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Reaction and ultraslow diffusion on comb structures
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A two-dimensional (2D) comb model is proposed to characterize reaction-ultraslow diffusion of tracers
both in backbones (x direction) and side branches (y direction) of the comblike structure with two memory
kernels. The memory kernels include Dirac delta, power-law, and logarithmic and inverse Mittag-Leffler (ML)
functions, which can also be considered as the structural functions in the time structural derivative. Based on the
comb model, ultraslow diffusion on a fractal comb structure is also investigated by considering spatial fractal
geometry of the backbone volume. The mean squared displacement (MSD) and the corresponding concentration
of the tracers, i.e., the solution of the comb model, are derived for reactive and conservative tracers. For a
fractal structure of backbones, the derived MSDs and corresponding solutions depend on the backbone’s fractal
dimension. The proposed 2D comb model with different kernel functions is feasible to describe ultraslow
diffusion in both the backbone and side branches of the comblike structure.
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I. INTRODUCTION

Comblike structure, such as in rock, polymer, and spiny
dendrite, is widely encountered in real applications [1–5]. Fig-
ure 1 gives a schematic diagram of two-dimensional comblike
structure. Diffusion processes of conservative and interacting
diffusive particles [6] in these comblike structures usually
deviate from Brownian motion, i.e., non-Gaussian diffusion,
in which the mean squared displacement (MSD) is a nonlinear
function of time [7–10]. Anomalous diffusion in the comblike
structure, in which the MSD is a power-law function in time,
〈x2(t )〉 ∼ tα (α �= 1), has been extensively studied from both
the macroscopic partial differential equation models, e.g., the
comb model [11–13], and microscopic or mesoscopic mod-
els, e.g., the continuous time random walk (CTRW) model
[14–16]. The comb model can well exemplify the anomalous
diffusion due to geometric constraints, which play a signif-
icant role related to the diffusion environment. For a two-
dimensional (2D) case [11], the motions of diffusive particles
are allowed in the x direction only where y is zero, in which x
and y, respectively, represent the backbone and side branches
on the comb. The corresponding 2D comb model describes
subdiffusion along the backbone with infinite side branches,
which has been well employed to describe cancer prolifera-
tion [17], transfer in living organisms [18], and diffusion of
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ultracold atoms [19]. It should be noted that in recent years
some general forms of the comb model have been proposed
to characterize diffusion process in more complicated media,
such as heterogeneous diffusion in comb structure with a
power-law position dependent diffusion coefficient along the
backbone [20], linear reaction in spine and nonlinear reaction
along dendrites [21], and more general memory kernels [22].
The existing comb models have been an alternative tool to
characterize non-Gaussian diffusion in comblike structures.

It is also found that ultraslow diffusion, another class of
non-Gaussian diffusion, exists in comb structure, such as the
diffusion process in the three-dimensional (3D) cylindrical
comb model with infinite side branches along the backbone
[23], also in the 3D comb structure with a 2D “kebab lattice”
[24]. Compared with anomalous diffusion, the MSD of ul-
traslow diffusion is not a power-law function of time, but a
logarithmic function of time [25] 〈x2(t )〉 ∼ lnαt (α > 0), in
which the particles diffuse more slowly than in subdiffusion.
Note that the mentioned 3D models only capture the ultraslow
diffusion in the backbone, but fail to do that in the side
branches. To model ultraslow diffusion in both the back-
bone and side branches, 2D comb models [22] with special
memory kernels attract growing attention, such as uniformly
and power-law distributed functions with an integral form. In
this study we focus on the comb model, which should have
potential ability to describe ultraslow diffusion in both the
backbone and side branches.

Ultraslow diffusion has been captured in many real exper-
iments [26], such as particles in aging dense colloidal glass,
random walks on bundled structures, interacting many-body
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FIG. 1. Schematic diagram of two-dimensional comblike struc-
ture, in which x and y, respectively, represent the backbone and side
branches of the comb.

systems in low-dimensional disordered environments, and
Sinai diffusion in quenched landscapes with a random force
field. To model the phenomenon of ultraslow diffusion in het-
erogeneous media, except the above-mentioned comb models,
the fractional derivative models with distributed order, the
heterogeneous process models with time or space dependent
diffusion coefficient, the structural derivative models, and
CTRW models have been consequently proposed. A survey
of these models of ultraslow diffusion in heterogeneous ma-
terials is given in Ref. [27]. Among the existing models, the
comb models directly connect the comb structure, but have
complicated memory kernels, which can be also considered a
class of fractional derivative model with distributed order. It is
noted that the derivative order is a continuous statistical dis-
tribution with extra parameters and is determined empirically.
The main issue is to simplify and improve the comb model
for the extension of its applications in modeling ultraslow
diffusion. Thus, one motivation of this study is to develop new
comb models by selecting simper memory kernels with clear
physical meaning for modeling ultraslow diffusion in both the
backbone and side branches.

In this study, to overcome the encountered problems, the
comb model with new memory kernels is constructed based
on the structural derivative used in the structural derivative
models [28]. The structural derivative was proposed by Chen
et al. [28] for modeling ultraslow diffusion using the log-
arithmic and inverse Mittag-Leffler (ML) functions as the
memory kernel. The logarithmic function is a special case of
the inverse ML function E−1

β (t ) when β = 1. The inverse ML
function is the inverse function of the famous ML function
Eβ (t ), which is defined by Eβ (t ) = ∑∞

n=0
t n

�(βn+1) [29]. In the
structural derivative, the structural function plays a key role
as a kernel transform of underlying time-space fabric of the
complicated media [28], which includes local and nonlocal
structural derivatives. The nonlocal structural derivative [30]
includes the standard fractional derivative, and the recent
proposed definitions of fractional derivatives with different
kernel functions [31–33]. The structural derivative also has
potential ability to model complex phenomena in diverse
fields, such as superfast diffusion [34], control [35], creep
[36], and anomalous diffusion [37].

