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Integrating dissipative particle dynamics with energy conservation
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To suppress secular energy drift in dissipative particle dynamics simulations with energy conservation, we
introduce an additional pairwise particle dynamics that allows for a microscopic energy fluctuation while
conserving the total linear momentum of the system exactly. The pairwise dynamics may be regarded as an
adaptation of the thermostat in isothermal dissipative particle dynamics, but leads to microcanonical instead of
canonical ensemble at equilibrium and allows for a nonuniform temperature field at a steady state. The method
is also effective in suppressing secular energy drift when used in combination with reverse nonequilibrium
molecular dynamics moves. All of the equilibrium and transport properties we computed were unaffected by
this additional pairwise dynamics.
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I. INTRODUCTION

The velocity Verlet algorithm (VV) [1,2] plays an integral
part in molecular dynamics simulation (MD) and is often
used within a more general particle-based simulation such
as dissipative particle dynamics (DPD) [3]. In the Shardlow
splitting algorithm (SSA) [4], for example, the equations of
motion of DPD are split into conservative dynamics on the
one hand and dissipative and fluctuating dynamics on the
other. The first part of dynamics is usually integrated by VV,
while integration of the latter relies on the existing integration
methods for Langevin equations [5,6].

VV has many desirable properties: It preserves the fun-
damental properties of the equations of motion of classical
mechanics, such as microscopic reversibility and phase vol-
ume invariance. In addition, it conserves the so-called shadow
Hamiltonian [7–9] extremely well. The difference between
the shadow Hamiltonian and the actual Hamiltonian can be
expressed as a power series in �t , the time step of integration,
with the leading term proportional to (�t )2 [10]. Thus, pro-
vided that �t is smaller than the (generally unknown) radius
of convergence of the series, VV produces a trajectory of
nearly constant energy over an extremely long duration of
time.

Nevertheless, VV gives rise to a energy drift if it is
used in combination with additional dynamics that conserve
energy exactly. That is, the total energy of the system, on
average, changes monotonically with time and is no longer
bounded. As pointed out in Refs. [11,12], this is indeed the
case with SSA applied to DPD with energy conservation
(DPDE) [13,14]. Reverse nonequilibrium molecular dynamics
(RNEMD) [15], which aims to extract transport properties
of a system by imposing a flux and measuring the resulting
steady-state response, is another example. To avoid energy
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drift, calculation of viscosity using RNEMD is often carried
out in isothermal ensembles, while more elaborate integration
schemes must be adopted for thermal conductivity computa-
tion [16,17].

The energy drift observed in these simulations can be
understood as follows [11,12]. The dissipative and fluctuating
dynamics in DPDE and the swap moves in RNEMD conserve
the energy exactly. In contrast, the quantity (extremely well)
conserved in VV is the shadow Hamiltonian and not the
energy. Thus, VV moves the system along a constant shadow
Hamiltonian path on which the energy is not constant. The
subsequent dissipative and fluctuating dynamics (or the swap
moves in RNEMD) carries the system along a constant energy
path, thus affecting the value of the shadow Hamiltonian.
Repeated applications of these two dynamics, in general,
would not conserve either of these quantities. It does not
appear reasonable to expect that the fluctuations of these quan-
tities are somehow bounded along the phase trajectory thus
generated. In short, it is a combination of small (and bounded)
energy fluctuations of VV and exact energy conservation of
DPDE or RNEMD that produces unbounded energy drift.

This observation suggests that one may eliminate the sec-
ular energy drift either by altering the dissipative and fluc-
tuating dynamics of DPDE (or the swap move in RNEMD)
so that the shadow Hamiltonian is conserved or by using an
energy-conserving algorithm for the conservative dynamics.
However, the explicit form of the shadow Hamiltonian is
unknown except for simple model systems such as a single
harmonic oscillator. On the other hand, application of strictly
energy-conserving integrators [18–20] to a system with a large
number of mechanical degrees of freedom is a nontrivial
computational task.

A nonsmooth interparticle potential is another source of
the energy drift [21,22]. The shadow Hamiltonian exhibits
a jump when the system crosses the point of discontinuity
in interparticle potential or its derivatives. This is the case
when the potential function is truncated (by necessity when
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using periodic boundary conditions) unless it is augmented
by a carefully constructed switching function. The issue is
expected to be particularly acute for DPD, in which the
most commonly used potential function has the discontinuous
second derivative and a typical particle number density is in
the range of 3 to 10.

In all cases mentioned above, the energy drift can be
reduced by using a smaller time step for integration. However,
it cannot be eliminated completely in this manner and in
principle, if not in practice, precludes steady or equilibrium
states from our consideration. This restriction on the time step
severely limits our ability to simulate a long time behavior
of a system and runs counter to the very aim of DPD(E),
which is to access mesoscopic timescales. In fact, a consid-
erable effort has been made since the inception of DPD to
eliminate time-step dependence of various equilibrium and
transport properties, thus allowing for a larger time step to be
used [23–28].

Thus far, such an effort has been directed toward the
isothermal DPD. In this case, the built-in thermostat that
maintains the system at a given temperature also prevents
a systematic energy drift. In contrast, however, DPDE aims
to simulate an isolated system and the demand of energy
conservation places a far stricter limit on the admissible size
of �t .

Given the widespread use of nonsmooth interaction poten-
tials in DPD(E) as well as the ease at which RNEMD (with
or without the dissipative and fluctuating dynamics of DPDE)
can drive nonequilibrium processes in general (even beyond
what is usually considered in computation of transport prop-
erties and including a simulation of thermocapillary flows,
for example), it seems desirable to have a simple method to
eliminate the secular energy drift in these simulations.

Energy conservation can be enforced exactly by means of a
projection method, in which either the velocities or the inter-
nal energies of the individual particles are adjusted [11,12].
The former method affects the total linear momentum of
the system and hence would not be appropriate for studying
phenomena involving convective fluxes. The latter method is
free from this shortcoming but applies only to DPDE.

In search for a method that conserves linear momentum
and at the same time is uniformly applicable whether or not
the particles have internal degrees of freedom, we recall that
macroscopic systems, whose behavior we wish to understand
by means of MD simulation, are never truly isolated from their
surroundings, and even the slightest of interactions with the
surroundings (in a form of an experimental measurement, for
example) causes the system energy to fluctuate. Thus, isolated
systems of our interest are generally associated with a very
small but still nonzero energy fluctuations, whose magnitude
we shall denote by �E . In fact, we recall that such �E is
essential in the definition of the entropy of an isolated system
in statistical mechanics and that the exact value of �E has no
quantitative consequence for intensive quantities of the system
in equilibrium [29–31]. (Strictly speaking, �E in statistical
mechanics is usually attributed to the uncertainty principle
and its magnitude is much smaller than those associated with
numerical integration of the equations of motion. Insofar as
the intensive quantities are insensitive to the magnitude of
�E , this observation is not relevant to what follows.) Because

interaction of a similar magnitude should exist between a
system and its surroundings regardless of what else may be
happening in the system, a nonzero �E should be admissible
when simulating time-dependent processes as well.

In simulations of many-particle systems, therefore, the
importance should be placed not on the exact energy con-
servation but on ensuring that the energy fluctuations are
reasonably small and that the system energy is bounded. By
discarding the hard constraint in favor of a less stringent
one, we may gain some flexibility in designing an integration
scheme. Indeed, VV is such a method, but only for sufficiently
smooth interparticle potentials in the absence of an additional
dynamics that conserves energy exactly.

Motivated by the momentum-conserving Lowe-Andersen
thermostat [23,32], we introduce an additional pairwise dy-
namics that allows for small fluctuations in energy while
ensuring strict conservation of the total linear momentum.
This method, which we will call energy dissipation dynamics
(EDD), completely eliminates the secular energy drift both in
DPDE and in RNEMD without affecting any of the equilib-
rium or transport properties we examined.

