulations. This is a
comprehensive application of MV-OZ theory to study thermo-
dynamic properties and real- and Fourier-space structure and
correlation lengths of metastable hard sphere and WCA fluids.

As found previously [24], for the hard sphere fluid g(r) the
MV results at small distances (including the contact value) are
much better than their PY analog, and also in good absolute
agreement with simulation. The MV virial route produces ex-
cellent results for the EOS for all packing fractions. MV-based
results for the static structure factor and various local and long
wavelength measures of density fluctuations associated with

the real- and Fourier-space pair correlations were obtained.
Overall the MV-based OZ theory performs very well, and is
far more accurate and thermodynamically self-consistent than
the analogous PY-based approach.

Rather remarkably, two measures of density fluctuation
order parameter amplitude (on the cage scale and q = 0)
and density correlation lengths extracted in three distinct
manners are all predicted to grow in an exponential manner
with packing fraction over the metastable regime studied.
The established behaviors are directly relevant to microscopic
theories (e.g., MCT [14,56], ECNLE theory [6,16]) that relate
dynamical constraints to structural pair correlations, an issue
that will be explored in a future article. Our present simula-
tions have also revealed that the real-space density correlation
length continues to grow up to the highest packing fraction
(0.58) for which we are able to achieve full equilibration.

We studied several high density and low temperature states
of the WCA fluid in the metastable regime. The MV-based
theory of structure and thermodynamics is again quite accu-
rate, though not as quantitatively good as for hard spheres.
This is unsurprising since no attempt was made to adjust the
two parameters of the MV closure for the WCA potential. This
is an avenue for future work, not only for the WCA potential,
but also other soft matter systems characterized by repulsive
interactions of variable softness and spatial range.
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[41] S. Pieprzyk, A. C. Brańka, and D. M. Heyes, Representation
of the direct correlation function of the hard-sphere fluid,
Phys. Rev. E 95, 062104 (2017).
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