The strategy to derive the structural derivative comb model
in this study is adapted from that in [22] based on the classical
2D comb model, but to employ different memory kernels,

FIG. 2. Schematic diagram of fractal fracture of backbones.

such as the logarithmic function and the inverse ML function
and their variants. In this study, the memory kernels are
selected based on the patterns of ultraslow diffusion both in
backbones and side branches. It has been mentioned that the
logarithmic and inverse ML functions can be described by
the MSD of ultraslow diffusion, and are feasible in construc-
tion of the nonlocal structural derivative ultralow diffusion
model as the structural function. The second motivation is to
consider the reactive effect of the diffusive particles; in this
study the first order catalytic reaction scheme A + B → 2A
of the tracer in the backbone of the comblike structure is
considered to construct the comb model, in which A is the
catalyst. Another issue that should be pointed out is that for
the comblike structures with spatial fractal geometry, non-
Gaussian diffusions can be described by generalized comblike
models [11,13,20,38]. Thus, in this study ultraslow diffusion
in the fractal comb structure is also investigated as the third
motivation by considering the spatial fractal geometry of
the backbone volume |x|v , where 0 < v < 1 is the fractal
dimension. Figure 2 gives a schematic diagram of the fractal
fracture of the backbones.

The rest of this paper is organized as follows. Section II
provides the comb model for ultraslow diffusion of reactive
tracer, in which the first order catalytic reaction scheme is
considered. In Sec. III, based on the model proposed in Sec. II,
ultraslow diffusion process on a comb with fractal backbones
is investigated. Finally, some concluding remarks are given in
Sec. IV.

II. COMB MODEL FOR ULTRASLOW
DIFFUSION OF TRACERS

In the present work, the first order catalytic reaction
scheme A + B → 2A is considered [21]. The tracer is ex-
plored in the framework of a linear reactive transport equa-
tion using the comb model with the reaction kinetic term
Cu(x, y, t ) [21]. Based on the two-dimensional comb model
considered in Ref. [22], a general model for ultraslow diffu-
sion is proposed with new kernel functions∫ t

0
dτγ (t − τ )

∂u(x, y, τ )

∂τ

= Dxδ(y)
∫ t

0
dτη(t − τ )

[
∂2u(x, y, τ )

∂x2
+ Cu(x, y, τ )

]

+ Dy
∂2u(x, y, t )

∂y2
. (1)
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For Eq. (1), the initial condition is u(x, y, 0) = δ(x)δ(y),
and the boundary conditions for u(x, y, τ ) and ∂

∂q u(x, y, t ) are
set to zero at infinity, where q = {x, y}. In Eq. (1), γ (t ) and
η(t ) are memory kernel functions, which can be logarithmic
or inverse ML functions. The reactive effect Cu(x, y, τ ) is
considered in the backbone of the comblike structure. For
C = 0, the reaction term is equal to zero, and Eq. (1) can
depict the ultraslow diffusion of the conservative tracer. It
is also worth mentioning that the constant C can be greater
(C > 0) or less than zero (C < 0). For the first case, we have
an instantaneous creation process and for the second one, we
have an instantaneous annihilation process. In this sense, it
should be noted that the sign of C has a direct influence on
the behavior of the MSDs. The delta function δ(y) in Eq. (1)
means that the diffusion along the x direction is possible only
in the backbone (at y = 0), while the side branches (fingers of
the comb) play the role of traps in which the particle performs
standard Brownian motion. Due to the trapping events in the
fingers of the comb, which can be considered as waiting time
for the particle, the motion along the backbone is slowed
down in comparison to the corresponding one-dimensional
motion. For the simplest case of diffusion process in the 2D
comb (γ (t ) = η(t ) = δ(t ) and C = 0) the motion along the
backbone is subdiffusive with transport exponent 1/2, i.e.,
〈x2(t )〉 ∼ t1/2 [39].

The aim of Eq. (1) is to describe ultraslow diffusion in both
x and y directions. Based on the definition of the nonlocal
structural derivative [28], the kernel γ (t ) is the structural
function, and Eq. (1) is a time structural derivative comb
model.

By using Fourier-Laplace transform, solution of Eq. (1) in
frequency domains reads

u(kx, ky, s) = sγ (s)ξ (s)[
sγ (s) + Dyk2

y

](
sξ (s) + 1

2
Dx√

Dy
(k2

x − C
)) ,

(2)

where ξ (s) = 1
η(s)

√
γ (s)

s . The solution of Eq. (1) in the x

direction is u1(x, t ) = ∫∞
−∞ dyu(x, y, t ), and its corresponding

Fourier-Laplace transform can be found by setting ky = 0.

u1(kx, s) = ξ (s)

sξ (s) + 1
2

Dx√
Dy

(
k2

x − C
) . (3)

Let us rewrite Eq. (3) as following

sξ (s)u1(kx, s) − ξ (s)

= −1

2

Dx√
Dy

k2
x u1(kx, s) + 1

2

Dx√
Dy

Cu1(kx, s), (4)

from where by inverse Fourier-Laplace transformation we find
the following generalized reaction-diffusion equation:∫ t

0
ξ (t − t ′)