We will briefly summarize equations of motion of DPD(E)
and the basic ideas of RNEMD method in Sec. II. In Sec. III,
we introduce EDD and show that its equilibrium distribu-
tion is microcanonical. The integration scheme incorporating
EDD is expressed in terms of the propagator of dynamics
in Sec. IV. Section V describes the application of EDD to
typical model systems in DPD. The results from simulations
are given in Sec. VI. The article concludes with a brief sum-
mary in Sec. VII. The integration scheme for the dissipative
and fluctuating dynamics of DPDE is described in detail in
Appendix A. Appendix B compares our integration method
for viscous heating dynamics (a subdynamics of DPDE) with
the corresponding algorithm in Ref. [11], which extends the
work of Shardlow [4] for DPDE. Appendix C is concerned
with an aspect unique to the thermal conductivity calculation
when RENMD is used with DPDE.

II. EQUATIONS OF MOTION

Molecular dynamics simulation solves a set of Newton’s
equations of motion for a system of N particles:

dri = vidt and dvi =
∑
j �=i

Fc
i j

mi
dt, (1)

where i runs from 1 through N , the sum is with respect to j
running from 1 through N excluding i, and mi, ri, and vi are,
mass, position, and velocity of particle i, respectively. Fc

i j is a
conservative force exerted onto particle i by particle j.

In DPDE, the conservative dynamics is supplemented by
dissipative and fluctuating dynamics in such a way as to
conserve the total energy of the system:

dri = vidt, (2a)

dvi =
∑
j �=i

[
Fc

i j

mi
dt − γi j

mi
ωi j

2ve
i jei jdt + σ

mi
ωi jei j ◦ dW v

i j

]
,

(2b)
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dεi =
∑
j �=i

1

2

[
γi jv

e
i j

2 + α2

(
ci

εi
− c j

ε j

)]
ωi j

2dt

+
∑
j �=i

[
−1

2
σωi jv

e
i j ◦ dW v

i j + αωi j ◦ dW ε
i j

]
. (2c)

where ei j := (ri − r j )/ri j , in which ri j := ||ri − r j ||, is a unit
vector pointing from particle j to particle i, and ve

i j := (vi −
v j ) · ei j . The weighting function ωi j = ω ji specifies the range
of the dissipative and fluctuating forces between the particles.
Furthermore, ci is the heat capacity and εi is the internal
energy, both referring to particle i. The constants γi j and σ

control the strength of dissipative and random forces between
particles i and j. According to the fluctuation-dissipation the-
orem, the equilibrium distribution of DPDE is microcanonical
if [13,14]

γi j = σ 2

4

(
ci

εi
+ c j

ε j

)
. (3)

Likewise, α controls the heat conduction dynamics among
the particles. The infinitesimal quantities dW v

i j = dW v
ji and

dW ε
i j = −dW ε

ji denote increments of Wiener processes. As
denoted by the symbol ◦, the stochastic differential equations
are to be understood according to the Stratonovich interpreta-
tion [33].

If the equations of motion for εi are omitted, the total
energy of the system is no longer conserved. Additionally, if
Eq. (3) is replaced by

γi j = σ 2

2kBT
, (4)

where kB is the Boltzmann constant and T is the absolute
temperature, the equations of motion for DPDE reduce to
those of DPD and give rise to the canonical distribution at
equilibrium.

In order to integrate the equations of motion of DPD(E)
numerically, one splits the equations into two subdynamics,
one pertaining to the conservative dynamics only and the
other to dissipative and fluctuating dynamics. Since each
subdynamics conserves the total energy of the system, this
Shardlow splitting algorithm (SSA) [4] leaves the equilibrium
distribution (a function only of the total energy) unaffected.
This accounts for the success of SSA.

When the conservative dynamics is further divided in VV,
the energy is no longer conserved exactly. This does not
introduce any practical difficulty provided that VV is used in
isolation as in MD in microcanonical ensemble or in combina-
tion with an appropriate thermostat such as the Nosé-Hoover
thermostat or as in DPD.

In addition to the dynamics we have discussed so far,
RNEMD for shear viscosity calculation introduces a swap
move, in which one of the components of the velocity vector
is swapped between suitably chosen pair of particles. In
RNEMD, therefore, the velocity gradient is generated by
“Maxwell’s demon” rather than by an externally imposed
force as in standard nonequilibrium simulations. This would
make any attempt to write equations of motion for RNEMD
moves a contrived one. In what follows, it is sufficient to note
that RNEMD moves conserve both the total linear momentum

and the total energy of the system exactly. A similar remark
applies to RNEMD for thermal conductivity calculation, in
which all components of the velocity vectors are swapped
between a suitably chosen pair of particles.

For brevity, we shall refer to the entirety of the conservative
dynamics, dissipative, and fluctuating dynamics of DPD(E),
and RNEMD moves as the primary dynamics.

Our integration scheme employs SSA and its details are
presented in Sec. IV and Appendix A. Here, it is sufficient to
note that the dissipative and fluctuating dynamics of DPDE is
decomposed down to the level of a single pair of interacting
particles. In what follows, therefore, we will write equations
of motion only for one such pair.

III. THEORY

As discussed already, the unbounded energy drift is a
numerical issue of the integration scheme for the primary
dynamics and arises from small energy fluctuations in VV
combined with constant energy moves of DPDE or RNEMD.
Nevertheless, it is useful to consider the energy fluctuations
and drift as originating from an interaction between the system
and its surroundings. This is an acceptable viewpoint provided
that these two causes of energy fluctuations and drift cannot
be distinguished on the basis of observable behavior of the
system in simulation. Without further details regarding the
nature of the surroundings, its interaction with the system is
best described as a stochastic process.

Thus, we formally regard the primary dynamics as consist-
ing of (1) the exact dynamics, a part that conserves the energy
and the total linear momentum exactly and (2) a stochastic
process. In this way, the stochastic process is entirely re-
sponsible for the unbounded energy drift. To control this, we
introduce an additional dissipative mechanism, referred to as
the energy dissipation dynamics (EDD), which results in the
velocity updating scheme given by Eq. (13) below.

Since both primary and exact dynamics conserve the total
linear momentum of the system exactly, the same is true for
the stochastic process. Demanding the same of the dissipative
dynamics, we put forward the following equations of motion,
written for each pair of particles i and j in the system, to
describe the dissipative and stochastic processes:

midvi = −gi jv
e
i jei jdt + ei jdXi j

m jdv j = gi jv
e
i jei jdt − ei jdXi j, (5)

where dXi j is the stochastic process we are considering and
gi j characterizes the dissipative force of EDD.

In writing Eq. (5), we have tacitly assumed that the in-
teraction with the surroundings affects velocities of particles
but not their positions. A justification for this simplifying
assumption can be given only on the basis of the usefulness
of the resulting approach.

Our goal now is to construct an appropriate dissipative
process gi j so that the total energy of the system remains
bounded. For this purpose, we must first understand how the
system energy behaves under Eq. (5).

The pairwise dynamics conserves the linear momentum
of the pair exactly since midvi + mjdv j = 0. However, the
kinetic energy Ki + Kj of the particles i and j will be affected
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by the indicated changes in vi and v j :

d (Ki + Kj ) = −gi j
(
ve

i j

)2
dt + ve

i jdXi j + dYi j, (6)

where dYi j := (mi||dvi||2 + mj ||dv j ||2)/2. Since the potential
energy due to the interaction between particles i and j is
unaffected by the changes in their velocities, Eq. (6) summed
over all pairs of particles in the system may be written as

d (K + U − E0) = −
∑
(i, j)

gi j
(
ve

i j

)2
dt + NdZ, (7)

where K and U are, respectively, total kinetic and potential
energies of the system, N is the total number of particles,
and E0 is a constant. The sum of the stochastic processes
NdZ := ∑

(i, j)(v
e
i jdXi j + dYi j ) is itself a stochastic process

and represents the energy drift and fluctuations arising from
the integrator of the primary dynamics. On an empirical basis,
it appears reasonable to expect that dZ can be expressed as the
sum of a secular drift term Adt and a stochastic term BdW ,
where A and B are constant and dW is an increment of the
Wiener process. This gives the stochastic differential equation

df =
⎡
⎣A − 1

N

∑
(i, j)

gi j
(
ve

i j

)2

⎤
⎦dt + BdW, (8)

where f := (K + U − E0)/N is the deviation per particle of
the system energy from some specified constant E0. In DPDE,
the internal energy of each particle must be included in the
total energy of the system. However, because the internal
energy remains constant in the pairwise dynamics under con-
sideration, it will not be made explicit in what follows.