∂

∂t ′ u1(x, t ′)dt ′

= 1

2

Dx√
Dy

∂2

∂x2
u1(x, t ) + 1

2

Dx√
Dy

Cu1(x, t ). (5)

The solution of Eq. (5) in the Laplace domain can be found
by inverse Fourier transform of Eq. (3), from where we find

u1(x, s) = ξ (s)

2

√
2
√

Dy

Dx

[
sξ (s) − C

Dx

2
√

Dy

]−1/2

× exp

⎡
⎣−

√
2
√

Dy

Dx
sξ (s) − C|x|

⎤
⎦. (6)

Here we note that the solution is not normalized since

〈x0(t )〉 = L−1[u1(kx, s)]|kx=0 = L−1

⎡
⎣ ξ (s)

sξ (s) − Dx

2
√

Dy
C

⎤
⎦

(7)

is different than 1. Only for C = 0, the solution is normalized
and represents a probability density function (PDF). The
second moment along the x direction yields

〈x2(t )〉 = L−1

[
− ∂2

∂k2
x

u1(kx, s)

]∣∣∣∣
kx=0

= Dx√
Dy

L−1

⎧⎨
⎩ξ (s)

[
sξ (s) − 1

2

Dx√
Dy

C

]−2
⎫⎬
⎭, (8)

where η(s) and γ (s) are the Laplace pairs η(t ) and γ (t ),
respectively.

The solution in the y direction can be obtained using
a similar strategy, i.e., u2(y, t ) = ∫∞

−∞ dxu(x, y, t ), and its
Fourier-Laplace transform is expressed by

u2(ky, s) = sγ (s)ξ (s)[
sγ (s) + Dyk2

y

][
sξ (s) − 1

2
Dx√

Dy
C
] . (9)

We rewrite Eq. (9) in the following form,

γ (s)ξ (s)[su2(ky, s) − 1]

= −Dyk2
y

[
ξ (s) − 1

2

Dx√
Dy

Cs−1

]
u2(ky, s)

+ 1

2

Dx√
Dy

Cγ (s)u2(ky, s), (10)

and thus, by inverse Fourier-Laplace transforms we find the
corresponding generalized equation,∫ t

0
ζ (t − t ′)

∂

∂t ′ u2(y, t ′)dt ′

= Dy

∫ t

0
ξ (t − t ′)

∂2

∂y2
u2(y, t ′)dt ′

− 1

2
Dx

√
DyC

∂2

∂y2

∫ t

0
u2(y, t ′)dt ′,

+ 1

2

Dx√
Dy

C
∫ t

0
γ (t − t ′)u2(y, t ′)dt ′, (11)
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where ζ (t ) = L−1[γ (s)ξ (s)]. The second moment along the y
direction has the form

〈y2(t )〉 = L−1

[
− ∂2

∂k2
y

u2(ky, s)

]∣∣∣∣∣
ky=0

= 2DyL−1

⎧⎨
⎩ξ (s)

[
s2γ (s)ξ (s) − 1

2
sγ (s)

Dx√
Dy

C

]−1
⎫⎬
⎭,

(12)

and we also have

〈y0(t )〉 = L−1[u2(ky, s)]|ky=0 = L−1

⎡
⎣ ξ (s)

sξ (s) − Dx

2
√

Dy
C

⎤
⎦.

(13)

The solutions to the x and y directions u1(x, t ) and u2(y, t ),
respectively, quantify the concentrations of the tracer, which
can be directly derived by using the inverse Laplace and
Fourier transforms.

To interpret the comb model in Eq. (1) in the framework
of CTRW theory, the corresponding relationship between the
kernel functions in the comb model and the densities for
jump lengths and waiting time of the diffusive particles in
the CTRW model are derived with C = 0 and dimensionless
parameters Dx = Dy = 1. The diffusion process in the x di-
rection can be easily simulated in which the density of jump
lengths λ(x) is a Gaussian distribution N (0, 1) and the waiting
time density has the Laplace transform φx(s) = 1

1+sξ (s) . The
corresponding CTRW model in the y direction has the same
density of jump lengths, but the Laplace transform of the
waiting time density is φy(s) = 1

1+sγ (s) . It should be pointed
out that to keep the non-negativity of the solution and the
waiting time PDFs, the memory kernels should satisfy con-
ditions such that ξ (s), γ (s) should be completely monotone
functions, and sξ (s), sγ (s) should be Bernstein functions [22].
The corresponding PDFs can be found from (see, for example,
[40])

u1,2(x, t ) = �x,y(t )u1,2(x, 0)

+
∫ ∞

−∞

∫ t

0
u1,2(x′, t ′)ψx,y(x − x′, t − t ′)dt ′dx′,

(14)

where ψx,y(x, t ) = φx,y(t )λ(x) is the jump probability density
of an uncoupled CTRW, and �x,y(x, t ) = 1 − ∫ t

0 φx,y(t ′)dt ′ is
the survival probability density that the walker does not take
a step in time interval t . In the Fourier-Laplace domain these
equations read as Eqs. (3) and (9) for C = 0.

Furthermore, the generalized reaction-diffusion equation
(5) can be interpreted within the CTRW theory as well.
Following the approach given in Ref. (40), the PDF of finding
a particle at time t at position x in the backbone in case
of CTRW with waiting time density φx(s) = 1

1+sξ (s) ≈ 1 −
sξ (s) and Gaussian jump length density, in the presence of

instantaneous creation process, reads

u1(x, t ) = r�x(t )u1(x, 0)

+ r
∫ ∞

−∞

∫ t

0
u1(x′, t ′)φx(t − t ′)λ(x − x′)dt ′dx′.