Let

gi j = χ f

C2
μi jθ (Rc − ri j ), (9)

where μi j := mimj/(mi + mj ) is the reduced mass, χ is a
constant controlling the strength of the dissipative force, θ is
a step function with Rc denoting the cutoff distance [θ (x) = 1
if x � 0 and θ (x) = 0 otherwise], and

C2 := 1

N

∑
(i, j)

μi jθ (Rc − ri j )
(
ve

i j

)2
. (10)

For this choice of gi j ,

df = (A − χ f )dt + BdW (11)

and the equilibrium distribution p( f ) for f is given by

p( f ) =
√

χ

πB2
exp

[
−χ ( f − A/χ )2

B2

]
. (12)

Since the exact dynamics leaves the system energy unaf-
fected, Eq. (12), which was obtained for Eq. (5), is also the
equilibrium distribution of the entire simulation consisting of
the primary dynamics and the energy dissipation mechanism
introduced in this section. For a suitable choice of the constant
χ , the distribution will be sufficiently narrow and the energy
is practically bounded. If ergodicity is assumed, this means
that the corresponding statistical ensemble is essentially mi-
crocanonical.

Equations (5) and (9) lead to the following velocity update
scheme for each pair of particles:

�vi = −χ f

C2

μi j

mi
θ (Rc − ri j )v

e
i jei j�t,

(13)
�v j = χ f

C2

μi j

m j
θ (Rc − ri j )v

e
i jei j�t,

where �t is the time step of integration. The stochastic noise
term dXi j in Eq. (5) represents the net effect arising from the
integration scheme for the primary dynamics and should not
be included explicitly in Eq. (13).

IV. INTEGRATION OF THE EQUATIONS OF MOTION

Let L denote the generator of the dynamics consisting of
LC , LE , and LD representing, respectively, the generators of
the conservative dynamics driven by the Hamiltonian, EDD,
and the fluctuating and dissipating dynamics of DPDE:

L = LC + LE + LD. (14)

Denoting by R an operator which acts on a microstate to
carry out a swap move of RNEMD with a certain probability,
which is proportional to �t , we express the propagator for
the most general simulations we considered as ReL�t . This
operator acts on the microstate at time t and produces the
corresponding macrostate at t + �t .

Invoking SSA, we write

ReL�t ≈ ReL
D�t eL

E �t eL
C�t . (15)

Omission of certain factors on the right-hand side results in
a propagator for a less general simulation. For example, R
will be missing in an equilibrium simulation. If the factor
eL

C�t alone is retained, the propagator leads to an equilibrium
MD simulation. If eL

E �t is dropped, the resulting simulation
has no energy control measure. This is the case with DPD,
which simulates a system in contact with a heat bath. If strict
energy conservation is imposed by means of a projection
method, eL

E �t needs to be replaced by an operator Pv or P i

representing, respectively, rescaling of particle velocities or of
internal energies of individual particles.

The velocity Verlet algorithm is a symplectic method of the
second order and is given by

eL
C�t ≈ S2(�t ) := eL

v�t/2eL
r�t eL

v�t/2, (16)

where

Lr :=
∑

i

vi · ∂

∂ri
and Lv :=

∑
i

FC
i

mi
· ∂

∂vi
. (17)

Here, FC
i denotes the total conservative force acting on the

particle i and the sum is over all particles in the system.
Following Ref. [28], we also consider the effect of using a
fourth-order symplectic method [7], which is given by

eL
C�t ≈ S2(τ1)S2(τ0)S2(τ1), (18)

where

τ0 = − 21/3

2 − 21/3
�t and τ1 = 1

2 − 21/3
�t . (19)
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TABLE I. List of abbreviations for equilibrium simulations. The propagator must be multiplied from the left by R for RNEMD. The
generator LD differs between DPD and DPDE as explained in Appendix A.

Abbreviation Propagator Abbreviation Propagator

MD, VV S2(�t ) MD, FS S2(τ1)S2(τ0 )S2(τ1)
MD, VV(p0) PvS2(�t ) MD, FS(p0) PvS2(τ1)S2(τ0 )S2(τ1)
MD, VV(x1) eL

E (χ=0.01)�tS2(�t ) MD, FS(x1) eL
E (χ=0.01)�tS2(τ1)S2(τ0)S2(τ1)

MD, VV(x2) eL
E (χ=0.1)�tS2(�t ) MD, FS(x2) eL

E (χ=0.1)�tS2(τ1)S2(τ0)S2(τ1)
MD, VV(x3) eL

E (χ=10)�tS2(�t ) MD, FS(x3) eL
E (χ=10)�tS2(τ1)S2(τ0 )S2(τ1)

DPD, VV eL
D�tS2(�t ) DPD, FS eL

D�tS2(τ1)S2(τ0 )S2(τ1)

DPDE, VV eL
D�tS2(�t ) DPDE, FS eL

D�tS2(τ1)S2(τ0 )S2(τ1)
DPDE, VV(p0) eL

D�tPvS2(�t ) DPDE, FS(p0) eL
D�tPvS2(τ1)S2(τ0)S2(τ1)

DPDE, VV(p1) eL
D�tP iS2(�t ) DPDE, FS(p1) eL

D�tP iS2(τ1)S2(τ0 )S2(τ1)
DPDE, VV(x1) eL

D�t eL
E (χ=0.01)�tS2(�t ) DPDE, FS(x1) eL

D�t eL
E (χ=0.01)�tS2(τ1)S2(τ0)S2(τ1)

DPDE, VV(x2) eL
D�t eL

E (χ=0.1)�tS2(�t ) DPDE, FS(x2) eL
D�t eL

E (χ=0.1)�tS2(τ1)S2(τ0)S2(τ1)
DPDE, VV(x3) eL

D�t eL
E (χ=10)�tS2(�t ) DPDE, FS(x3) eL

D�t eL
E (χ=10)�tS2(τ1)S2(τ0)S2(τ1)

We implement EDD through the approximation

eL
E �t ≈

∏
(i, j)

eL
E
i j�t , (20)

where the product is over all pairs of particles and

LE
i j := −χ f

C2
μi jθ (Rc − ri j )v

e
i jei j ·

(
1

mi

∂

∂vi
− 1

mj

∂

∂v j

)
.

(21)
In principle, ve

i j , f , and C2 must all be recomputed after

each pairwise update of the velocities (application of eL
E
i j�t ),

which requires a considerable computational effort. In prac-
tice, however, we found the energy drift to be completely
eliminated when f and C2 are updated only once during each
time step, which we have done right before applying the
propagator eL

E �t .
For DPDE equations of motion, we employ the approxi-

mate scheme

eL
D�t ≈

∏
(i, j)

eL
vh
i j �t eL

hc
i j �t , (22)

where Lhc
i j and Lvh

i j denote, respectively, the generators of heat
conduction and viscous heating dynamics between a pair of
particles i and j.

We still need to deduce the effect of the propagators eL
hc
i j �t

and eL
vh
i j �t on the microstate, which is the subject of Ap-

pendix A. Finally, we note that the expression for LD differs
between DPDE and DPD. However, the propagator eL

D�t for
DPDE reduces to that of DPD with suitable modifications as
explained in the same Appendix.

In Table I, we list the propagators of various simulations
we performed in this work along with the abbreviations used
in the figures shown in Sec. VI.

V. SIMULATION

To examine the usefulness of the EDD method, we per-
formed Monte Carlo (MC), MD, DPD, and DPDE simulations
of model systems and evaluated a few equilibrium and trans-
port properties. All of these methods should agree in regard to

equilibrium properties of a given model, while there should be
an agreement between DPD and DPDE regarding diffusivity
and viscosity.

MC yields equilibrium properties free from any depen-
dence on the numerical integrator or the time step of integra-
tion �t . MD allows us to examine the effectiveness of EDD
when used with RNEMD alone without the added compli-
cations of dissipative and fluctuating dynamics. DPD, which
simulates systems in contact with a thermal bath, does not
require EDD or a projection method to control energy drift.
Thus, their effects may be discerned by comparing predictions
on the same properties from DPD and DPDE.

A. Model system

The interparticle potential in model A is defined in terms
of the function

wA(x) =
{

(1 − x)2 (x � 1)

0 (x > 1)
(23)

as

φA(r) = εWAwA(r/Rc), (24)

where r is the interparticle distance. This is the most com-
monly used potential in DPD.

We note that the second derivative of φA and hence the
first derivative of the conservative force are discontinuous at
r = Rc. To examine its impact, we also performed a small set
of computations using model B with a smoother potential

φ(r) = εWBwB(r/Rc) , (25)

where wB is the cubic spline function

wB(x) =

⎧⎪⎨
⎪⎩

1 − 6x2 + 6x3 (x � 1/2)

2(1 − x)3 (1/2 < x � 1)

0 (x > 1).

(26)

Adopting a system of units in which ε = 1 and Rc = 1, we set
WA = 9.375 and WB = 10. The value of WA is the same as in
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Ref. [28]. The value of WB was determined so that∫ Rc

0
φA(r)4πr2dr =

∫ Rc

0
φB(r)4πr2dr (27)

based on the expectation that the physical properties of models
A and B would be comparable. We set mi = 1 and ci/kB =
c/kB = 20 for all i so that the system is made of a single
component. Following Ref. [28], σ = 3. Finally, α = 1.

In accordance with a common practice, we use

ωi j =
{

1 − ri j/Rc if ri j � Rc

0 otherwise
(28)

for the weighting function specifying the range of the dissipa-
tive and fluctuating forces.

We used a rectangular box with height 6 and the square
base of side L = 5, and imposed periodic boundary conditions
in all three directions. The box contained N = 600 particles so
that the particle number density was 4. The system may not be
large enough to eliminate various finite-size effects, but it is
expected to be sufficient for illustrating the usefulness of the
method.

B. Energy

For projection methods and EDD, we must specify the
target value E0 for the total energy of the system so as to
achieve a desired temperature T0. In the simulations reported
in this article, kBT0 = 1. For this purpose, we first computed
the potential energy U by means of canonical ensemble MC.
Then, we set

E0 = U + 3
2 kBT0(N − 1) (29)

for MD.
According to Ref. [34], the probability distribution p(ε) for

the internal energy ε of a particle in a canonical ensemble is
given by

p(ε) = εc/kB e−ε/kBT0

(kBT0)c/kB+1�(c/kB + 1)
, (30)

where � denotes the gamma function. This gives

〈ε〉 = kBT0

(
c

kB
+ 1

)
, (31)

suggesting that we set

E0 = U + 3

2
(N − 1)kBT0 + NkBT0

(
c

kB
+ 1

)
(32)

for DPDE.
Even though MD and DPDE simulations lead to a micro-

canonical as opposed to a canonical ensemble, E0 determined
by Eqs. (29) or (32) resulted in the desired temperature. A
noticeable deviation was observed with the largest �t and
the smallest χ we used. While it may be possible to achieve
the desired system temperature by adjusting E0, this would
prevent us from evaluating the effect of χ on the same footing
and we have used the same E0 value throughout (E0 = 27.818
for model A and E0 = 26.678 for model B).

z

ΔD

ΔC

ΔD

sampling region

sampling region

FIG. 1. Swap regions (�C and �D) and the sampling regions in
the simulation box.

C. Transport properties

Diffusivity was computed using the mean-square displace-
ment of particles in equilibrium simulations, while viscos-
ity and thermal conductivity were computed using reverse
nonequilibrium molecular dynamics (RNEMD) [15]. For this
purpose, we choose two thin parallel swap regions �C and �D

in the simulation box. In a coordinate system with its origin at
the center of the simulation box and the z axis perpendicular to
two of the opposing square faces of the box, they are defined
by |z| � 0.1 and |z| � 2.9, respectively. Figure 1 provides a
schematic representation of the simulation box.

For viscosity calculation, we first identify a particle with
the smallest x component (pxC) of the momentum in region
�C and a particle with the largest x component (pxD) of the
momentum in region �D. Then, we assign pxD and pxC to
the first and the second particles, respectively. This results
in the transfer of momentum in the amount of pxD − pxC

from region �D to �C . This momentum then flows back to
region �D in the form of viscous momentum flux driven by
the velocity gradient dux/dz. On average, the swap move was
performed at the rate of 0.75 times per unit time both in MD
and in DPD(E). This frequency was chosen so that a linear
velocity profile, ux(z), is established outside regions �C and
�D. The slope dux/dz was estimated by least square fitting of
a line to the velocity profile in the sampling region defined by
0.5 � |z| � 2.5. The viscosity μ is then evaluated as

μ = −
∑

(pxD − pxC )/(2τL2)

dux/dz
, (33)

where the sum is over all swap moves performed during the
entire duration τ of the simulation. The factor of 2 in Eq. (33)
accounts for the fact that, under the periodic boundary condi-
tions, the momentum flows from region �C to region �D in
both the positive and negative z directions.

For thermal conductivity calculation, we identify a particle
with the smallest kinetic energy (mCvC

2/2) in region �C and
a particle with the largest kinetic energy (mDvD

2/2) in region
�D. Then, we swap the velocity vectors of these particles. The
swap move was performed at the rate of 0.75 and 2.5 times
per unit time in MD and in DPDE, respectively. This induces
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a heat flux in the z direction

qz =
∑ (

mDv2
D/2 − mCv2

C/2
)
/(2τL2), (34)

in which the sum is over all swap moves performed during the
simulation.

In the case of MD combined with RNEMD, the thermal
conductivity is given by

κ = − qz

d (kBTk )/dz
, (35)

where

kBTk (z) := N

N − 1

〈
m

3Nδ

∑ (
vx

2 + vy
2 + vz

2)〉 (36)

is the dimensionless temperature profile based on the kinetic
energy of particles. In this expression, Nδ is the number of
particles within a slab of thickness δ = 0.01 centered at z and
the sum is only over these particles. The factor N/(N − 1)
ensures that the volume average of kBTk (z) agrees with kBTk

defined by Eq. (43) below for a uniform system.
In DPDE, the temperature profile may also be computed

using the internal energy of the particles as

kBTi(z) :=
〈

1

Nδ

∑
i

c

εi

〉−1

. (37)

The σ value we used did not allow for an efficient energy
exchange between the translational and internal degrees of
freedom of the particles in comparison to the energy exchange
among the latter degrees of freedom alone, the process whose
rate is determined by α. This led to a noticeable discrepancy
between kBTk (z) and kBTi(z). As shown in Fig. 12 below, the
temperature profiles are well described by the following seven
parameter model including κk and κi, referring, respectively,
to the thermal conductivity associated with energy exchange
among particles through their translational and internal de-
grees of freedom:

kBTk (ζ ) = 1

κt
[�(ζ ) + κi�(ζ )],

(38)

kBTi(ζ ) = 1

κt
[�(ζ ) − κk�(ζ )],

where

�(ζ ) := kBTk (ζ ) − kBTi(ζ )

= A1 cosh(aζ ) + A2 sinh(aζ ) + �

λ
,

�(ζ ) := κkkBTk (ζ ) + κikBTi(ζ ) = −qzζ + A3, (39)

and the ζ axis points in the same direction as the z axis but
its origin is at the center of the sampling region. In these
equations, A1, A2, A3, a, �/λ, κk , and κi are model parameters
to be determined, and κt := κk + κi. Finally, qz is directly
measurable in RNEMD simulations.

Using the Levenberg-Marquardt method [35], we first fit
�(z) to the temperature profiles from a simulation to deter-
mine A1, A2, a, and �/λ, and then Ti(z) to determine κk/κt ,
qz/κt , and A3/κt , from which the values for κk and κi can be
determined.

D. Energy drift

In the absence of EDD moves, Eq. (11) reduces to

df = Adt + BdW. (40)

This gives

Ew{ f (t )} = At and Ew{[ f (t ) − Ew{ f (t )}]2} = B2t,
(41)

where Ew{·} denotes the average over all possible realization
of the stochastic noise. To the extent that Eq. (40) describes
the behavior of f adequately, the energy drift is unbounded
even if A = 0. In contrast, Eq. (12) indicates that

Ew{[ f (t ) − Ew{ f (t )}]2} = B2

χ
= constant (42)

with EDD.