(15)

Here r gives the constant proportion of walkers added (or
removed) instantaneously to the density of walkers that ar-
rived at position x at time t , while �x(s) = [1 − φx(s)]/s ≈
ξ (s). By Fourier-Laplace transform of this equation we arrive
at Eq. (3) for u1(kx, s), where constant C is related to the
parameter r.

Here we note that one may also consider the 2D general-
ized reaction-diffusion equation, without constraints at y = 0,
which means no Dirac delta function δ(y) in Eq. (1). In such
a case for the marginal PDF along the backbone we find∫ t

0
dτγ (t − τ )

∂u1(x, τ )

∂τ

= Dx

∫ t

0
dτη(t − τ )

[
∂2u1(x, τ )

∂x2
+ Cu1(x, τ )

]
, (16)

which is different than the corresponding equation for the
marginal PDF in case of a comb structure; see Eq. (5). The
second moment in this case becomes

〈x2(t )〉 = 2DxL−1{ζ (s)[sζ (s) − CDx]−2}, (17)

where ζ (s) = γ (s)/η(s).
For the simplest case with γ (t ) = η(t ) = δ(t ), for the

second moment we find 〈x2(t )〉 = 2DxL−1[(s − CDx )−2] =
2DxteCDxt for C > 0, and 〈x2(t )〉 = 2Dxte−C∗Dxt for C =
−C∗ < 0 (C∗ > 0). For C = 0, the second moment becomes
linear in time (normal diffusion), as it should be for a free
diffusion process.

A. Cases with η(t ) = δ(t )

In this case, δ(t ) is the Dirac function; the Laplace trans-
form of the memory kernel is η(s) = 1.

Let us first consider the simplest case with γ (t ) = δ(t ), i.e.,
γ (s) = 1. This is a standard reaction-diffusion equation on a
comb, where the reaction is along the backbone. Therefore,
we have

〈x0(t )〉 = L−1

⎡
⎣ s−1/2

s1/2 − Dx

2
√

Dy
C

⎤
⎦ = E1/2

(
Dx

2
√

Dy
Ct1/2

)
,

(18)

where Eα (z) is the one parameter Mittag-Leffler function,
as defined before. From the asymptotic behavior of the one
parameter ML function [41] Eα (z) � 1

α
ez1/α

, z → ∞, for C >

0 in the long time limit we find 〈x0(t )〉 � e
( Dx

2
√

Dy
C)

2
t
, while for

C = −C∗ < 0 (C∗ > 0), we have 〈x0(t )〉 � 2
√

Dy

C∗Dx
t−1/2 since

Eα (−ωtα ) � t−α

ω�(1−α) , t → ∞, ω > 0.
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The second moment along the backbone becomes

〈x2(t )〉 = Dx√
Dy

L−1

⎡
⎢⎣ s−1/2(

s1/2 − Dx

2
√

Dy
C
)2

⎤
⎥⎦

= Dx√
Dy

t1/2E2
1/2,3/2

(
Dx

2
√

Dy
Ct1/2

)
, (19)

where Eγ

α, β (z) = ∑∞
n=0

(γ )n
�(αn+β )

zn

n! is the three parameter ML
function, and (γ )n = �(γ + n)/�(γ ) is the Pochhammer
symbol. The short time limit yields 〈x2(t )〉 � Dx√

Dy

t1/2

�(3/2) .

For C > 0, the second moment in the long time

limit behaves as 〈x2(t )〉 � te
( Dx

2
√

Dy
C)

2
t

since Eγ

α,β (z) �
1
αγ z(γ−β )/αez1/α

, z → ∞ [41]. For C = −C∗ < 0 (C∗ >

0), we find 〈x2(t )〉 � 4
√

Dy

C∗2Dx

t−1/2

�(1/2) since Eγ

α,β (−ωtα ) �
t−αγ

ωγ �(β−αγ ) , t → ∞, ω > 0 [41]. For C = 0, we have

〈x0(t )〉 = E1/2(0) = 1, and 〈x2(t )〉 = Dx√
Dy

t1/2E2
1/2,3/2(0) =

Dx√
Dy

t1/2

�(3/2) , as it should be for the diffusion in a 2D comb

structure. Therefore, in the short time limit the reaction term
does not change the dynamics in the comb structure. The
second moment along the fingers becomes

〈y2(t )〉 = 2DyL−1

⎡
⎣ s−3/2

s1/2 − Dx

2
√

Dy
C

⎤
⎦

= 2DytE1/2,2

(
Dx

2
√

Dy
Ct1/2

)
, (20)

where Eα,β (z) = E1
α,β (z) is the two parameter ML function.

For short times it behaves as 〈y2(t )〉 � 2Dyt and for long

times as 〈y2(t )〉 � e
(

Dx

2
√

Dy
C)

2
t

for C > 0, and as 〈y2(t )〉 �
t1/2 for C < 0. Similarly to the previous result for the x
direction, the reaction term does not change the dynamics in
the y direction for short times. For C = 0, we have 〈y2(t )〉 =
2DytE1/2,2(0) = 2Dyt .

The kernel function γ (t ) is selected as

γ (t ) = ln−α (t ), (21)

where α > 0. In this case, γ (t ) is a slowly varying function
at infinity. By using the Tauberian theorem, the Laplace
transform of Eq. (21) is

γ (s) � 1

slnα (1/s)
. (22)

The asymptotic behavior of the second moment along the
x direction is derived as

〈x2(t )〉 � Dx√
Dy

L−1

⎧⎨
⎩1

s
ln− α

2

(
1

s

)[
ln− α

2

(
1

s

)
− Dx

2
√

Dy
C

]−2
⎫⎬
⎭,

(23)

and along the y direction as

〈y2(t )〉 � 2DyL−1

⎧⎨
⎩1

s
ln

α
2

(
1

s

)[
ln− α

2

(
1

s

)
− Dx

2
√

Dy
C

]−1
⎫⎬
⎭.