E. Additional details of simulations

We examined six values for the time step of integration:
�t = 0.002, 0.01, 0.02, 0.04, 0.08, and 0.1. Each MD or
DPD(E) simulation involved an equilibration over the time
duration of 4 × 103 and sampling over the time duration of
6.4 × 104–1.6 × 105. MD and DPDE without any control
over the energy drift were exceptions. These trajectories were
generated using, as the initial condition, a well-equilibrated
system under the projection method with velocity rescaling.
MC simulations consisted of 2 × 105 and 4 × 106 MC steps
for equilibration and sampling, respectively. We generated
16 independent trajectories for each simulation conditions.
Each physical property was obtained as the average over these
independent trajectories. In the figures below, we will omit
error bars if they are smaller than the size of the symbols
indicating the average, or if they are visible only in the lower
portion of a logarithmic plot.

VI. RESULTS

In what follows, we will omit results from EDD with
χ = 0.1 (x2 in the abbreviation in Table I) and projection
methods (p0 and p1) as they are nearly identical to those from
EDD with χ = 10 (x3). The Supplemental Material provides
a more complete set of results [36].

A. Equilibrium properties

In Fig. 2, we show the dependence of the kinetic-energy-
based system temperature

kBTk :=
〈

1

3(N − 1)

∑
i

mi||vi||2
〉

(43)

on the time step of integration �t in equilibrium DPD sim-
ulations. We note that when VV is used to integrate the
conservative dynamics, the smoother interparticle potential
energy (model B) actually gives a slightly larger deviation
of kBTk from the set value (kBT0 = 1) compared to the less
smooth potential energy (model A). In complete agreement
with Ref. [28], however, a significant reduction in the de-
viation was observed when the conservative dynamics is
integrated using the fourth-order symplectic method (FS) for

042120-7



ISAMU KUSAKA AND NICHOLAS T. LIESEN PHYSICAL REVIEW E 101, 042120 (2020)

10−6

10−5

10−4

10−3

10−2

10−1

100

0.001 0.01 0.1

DPD (equilibrium)

k
B
|Δ

T
k
|

Δt

Model A, VV
Model A, FS
Model B, VV
Model B, FS

FIG. 2. The time-step dependence of the kinetic temperature Tk

in DPD simulations at kBT0 = 1. �Tk := Tk − T0.

both model potentials. The same applies to other equilibrium
properties [36].

To examine how the integrator affects the conservative
dynamics, we performed MD simulations on model A without
any thermostat. Figure 3 shows the time evolution of

�en(τ ) := 〈en(τ ) − en(δτ )〉, (44)

where en := E/N and en(τ ) is a short time average of en

between time τ − δτ and τ with δτ = 4, and the angular
brackets indicate the average over 16 independent trajectories.
A significant energy drift is observed for �t � 0.01 with FS,
which is much larger than with VV.

Clearly, the significant improvement in the equilibrium
properties, such as kBTk in Fig. 2, arises not from FS used in
isolation but from FS used in combination with the dissipative
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Model A, MD (equilibrium)

Δ
e n

(τ
)

τ

VV, Δt = 0.01
VV, Δt = 0.02
FS, Δt = 0.01
FS, Δt = 0.02

FIG. 3. Drift in total energy per particle in equilibrium molecular
dynamics simulations of model A.
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FIG. 4. Dependence on �t of the rate of energy drift in equilib-
rium MD simulations.

and fluctuating pairwise dynamics of DPD, which is serving
as a thermostat to counter the energy drift caused by using
either a large �t or a not sufficiently smooth potential. This
interplay between the integrator of conservative dynamics and
the dissipative and fluctuating dynamics is also observed in
DPDE. Based on Eq. (41), we estimated the rate of energy
drift A by fitting a line to �en(τ ) from simulations. It is clear
from Fig. 3 that �en(τ ) can increase more rapidly than is im-
plied by the linear relation. In such cases, we computed A from
a short initial portion of the trajectories. The results are shown
in Figs. 4 and 5 for equilibrium MD and DPDE simulations,
respectively. A comparison of these two figures reveals that
the dissipative and fluctuating dynamics affects |A| more if
VV is used. This is seen with both model potentials, but the
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FIG. 5. Dependence on �t of the rate of energy drift in equilib-
rium DPDE simulations.
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FIG. 6. Drift of the total energy per particle as characterized by
�en(τ ) in equilibrium DPDE simulations of model A.

effect is more pronounced for model B. When measured in
terms of |A|, FS does not offer a clear advantage over VV for
DPDE of model A.

We also note that |A| values in DPDE for model A are
comparable to the corresponding values in MD. It is thus
clear from Fig. 3 that, if one insists on using model A and
a time step as large as �t � 0.01 and still wishes to perform
a long time simulation as is needed in estimating transport
properties, some measure of controlling the energy drift is
essential. Accordingly, MD and DPDE simulations with �t �
0.04 were all performed with either projection method or EDD
in place.

Figures 6 and 7 demonstrate the effectiveness of EDD in
controlling the energy drift. In particular, both |�en(τ )| and
its variance remain constant if EDD is applied. The figures
might invoke an impression to the contrary only because data
points are more densely placed toward the right of the figures.

In Fig. 8, we show the �t dependence of the kinetic tem-
perature kBTk in DPDE simulations with E0 set by Eq. (32).
The results are comparable to those from DPD in Fig. 2.
Thus, we conclude EDD in DPDE plays a role similar to
the thermostat in DPD in that they both control the system
temperature equally well while preventing the energy drift
when a large �t is used. In contrast to DPD, however, EDD
leads to a microcanonical ensemble. We also note that the
deviation kB|�Tk| can be reduced significantly using FS in
place of VV but to a lesser extent compared to DPD.

The radial distribution function g(r) at small r values also
shows a small but systematic �t dependence. To quantify the
error, we obtained the radial distribution function gdpd(e)(r)
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FIG. 7. Variance of the drift �en(τ ) of the total energy per
particle in equilibrium DPDE simulations of model A.

and gmc(r) from DPD(E) and MC simulations, respectively,
and computed ∫ ∣∣∣∣gdpd(e)(r)

gmc(r)
− 1

∣∣∣∣dr. (45)

The usual factor of r2 was not included in the integral in
order to emphasize the contribution from small r values. The
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FIG. 8. The time-step dependence of the kinetic temperature Tk

in DPDE simulations with EDD. �Tk := Tk − T0 with kBT0 = 1.
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FIG. 9. Dependence on �t of the integrated error in the radial
distribution function. To improve visibility, points are shifted to the
right from one data set to another in the increment of 0.02 × �t .

result is shown in Fig. 9. As with other equilibrium properties,
the error is smaller if a smaller �t is used. The use of FS
in place of VV reduces the error significantly especially for
�t � 0.01. We note that DPD and DPDE give rise to �t
dependence of a comparable magnitude for this quantity.

The �t dependence of other equilibrium properties are
reported in Ref. [36], further reaffirming much of the obser-
vations we have made here.

B. Transport properties

As shown in Figs. 10 and 11, both diffusivity and viscosity
from DPDE (with EDD, χ = 10) are in excellent agreement

0.28

0.3

0.32

0.34

0.001 0.01 0.1

Model A (equilibrium)

D

Δt

DPD, VV
DPD, FS
DPDE, VV (x1)
DPDE, VV (x3)
DPDE, FS (x3)

FIG. 10. Dependence on �t of the diffusivity in equilibrium
DPD(E) simulations. To improve visibility, points are shifted to the
right from one data set to another in the increment of 0.02 × �t .
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FIG. 11. Dependence on �t of the viscosity in DPD(E) simula-
tions with RNEMD moves. To improve visibility, points are shifted to
the right from one data set to another in the increment of 0.02 × �t .

with the corresponding quantities of DPD up to �t = 0.08,
thus indicating that EDD introduces no artificial effect on the
transport properties, either.

EDD with χ = 0.01 (x1) with E0 given by Eq. (32), while
still eliminating the secular energy drift, fails to achieve the
desired temperature kBT0 = 1 for �t � 0.08, thus leading to
a larger discrepancy from the corresponding DPD value and
sometimes resulting in the values falling outside the field of
vision in some of the figures. This is expected: According to
Eq. (12), the average value of f , the deviation per particle
of the system energy from the set value E0/N , is A/χ . This
quantity increases with decreasing χ and, as Figs. 4 and 5
indicate, increases with increasing �t through the dependence
of A on �t .
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0 0.5 1 1.5 2 2. 35
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z
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FIG. 12. Temperature profiles in a DPDE simulation with
RNEMD moves for thermal conductivity calculation. Lines are the
fits based on Eq. (38) to data in the range 0.5 � z � 2.5.
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FIG. 13. Dependence on �t of a systematic error in steady-
state temperature profiles as characterized by A1 + �/λ. To improve
visibility, points are shifted to the right from one data set to another
in the increments of 0.02 × �t .

We also note that both D and μ are nearly independent of
�t up to �t = 0.04, but they start to increase with increasing
�t beyond this value. From the figures, we observe that FS
performs somewhat better in this regard.

The viscosity values we found with DPD(E) are not sub-
stantially larger than the values (≈0.995) from MD [36].
This implies that the viscous heating, the only mechanism
of energy exchange between the translational and internal
degrees of freedom, is rather weak. Figure 12 shows the tem-
perature profiles from a DPDE simulation using �t = 0.02
with RNEMD moves for thermal conductivity computation.
As expected, a noticeable discrepancy exists between kBTk (z)
and kBTi(z). The discrepancy does not diminish even when
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FIG. 14. Dependence on �t of the thermal conductivity κk due to
the translational degrees of freedom of particles. DPDE simulations
with RNEMD moves. To improve visibility, points are shifted to the
right from one data set to another in the increments of 0.02 × �t .
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FIG. 15. Dependence on �t of the thermal conductivity κi due to
the internal degrees of freedom of particles. DPDE simulations with
RNEMD moves. To improve visibility, points are shifted to the right
from one data set to another in the increments of 0.02 × �t .

a smaller �t is used. Nonetheless, Eq. (38) represents the
simulation data very well.

On the basis of symmetry, it may be argued that A1 +
�/λ = 0 at the center of the sampling region (z = 1.5 and
ζ = 0). As seen in Figs. 12 and 13, however, this is not the
case, indicating that a large �t leads to a systematic error in
the steady-state temperature profiles. Nevertheless, the error
is seen to be still very small and can be reduced when FS
is used. Moreover, as shown in Figs. 14 and 15, the thermal
conductivities κk and κi we found are, within statistical errors,
independent of �t up to �t = 0.04. Simulations without a
proper energy control measure manifestly fail to give conver-
gent results for κk and κi if �t = 0.02 is used, and hence the
data are not included in these figures.

VII. CONCLUSION

We demonstrated that EDD completely eliminates the sec-
ular energy drift in DPDE and RNEMD, thus allowing for
a simulation of a long enough duration to compute various
transport properties. EDD remains effective even when an
interparticle potential is not sufficiently smooth or when a
larger �t is used. The method introduces no discernible
artifact to equilibrium or transport properties of the model
systems we studied.

EDD achieves this by imposing a small perturbation on
the projected relative velocities for each pair of particles. In
this way, it ensures the exact conservation of the total linear
momentum and does not rely on the particles having internal
degrees of freedom. This is in contrast to the existing projec-
tion methods in which either velocities or internal energies of
particles are adjusted.

The actual size of the energy fluctuation �E , which is
controlled through the parameter χ , has no noticeable effects
on any of equilibrium properties or transport coefficients we
computed when χ � 0.1. Insofar as EDD leads to micro-
canonical ensemble, this is expected for the former. However,
that the same applies to the latter is worth emphasizing. The
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dependence on χ became apparent when a smaller value (χ =
0.01) was used. This is due to the inability of EDD to achieve
the desired temperature if χ is too small and E0 is determined
by Eq. (32). Even then, EDD successfully eliminated the
energy drift for all time step sizes we considered.

The energy drift originates from the integration scheme
for the primary dynamics, and the numerical error of the
integrator is expected to affect both velocities and positions of
the particles. In EDD, however, the error is counteracted only
through particle velocities. Thus, the use of EDD introduces
a tacit assumption of an efficient and correct repartitioning
of the system energy between kinetic and potential energy
components within relevant timescales of a phenomenon un-
der consideration. The energy that needs to be repartitioned
is expected to increases with increasing �t , and this explains
the systematic �t dependence we observed in many of the
equilibrium and transport properties. Our integration scheme
for DPDE is based on SSA. Not surprisingly, therefore, the �t
dependence we observed is comparable to what is seen with
the standard implementation of isothermal DPD, which is also
based on SSA.

EDD and the projection methods we considered are equally
effective in eliminating the energy drift. However, the use
of the pairwise dynamics makes EDD structurally similar to
the DPD thermostat, suggesting that underlying ideas of a
more recent advance in DPD [27] might be transferable to
DPDE. We emphasize, however, that EDD differs from the
DPD thermostat in that it leads to (nearly) constant energy
trajectories and allows for a steady state with a nonuniform
temperature field.

In complete agreement with the recent study on DPD [28],
in DPDE also, the �t dependence of various equilibrium and
transport properties can be reduced considerably by using FS
instead of VV. Interestingly, however, this does not imply
that the energy is better conserved by FS. In fact, the energy
diverges more rapidly for MD of model A if FS is used in
place of VV.

VV and FS algorithms are microscopically reversible and
conserve the phase volume. Because the velocity update
scheme Eq. (13) arises from a dissipative force, this is not
the case with EDD. Nevertheless, EDD leads to microcanon-
ical distribution and hence (by itself) does not introduce
any distortion on the equilibrium properties if the additional
assumption of ergodicity is made. The goal of EDD is to sup-
press energy drifts in DPDE or RNEMD. Neither possesses
microscopic reversibility, DPDE due to the dissipative and
fluctuating forces and RNEMD due to dynamics driven by
Maxwell’s demon.

We considered two potential issues with EDD: (1) if it
affects transport properties and (2) if the approximation of
updating C2 only once per time step leads to any systematic
errors. Comparing both equilibrium and transport properties
estimated with EDD against those without EDD (but using
MC, DPD, or DPDE with small �t), we observed no de-
tectable consequence stemming from these potential issues.

EDD introduces an explicit coupling between each particle
pair and the state of the entire system as characterized by f .
Further investigation is needed to examine how these aspects
of EDD might impact other equilibrium properties, hydro-
dynamics, and transient behavior especially in nonuniform
systems (such as heat conduction from one region to another).

In DPDE, temperature may be computed from either ki-
netic or internal energy of particles. For some combinations
of σ and α, a discrepancy may arise in nonisothermal sim-
ulations between these two temperatures due to inefficient
energy exchange between translational and internal degrees
of freedom of particles. We have shown how thermal conduc-
tivity can nevertheless be estimated by combining two dis-
tinct temperature profiles across the system. In principle, this
same issue can affect different energy controlling measures
differently, i.e., the projection method by means of velocity
rescaling and EDD on the one hand and the projection method
with internal energy rescaling on the other. Nevertheless, the
physical properties we examined did not show statistically
significant differences among these methods.
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APPENDIX A: INTEGRATION OF DPDE
EQUATIONS OF MOTION

Written for each pair of particles i and j, the equations of
motion for the dissipative and fluctuating dynamics of DPDE
are given by

dvi = −γi j

mi
ωi j

2ve
i jei jdt + σ

mi
ωi jei j ◦ dW v

i j , (A1a)

dv j = γi j

m j
ωi j

2ve
i jei jdt − σ

mj
ωi jei j ◦ dW v

i j , (A1b)

dεi = 1

2

[
γi jv

e
i j

2 + α2

(
ci

εi
− c j

ε j

)]
ωi j

2dt

− 1

2
σωi jv

e
i j ◦ dW v

i j + αωi j ◦ dW ε
i j, (A1c)

dε j = 1

2

[
γi jv

e
i j

2 − α2

(
ci

εi
− c j

ε j

)]
ωi j

2dt

− 1

2
σωi jv

e
i j ◦ dW v

i j − αωi j ◦ dW ε
i j . (A1d)

We split the pairwise stochastic dynamics Eq. (A1) into
two subdynamics: the heat conduction dynamics and the vis-
cous heating dynamics. The former affects the internal energy
of particles only and is given by

dεi = −dε j = 1

2
α2

(
ci

εi
− c j

ε j

)
ωi j

2dt + αωi j ◦ dW ε
i j . (A2)