(24)

The cases for the conservative tracer when C = 0, for the
MSD along the x and y directions, by using the Tauberian
theorem [22], give

〈x2(t )〉 � Dx√
Dy

L−1

[
1

s
ln

α
2

(
1

s

)]
� Dx√

Dy
ln

α
2 (t ), (25)

〈y2(t )〉 � 2DyL−1

[
1

s
lnα

(
1

s

)]
� 2Dylnα (t ), (26)

respectively, which were also obtained by considering power-
law distributed order memory kernel [22]. Thus, in this case
the two-dimensional comb model can depict the ultraslow
diffusion along both the x and y directions. When α = 4, the
dynamics in the y direction is the classical Sinai diffusion [27].
The corresponding concentrations then behave as

u1(x, t ) � 1

2

(
2
√

Dy

Dx

) 1
2 1

ln
α
4 (t )

exp

⎡
⎣−

(
2
√

Dy

Dx

) 1
2 |x|

lnα/4(t )

⎤
⎦,

(27)

and

〈u2(y, t )〉 � 1

2
√

Dy

1

ln
α
2 (t )

exp

[
− |y|√

Dylnα/2(t )

]
. (28)

To interpret the ultraslow diffusion from the perspective of
CTRW theory, the waiting time density to the x direction is
derived as

φx(s) � 1 − sξ (s) � 1 − s

[
s−1

ln
α
2
(

1
s

)
]
, s → 0

→ φx(t ) � − d

dt
ξ (t ) � − d

dt

[
1

ln
α
2 (t )

]

= α/2

t[ln (t )]α/2+1 , t → ∞, (29)

and to the y direction as

φy(s) � 1 − sγ (s) � 1 − s

[
s−1

lnα
(

1
s

)
]
, s → 0

→ φy(t ) � − d

dt
γ (t ) � − d

dt

[
1

lnα (t )

]

= α

t[ln (t )]α+1 , t → ∞. (30)

Using the same strategy, a general memory kernel function
can be selected to derive the MSDs and solutions of the corre-
sponding ultraslow diffusion processes. When the inverse ML
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FIG. 3. Plots of (a) the inverse Mittag-Leffler function versus time t for β = 0.2, 0.4, 0.6, 0.8, 1.0 from bottom to top, and (b) the Mittag-
Leffler function and its inverse case versus position x for β = 0.2, 0.4, 0.6, 0.8, 1.0. The legend of (b) is the same as in (a).

function [E−1
β (t/t0)]−α is selected, which is a slowly varying

function at infinity, it generalizes the logarithmic memory
function. Here t0 is a constant used to keep the dimension
consistent. It should be pointed out that in the following
cases for the inverse ML cases, we select the dimensionless
time t ,

γ (t ) = [
E−1

β (t )
]−α

, (31)

where α > 0 and 0 < β � 1. When β = 1, E−1
1 (t ) is the

logarithmic function ln(t ). The inverse ML function does not
have a closed form. However, it can be numerically calculated
by using the famed ML function. Figure 3 shows the patterns
of inverse ML function E−1

β (t ) and its connections with the
ML function Eβ (t ) for five different values of parameter β.
From Fig. 3(a), it is observed that the smaller the value of β is,
the slower is the increase rate obtained. In the semilogarithmic
axial of t , the curves are almost a straight line for the large
values of time t . Figure 3(b) shows five pairs of ML and
inverse ML functions, which are symmetric by the straight
line y = x. The legend of Fig. 3(b) is the same as that of
Fig. 3(a).

The Laplace transform of Eq. (31) is

γ (s) � 1

s
[
E−1

β

(
1
s

)]α . (32)

For C = 0, by using the Tauberian theorem, for the MSDs
we find

〈x2(t )〉 � Dx√
Dy

[
E−1

β (t )
]α/2

, (33)

〈y2(t )〉 � 2Dy
[
E−1

β (t )
]α

, (34)

while the corresponding PDFs behave as

u1(x, t ) � 1

2

(
2
√

Dy

Dx

)
1[

E−1
β

(t )
] α

4

× exp

⎡
⎣−

(
2
√

Dy

Dx

) 1
2 |x|[

E−1
β

(t )
] α

4

⎤
⎦, (35)

u2(y, t ) � 1

2Dy

1[
E−1

β
(t )
] α

2
exp

⎛
⎝− |y|√

Dy
[
E−1

β
(t )
] α

2

⎞
⎠. (36)

Equations (33) and (34) can describe generalized ultraslow
diffusion, which is respectively degenerate to Eqs. (25) and
(26) for β = 1.

The waiting time density for the conservative tracer to the
x direction is

φx(s) � 1 − sξ (s) � 1 − s

⎧⎨
⎩ s−1[

E−1
β

(
1
s

)]α/2

⎫⎬
⎭,

→ φx(t ) � − d

dt
ξ (t ) � − d

dt

⎧⎨
⎩ 1[

E−1
β

(t )
]α/2

⎫⎬
⎭. (37)

and to the y direction is

φy(s) � 1 − sγ (s) � 1 − s

{
s−1[

E−1
β

(
1
s

)] α
}

,

→ φy(t ) � − d

dt
γ (t ) � − d

dt

{
1[

E−1
β

(t )
]α
}

. (38)
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In the above two cases, the logarithmic and inverse ML
functions are used as the memory kernel in the comb model,
which can be considered as a structural function of the
time structural derivative. It should be pointed out that the
fractional derivative comb model with a power-law memory
kernel can describe subdiffusion in both backbone and side
branches [22]. But the comb model can describe ultraslow
diffusion when the kernel function is a distributed function
with an integral form, i.e., the distributed order fractional
derivative comb model, in which the distributed order of
the fractional derivative modifies the constant order in the
fractional derivative by integrating all possible orders over a
certain range [22]. When the distributed order is a uniform
distribution or a more general power-law distribution, it can
describe ultraslow diffusion, and its corresponding MSDs are
almost equivalent with those of the comb model derived in
this study. Compared with the existing fractional derivative
comb models, the structural derivative comb model with
a logarithmic memory kernel is with simpler mathematical
form or fewer parameters, and its memory kernel has a clear
correlation with the MSDs and PDFs of the displacement and
waiting time density.

B. Case with η(t ) = t−μ

�(1−μ)

The Laplace transform of η(t ) is

η(s) = sμ−1. (39)

Here we use 1/2 < μ < 1 [22].
First we consider the simple case of γ (t ) = δ(t ). There-

fore, we find

〈x0(t )〉 = L−1

⎡
⎣ s−μ+1/2

s−μ+3/2 − Dx

2
√

Dy
C

⎤
⎦

= E3/2−μ

(
Dx

2
√

Dy
Ct3/2−μ

)
, (40)

and

〈x2(t )〉 = Dx√
Dy

L−1

⎡
⎢⎣ s−μ+1/2(

s−μ+3/2 − Dx

2
√

Dy
C
)2

⎤
⎥⎦

= Dx√
Dy

t3/2−μE3/2−μ,5/2−μ

(
Dx

2
√

Dy
Ct3/2−μ

)
, (41)

which in the long time limit behaves as 〈x2(t )〉 �
t exp([ Dx

2
√

Dy
C]

2/(3−2μ)
t ) for C > 0, and saturates for C < 0,

i.e., 〈x2(t )〉 � const. For C = 0 we recover the result given in
Ref. [22],

〈x2(t )〉 = Dx√
Dy

t3/2−μE3/2−μ,5/2−μ(0) = Dx√
Dy

t3/2−μ

�(5/2 − μ)
.

(42)

Moreover, the second moment along the fingers reads

〈y2(t )〉 = 2DyL−1

⎡
⎣ s−μ−1/2

s−μ+ 3
2 − Dx

2
√

Dy
C

⎤
⎦

= 2DytE 3
2 −μ,2

(
Dx

2
√

Dy
Ct3/2−μ

)
, (43)

which in the long time limit grows exponentially in time,
〈y2(t )〉 � exp([ Dx

2
√

Dy
C]

2/(3−2μ)
t ), for C > 0, and as a power

law, 〈y2(t )〉 � tμ−1/2, for C < 0. For C = 0, one finds that
〈y2(t )〉 = 2DytE 3

2 −μ,2(0) = 2Dyt , as it should be.

When the kernel function γ (t ) is γ (t ) = ln−α (t ), the
MSDs along the x and y directions become

〈x2(t )〉 � Dx√
Dy

L−1

⎡
⎢⎣ s−μln−α/2

(
1
s

)
(
s1−μln− α

2
(

1
s

)− Dx

2
√

Dy
C
)2

⎤
⎥⎦, (44)

and

〈y2(t )〉 � 2DyL−1

⎡
⎣ s−μlnα/2

(
1
s

)
s1−μln− α

2
(

1
s

)− Dx

2
√

Dy
C

⎤
⎦. (45)

For the conservative tracer, C = 0, Eq. (44) degenerates to

〈x2(t )〉 � Dx√
Dy

t1−μlnα/2(t ). (46)

We see that the diffusion is faster than the case for η(t ) =
δ(t ) due to the power-law term, which appears as a result
of the compensation memory kernel η(t ) = t−μ/�(1 − μ).
Similarly, for C = 0, the MSD along the fingers becomes

〈y2(t )〉 � 2Dylnα (t ). (47)

While the corresponding PDFs behaves as

u1(x, t ) ∼
√

Dy
1/2

Dx
1/2

[
tμ−1ln− α

2 (t )
]1/2

× exp

⎛
⎝−

[
2
√

Dy

Dx
tμ−1ln− α

2 (t )

]1/2

|x|
⎞
⎠, (48)

and

u2(y, t ) ∼
[

1

2
√

Dylnα (t )

]
exp

(
− |y|√

Dy

)
. (49)

To check the connections and differences for the conser-
vative and reactive tracers, Fig. 4(a) illustrates the MSDs
for the reactive [Eqs. (23) and (24)] and conservative tracers
[Eqs. (25) and (26)], with dimensionless parameters Dx =
Dy = 1, α = 1, C = 0.1. The inverse Laplace transforms in
the equations are numerically calculated. It can be observed,
from Fig. 4(a), that the diffusion process in the y direction
is faster than that in the x direction based on the results of
MSDs. Considering the reactive effects, the differences of the
MSDs between the conservative and reactive tracers are clear.
Compared with power-law and logarithmic functions the ul-
traslow diffusion process often occurs in the long-time scale
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FIG. 4. Plots of (a) MSDs for the reactive [Eqs. (23) and (24)] and conservative tracers [Eqs. (25) and (26)], and (b) MSDs for the reactive
[Eqs. (44) and (45)] and conservative tracers [Eqs. (46) and (26)] with dimensionless parameters Dx = Dy = 1, α = 1, μ = 0.95, C = 0.1.

limit, particularly in the backbone of the comblike structure.
To check the influence of a different form for the memory
kernel η(t ), Fig. 4(b) provides the MSDs for the reactive
[Eqs. (44) and (45)] and conservative tracers [Eqs. (46) and
(26)]. It is found that, from Fig. 4(b), the results of the
MSDs have a similar pattern to those in Fig. 4(a) for small
value μ = 0.95.