The latter affects both velocity and internal energy of particles
and is described by Eqs. (A1a), (A1b), and

dεi = dε j = 1
2γi jωi j

2ve
i j

2dt − 1
2σωi jv

e
i j ◦ dW v

i j . (A3)

Treating εi and ε j on the right-hand side of Eq. (A2) as if
they are constant, we integrate Eq. (A2) over the time duration
�t :

�εi = −�ε j = 1

2
α2

(
ci

εi
− c j

ε j

)
ωi j

2�t + αωi jξ
√

�t, (A4)

where ξ is a random number taken from the normal distri-
bution N (0, 1). This gives the updating scheme for the heat
conduction dynamics.
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We now turn to the updating scheme for the viscous heating
dynamics. Subtracting Eq. (A1b) from (A1a) and taking the
dot product between the resulting equation and ei j , we find

dve
i j = − γi j

μi j
ωi j

2ve
i jdt + σ

μi j
ωi j ◦ dW v

i j . (A5)

Under the same approximation of treating εi and ε j (in γi j)
as constant, we can integrate Eq. (A5) by a method similar to
what is used in Refs. [38,39]. This gives [12]

�ve
i j = (e−di j�t − 1)ve

i j + σωi j

μi j
ξ

√
1

2di j
(1 − e−2di j�t ),

(A6)
where

di j := γi jωi j
2

μi j
. (A7)

For large values of σ , the approximation made here can
lead to a systematic discrepancy between the kinetic-energy-
based temperature Eq. (43) and the internal-energy-based
temperature

kBTi =
〈

1

N

∑
i

ci

εi

〉−1

. (A8)

The error can be reduced, however, if a smaller time step is
used in Eq. (A6).

Equation (A6) may be approximated as

�ve
i j ≈

(
−di jv

e
i j�t + σωi j

μi j
ξ
√

�t

)(
1 − 1

2
di j�t

)

≈ 1

1 + di j�t/2

(
−di jv

e
i j�t + σωi j

μi j
ξ
√

�t

)
. (A9)

As shown in Appendix B, Eq. (A9) is equivalent to the update
scheme for viscous heating dynamics developed in Ref. [11],
and we used Eq. (A9) in this work. The difference between
Eqs. (A6) and (A9) is of the order of (�t )5/2.

From Eqs. (A1a) and (A1b), it readily follows that midvi +
mjdv j = 0 and that both dvi and dv j are parallel to ei j . Since
ei j remains unaffected by the subdynamics under considera-
tion, dve

i j = d (ei j · vi j ) = ei j · (dvi − dv j ). Thus,

dvi = μi j

mi
ei jdve

i j and dv j = −μi j

m j
ei jdve

i j (A10)

and hence the update scheme for the velocities is

�vi = μi j

mi
ei j�ve

i j and �v j = −μi j

m j
ei j�ve

i j . (A11)

From Eqs. (A1a), (A1b), and (A3),

dεi = dε j = − 1
2 d (Ki + Kj ), (A12)

indicating that the viscous heating dynamics conserves en-
ergy. Thus,

�εi = �ε j = − 1
2�(Ki + Kj )

= − 1
2μi j�ve

i j

(
ve

i j + 1
2�ve

i j

)
. (A13)

Note that the propagator eL
D�t for DPDE reduces to that of

DPD by omitting the updating schemes Eqs. (A4) and (A13),
and then setting ci/εi = c j/ε j = 1/kBT when evaluating γi j

in Eq. (A7).

APPENDIX B: VISCOUS HEATING DYNAMICS

In the notation we have been using in this article,
Eqs. (11a)–(11d) of Ref. [11] read

vi(�t/2) = vi(0) − �t

2mi
γi jωi j

2ve
i j (0)ei j +

√
�t

2mi
σωi jξei j,

(B1a)

v j (�t/2) = v j (0) + �t

2mj
γi jωi j

2ve
i j (0)ei j −

√
�t

2mj
σωi jξei j,

(B1b)

vi(�t ) = vi(�t/2) − �t

2mi
γi jωi j

2ve
i j (�t )ei j

+
√

�t

2mi
σωi jξei j, (B1c)

v j (�t ) = v j (�t/2) + �t

2mj
γi jωi j

2ve
i j (�t )ei j

−
√

�t

2mj
σωi jξei j, (B1d)

Subtracting Eq. (B1b) from Eq. (B1a) and taking the dot
product between ei j and the resulting equation, we find

ve
i j (�t/2) = ve

i j (0) − di jv
e
i j (0)

�t

2
+ σωi j

μi j
ξ

√
�t

2
. (B2)

Similarly, Eqs. (B1c) and (B1d) may be combined to give

ve
i j (�t ) = ve

i j (�t/2) − di jv
e
i j (�t )

�t

2
+ σωi j

μi j
ξ

√
�t

2

= 1

1 + di j�t/2

[
ve

i j (�t/2) + σωi j

μi j
ξ

√
�t

2

]
. (B3)

Eliminating ve
i j (�t/2) by means of Eq. (B2) and subtracting

ve
i j (0) from both sides of the resulting equation, we arrive at

Eq. (A9).

APPENDIX C: STEADY-STATE HEAT TRANSFER

Viscous heating is the only mechanism of energy exchange
between translational and internal degrees of freedom of DPD
particles. For some combinations of σ and α, characterizing
the viscous heating and the heat conduction dynamics, respec-
tively, and under certain boundary conditions, a discrepancy
may arise between the temperature profiles Tk (z) computed
from the kinetic energy of particles, and Ti(z), which is based
on their internal energies.

To estimate the thermal conductivity of the system using
RNEMD, we suppose that the temperature profiles at a steady
state are described by the following set of equations:

κk
d2Tk

dζ 2
+ λ(Ti − Tk ) = − �

kB
,

(C1)

κi
d2Ti

dζ 2
+ λ(Tk − Ti ) = �

kB
,

where the ζ axis points in the same direction as the z axis
but its origin is at the center of the sampling region. The
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quantity κk is the thermal conductivities associated with en-
ergy exchange among DPD particles through their transla-
tional degrees of freedom. Likewise, κi is the thermal con-
ductivity arising from heat conduction dynamics described by
Eq. (A2). The coefficient λ may be interpreted as the heat
transfer coefficient describing the energy exchange between
translational and internal degrees of freedom. The source term
�/kB represents the rate at which heat, in the form of kinetic
energy of particles, is generated per unit volume of the system.
In the present context, it arises from the integration scheme of
the primary dynamics.

In writing Eq. (C1), we are assuming that the heat thus
generated is compensated exactly by the depletion of the
internal energy of particles. This is analogous to what happens
in the projection method with the internal energy rescaling.

In Eq. (C1), however, the balance between generation and
depletion of energy is imposed at every point in space. This
is an acceptable model description of the actual process in
simulations at least on average and if the steady state is
maintained by a proper energy controlling measure such as
EDD, the projection methods, or the use of a sufficiently small
time step.

Assuming that κk , κi, λ, and � are constant, we can readily
integrate Eq. (C1) and arrive at Eq. (39), in which

a :=
√

λ

(
1

κi
+ 1

κk

)
, (C2)

Solving Eq. (39) for Tk and Ti, we arrive at Eq. (38).

[1] L. Verlet, Phys. Rev. 159, 98 (1967).
[2] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson,

J. Chem. Phys. 76, 637 (1982).
[3] P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett.

19, 155 (1992).
[4] T. Shardlow, SIAM J. Sci. Comput. 24, 1267 (2003).
[5] S. Melchionna, J. Chem. Phys. 127, 044108 (2007).
[6] B. Leimkuhler, C. Matthews, and G. Stoltz, IMA J. Numer.

Anal. 36, 13 (2016).
[7] H. Yoshida, Phys. Lett. A 150, 262 (1990).
[8] S. Toxvaerd, Phys. Rev. E 50, 2271 (1994).
[9] J. Gans and D. Shalloway, Phys. Rev. E 61, 4587 (2000).

[10] M. E. Tuckerman, Statistical Mechanics: Theory and Molecular
Simulation (Oxford University Press, Oxford, UK, 2010).

[11] M. Lísal, J. K. Brennan, and J. B. Avalos, J. Chem. Phys. 135,
204105 (2011).