To check the reactive effect considered in the backbone of
the comblike structure, Fig. 5 gives the MSDs in Eqs. (23)

and (44) with dimensionless parameters Dx = Dy = 1, α = 1,
μ = 0.95, and different values of C. It can be observed from
Figs. 5(a) and 5(b) that with larger positive C, the MSD grows
much faster than that of the conservative tracer with C = 0,
and the underlying diffusion is a creation process. It is also
noted that the MSDs in Fig. 5(a) with C = 0.5 and in Fig. 5(b)
with C = 0.3 grow even faster than the power law for the
subdiffusion process. For negative C in Figs. 5(a) and 5(b),
the MSD grows even slower than the conservative case, and

FIG. 5. Plots of (a) MSDs in Eq. (23), and (b) MSDs in Eq. (44) with dimensionless parameters Dx = Dy = 1, α = 1, μ = 0.95, and
different values of C.
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the diffusion is an instantaneous annihilation process. Thus,
the sign of C has a direct influence on the behavior of the
MSDs.

In comb models, the kernel γ (t ) is responsible for slowing
down the motion along the backbone, while the kernel η(t )
may accelerate it, in comparison to the diffusion in the stan-
dard comb model where the MSD behaves as t1/2 [39]. Thus,
the kernel η(t ) is also called a compensation kernel [22]. The
slowed motion caused by γ (t ) may be compensated by an
appropriate kernel η(t ). This is evident if one compares the
results for the second moments in the case of a Dirac delta
memory kernel and a power-law memory kernel. However,
both kernels should be such that the non-negativity of the
corresponding solutions is preserved. Therefore, the structural
derivative comb model is feasible to describe the ultraslow
diffusions both in the backbones and side branches of the
comblike structure.

III. ULTRASLOW DIFFUSION ON A FRACTAL COMB

Ultraslow diffusion may occur not only in a single back-
bone, but also if one considers many backbones, located at
y = l j , j = 1, 2, . . . , N , and 0 � l1 < l2 < · · · < lN . In this
section we consider a fractal structure of backbones: l j ∈
Sv , Sv is the fractal structure, and 0 < v < 1 is the fractal
dimension. To describe diffusion on such fractal structure,
Eq. (1) should be generalized as

∫ t

0
dτγ (t − τ )

∂u(x, y, τ )

∂τ

= Dx

N∑
j=1

δ(y − l j )
∫ t

0
dτη(t − τ )

×
[
∂2u(x, y, τ )

∂x2
+ Cu(x, y, τ )

]
+ Dy

∂2u(x, y, t )

∂y2
.

(50)

where the initial condition is u(x, y, 0) = δ(x)δ(y), l j ∈
Sv . The conditions of the boundaries for u(x, y, τ ) and
∂
∂q u(x, y, t ), q = {x, y} are zero at infinity; x = ±∞, y = ±∞,
γ (t ), and η(t ) are kernel functions. The integral with respect
to t is in fact an approximation in the limit of an infinite
number of backbones. Here we note that for v = 0, Eq. (50)
reduces to Eq. (1). The Laplace transform of Eq. (50) reads

sγ (s)u(x, y, s) − γ (s)u(x, y, t = 0)

= Dx

N∑
j=1

δ(y − l j )η(s)

×
[
∂2u(x, y, s)

∂x2
+ Cu(x, y, s)

]
+ Dy

∂2u(x, y, s)

∂y2
. (51)

Let us represent the solution u(x, y, s) as [11,38]

u(x, y, s) = f (x, s) exp

[
−
√

sγ (s)

Dy
|y|
]
, (52)

and use G(x, s) = ∫ +∞
−∞ u(x, y, s)dy. Then we integrate

Eq. (51) in respect to y,

sγ (s)G(x, s) − γ (s)G(x, t = 0)

= Dxη(s)

⎧⎨
⎩ ∂2

∂x2

⎡
⎣ N∑

j=1

u(x, y = l j, s)

⎤
⎦

+C
N∑

j=1

u(x, y = l j, s)

⎫⎬
⎭, (53)

in which

N∑
j=1

u(x, y = l j, s)

=
N∑

j=1

f (x, s) exp

[
−
√

sγ (s)

Dy
|l j |
]

= f (x, s)

�(v)

∫ ∞

0
lv−1 exp

[
−
√

sγ (s)

Dy
l

]
dl

= f (x, s)

[
Dy

sγ (s)

]v/2

= 1

2Dy
1−v

2

[sγ (s)]
1−v

2 G(x, s). (54)

From Eq. (54), Eq. (53) can be rewritten as

sG(x, s) − G(x, t = 0)

= Dx

2Dy
1−v

2

s
1−v

2 η(s)

[γ (s)]
1+v

2

[
∂2G(x, s)

∂x2
+ CG(x, s)

]
. (55)

The Fourier transform of Eq. (55) is

sG(kx, s) − G(kx, t = 0)

= Dx

2Dy
1−v

2

s
1−v

2 η(s)

[γ (s)]
1+v

2

[−k2
x G(kx, s) + CG(kx, s)

]
, (56)

and thus we obtain

G(kx, s) = ρ(s)

sρ(s) + 1
2

Dx

D
1−v

2
y

(
k2

x − C
) , (57)

where ρ(s) = [γ (s)]
1+v

2

s
1−v

2 η(s)
.