[12] A.-A. Homman, J.-B. Maillet, J. Roussel, and G. Stoltz,
J. Chem. Phys. 144, 024112 (2016).

[13] J. B. Avalos and A. D. Mackie, Europhys. Lett. 40, 141 (1997).
[14] P. Español, Europhys. Lett. 40, 631 (1997).
[15] F. Müller-Plathe and P. Bordat, in Novel Methods in Soft Matter

Simulation, Lecture Notes in Physics Vol. 640, edited by M.
Karttunen, I. Vattulainen, and A. Lukkarinen (Springer, Berlin,
2004), pp. 310–326.

[16] P. Wirnsberger, D. Frenkel, and C. Dellago, J. Chem. Phys. 143,
124104 (2015).

[17] F. A. Furtado, C. R. A. Abreu, and F. W. Tavares, AIChE J. 61,
2881 (2015).

[18] C. Kane, J. E. Marsden, and M. Ortiz, J. Math. Phys. 40, 3353
(1999).

[19] C. Salueña and J. B. Avalos, Phys. Rev. E 89, 053314 (2014).
[20] B. Pace, F. Diele, and C. Marangi, Math. Comput. Simulat. 110,

40 (2015).
[21] R. D. Engle, R. D. Skeel, and M. Drees, J. Comput. Phys. 206,

432 (2005).

[22] D. Cottrell and P. F. Tupper, BIT Numer. Math. 47, 507 (2007).
[23] C. P. Lowe, Europhys. Lett. 47, 145 (1999).
[24] P. Nikunen, M. Karttunen, and I. Vattulainen, Comput. Phys.

Commun. 153, 407 (2003).
[25] E. A. J. F. Peters, Europhys. Lett. 66, 311 (2004).
[26] B. Leimkuhler and X. Shang, J. Comput. Phys. 280, 72

(2015).
[27] B. Leimkuhler and X. Shang, J. Comput. Phys. 324, 174 (2016).
[28] T. Yamada, S. Itoh, Y. Morinishi, and S. Tamano, J. Chem. Phys.

148, 224101 (2018).
[29] L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd

ed. (Pergamon Press, New York, 1980).
[30] M. Toda, R. Kubo, and N. Saito, Statistical Physics I: Equi-

librium Statistical Mechanics, 2nd ed. (Springer-Verlag, Berlin,
1992).

[31] I. Kusaka, Statistical Mechanics for Engineers (Springer,
Berlin, 2015).

[32] E. A. Koopman and C. P. Lowe, J. Chem. Phys. 124, 204103
(2006).

[33] T. Mikosch, Elementary Stochastic Calculus: With Finance in
View (World Scientific, Singapore, 1998).

[34] M. Ripoll, P. Español, and M. H. Ernst, Int. J. Mod. Phys. C 9,
1329 (1998).

[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes (Cambridge University Press,
Cambridge, UK, 1992).

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.101.042120 for a more complete set of re-
sults.

[37] Ohio Supercomputer Center, http://osc.edu/ark:/19495/
f5s1ph73.

[38] M. Serrano, G. De Fabritiis, P. Español, and P. V. Coveney,
Math. Comp. Simulation 72, 190 (2006).

[39] G. De Fabritiis, M. Serrano, P. Español, and P. V. Coveney,
Phys. A (Amsterdam, Neth.) 361, 429 (2006).

042120-14

https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1137/S1064827501392879
https://doi.org/10.1137/S1064827501392879
https://doi.org/10.1137/S1064827501392879
https://doi.org/10.1137/S1064827501392879
https://doi.org/10.1063/1.2753496
https://doi.org/10.1063/1.2753496
https://doi.org/10.1063/1.2753496
https://doi.org/10.1063/1.2753496
https://doi.org/10.1093/imanum/dru056
https://doi.org/10.1093/imanum/dru056
https://doi.org/10.1093/imanum/dru056
https://doi.org/10.1093/imanum/dru056
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1103/PhysRevE.50.2271
https://doi.org/10.1103/PhysRevE.50.2271
https://doi.org/10.1103/PhysRevE.50.2271
https://doi.org/10.1103/PhysRevE.50.2271
https://doi.org/10.1103/PhysRevE.61.4587
https://doi.org/10.1103/PhysRevE.61.4587
https://doi.org/10.1103/PhysRevE.61.4587
https://doi.org/10.1103/PhysRevE.61.4587
https://doi.org/10.1063/1.3660209
https://doi.org/10.1063/1.3660209
https://doi.org/10.1063/1.3660209
https://doi.org/10.1063/1.3660209
https://doi.org/10.1063/1.4937797
https://doi.org/10.1063/1.4937797
https://doi.org/10.1063/1.4937797
https://doi.org/10.1063/1.4937797
https://doi.org/10.1209/epl/i1997-00436-6
https://doi.org/10.1209/epl/i1997-00436-6
https://doi.org/10.1209/epl/i1997-00436-6
https://doi.org/10.1209/epl/i1997-00436-6
https://doi.org/10.1209/epl/i1997-00515-8
https://doi.org/10.1209/epl/i1997-00515-8
https://doi.org/10.1209/epl/i1997-00515-8
https://doi.org/10.1209/epl/i1997-00515-8
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1002/aic.14803
https://doi.org/10.1002/aic.14803
https://doi.org/10.1002/aic.14803
https://doi.org/10.1002/aic.14803
https://doi.org/10.1063/1.532892
https://doi.org/10.1063/1.532892
https://doi.org/10.1063/1.532892
https://doi.org/10.1063/1.532892
https://doi.org/10.1103/PhysRevE.89.053314
https://doi.org/10.1103/PhysRevE.89.053314
https://doi.org/10.1103/PhysRevE.89.053314
https://doi.org/10.1103/PhysRevE.89.053314
https://doi.org/10.1016/j.matcom.2013.11.002
https://doi.org/10.1016/j.matcom.2013.11.002
https://doi.org/10.1016/j.matcom.2013.11.002
https://doi.org/10.1016/j.matcom.2013.11.002
https://doi.org/10.1016/j.jcp.2004.12.009
https://doi.org/10.1016/j.jcp.2004.12.009
https://doi.org/10.1016/j.jcp.2004.12.009
https://doi.org/10.1016/j.jcp.2004.12.009
https://doi.org/10.1007/s10543-007-0134-z
https://doi.org/10.1007/s10543-007-0134-z
https://doi.org/10.1007/s10543-007-0134-z
https://doi.org/10.1007/s10543-007-0134-z
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1016/S0010-4655(03)00202-9
https://doi.org/10.1016/S0010-4655(03)00202-9
https://doi.org/10.1016/S0010-4655(03)00202-9
https://doi.org/10.1016/S0010-4655(03)00202-9
https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1016/j.jcp.2014.09.008
https://doi.org/10.1016/j.jcp.2014.09.008
https://doi.org/10.1016/j.jcp.2014.09.008
https://doi.org/10.1016/j.jcp.2014.09.008
https://doi.org/10.1016/j.jcp.2016.07.034
https://doi.org/10.1016/j.jcp.2016.07.034
https://doi.org/10.1016/j.jcp.2016.07.034
https://doi.org/10.1016/j.jcp.2016.07.034
https://doi.org/10.1063/1.5030940
https://doi.org/10.1063/1.5030940
https://doi.org/10.1063/1.5030940
https://doi.org/10.1063/1.5030940
https://doi.org/10.1063/1.2198824
https://doi.org/10.1063/1.2198824
https://doi.org/10.1063/1.2198824
https://doi.org/10.1063/1.2198824
https://doi.org/10.1142/S0129183198001205
https://doi.org/10.1142/S0129183198001205
https://doi.org/10.1142/S0129183198001205
https://doi.org/10.1142/S0129183198001205
http://link.aps.org/supplemental/10.1103/PhysRevE.101.042120
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.1016/j.matcom.2006.05.019
https://doi.org/10.1016/j.matcom.2006.05.019
https://doi.org/10.1016/j.matcom.2006.05.019
https://doi.org/10.1016/j.matcom.2006.05.019
https://doi.org/10.1016/j.physa.2005.06.090
https://doi.org/10.1016/j.physa.2005.06.090
https://doi.org/10.1016/j.physa.2005.06.090
https://doi.org/10.1016/j.physa.2005.06.090