The second moment along the x direction yields the fol-
lowing general form:

〈x2(t )〉 = L−1

[
− ∂2

∂k2
x

u(kx, s)

]∣∣∣∣
kx=0

= Dx

Dy
1−v

2

L−1

⎧⎨
⎩ρ(s)

[
sρ(s) − 1

2

Dx

Dy
1−v

2

C

]−2
⎫⎬
⎭. (58)

By using similar memory kernels as in Sec. II, we derive
the MSDs and the corresponding solutions. To interpret the
comb model in Eq. (50) from the context of CTRW theory,
the corresponding relationship between the kernel functions
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FIG. 6. Plots of MSDs to the fractal backbones for the reactive [Eqs. (59) and (60)] and conservative tracers [Eqs. (62) and (63)] with
dimensionless parameters Dx = Dy = 1, α = 1, μ = 0.98, C = 0.1.

in the comb model, the fractal dimension of the backbones,
and the densities for jump lengths and waiting time of the
diffusive particles in the CTRW model are derived with C = 0
and dimensionless parameters Dx = Dy = 1. The diffusion
processes can be simulated in which the density of jump
lengths is the Gaussian distribution N (0, 1) and the waiting
time density to the x direction has the Laplace transform
ωx(s) = 1

1+sρ(s) , and to the y direction is given as ωy(s) =
1

1+sγ (s) .

A. Cases with η(t ) = δ(t )

The kernel function γ (t ) is selected as γ (t ) = ln−α (t ), α >

0. The second moment along the x direction is

〈x2(t )〉 � Dx

Dy
1−v

2

L−1

⎡
⎢⎢⎣

1
s ln− (1+v)α

2 (1/s)(
ln− (1+v)α

2 (1/s) − 1
2

Dx

D
1−v

2
y

C
)2

⎤
⎥⎥⎦. (59)

Moreover, for the conservative tracer (C = 0), the MSD
along the x direction is given by

〈x2(t )〉 � Dx

D
1−v

2
y

ln
(1+v)α

2 (t ). (60)

In this case, the corresponding solution for the conservative
tracer becomes

u1(x, t ) ∼
√

D1/2−v/2
y√

2Dxln(1+v)α/2(t )
exp

⎡
⎣−

√
2D1/2−v/2

y |x|√
Dxln(1+v)α/2(t )

⎤
⎦.

(61)

For the generalized kernel function γ (t ) = [E−1
μ (t )]α , the

second moment and solution can be obtained in a similar way.

B. Case with η(t ) = t−μ

�(1−μ)

For the kernel function γ (t ) is γ (t ) = ln−α (t ), and the
MSDs along the x direction are

〈x2(t )〉 � Dx

D
1−v

2
y

L−1

⎧⎪⎪⎨
⎪⎪⎩

s−μln− (1+v)α
2 (1/s)[

s1−μln− (1+v)α
2 (1/s) − 1

2
Dx

D
1−v

2
y

C
]2

⎫⎪⎪⎬
⎪⎪⎭.

(62)
For the conservative tracer, the MSD reads

〈x2(t )〉 � Dx

D
1−v

2
y

t1−μln
(1+v)α

2 (t ), (63)

and the PDF becomes

u1(x, t ) ∼
√

D1/2−v/2
y√

2Dxt1−μln(1+v)α/2(t )

× exp

⎡
⎣−

√
2D1/2−v/2

y |x|√
Dxt1−μln(1+v)α/2(t )

⎤
⎦. (64)

To check the influence of the fractal dimension of the
backbones, Figs. 6(a) and 6(b) provide the MSDs for the
reactive and conservative tracers when the fractal dimension
is v = 0.6 and v = 0.3, respectively. The results show that
smaller fractal dimension decelerates ultraslow diffusion. We
can also observe from Fig. 6 that the reaction effect accel-
erates ultraslow diffusion which is consistent with the cases
shown in Fig. 4. Thus, it is feasible that such comb model can
describe the ultraslow diffusions in comblike structure with
fractal backbones.
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IV. SUMMARY

In this study ultraslow diffusion of tracers in comb-
like structure is investigated by a two-dimensional reaction-
diffusion equation with two memory kernels for a two-
dimensional comb. The first order catalytic reaction scheme
is considered in the frame of the comb model, which is solved
by using the inverse Laplace-Fourier transform on the gen-
eral expressions of the solutions in frequency domains. The
logarithmic and inverse Mittag-Leffler functions are selected
as the kernels, which are frequently used in the structural
derivative models. The solutions and the corresponding mean
squared displacements (MSDs) are derived for the different
memory kernels. The solutions follow a double-sided expo-
nential distribution. Compared with the conservative cases,
the reactive effect does not change the patterns of MSDs and
solutions, which accelerates the ultraslow diffusion both on
the x and y directions. Based on the proposed comb model,
ultraslow diffusion on a generalized fractal comb of the back-
bones is also considered. The derived MSDs and solutions
depend on the fractal dimension of backbones. Thus, the
comb model is useful to describe the ultraslow diffusions in
both the backbones and side branches of the comb. In further
study, the comb model should be tested with real applications,
and the effects of the nonlinear reaction scheme will also
be discussed. To place the comb models in a more general
perspective, the recent work [42] on systematic analysis of the

projection-induced non-Markovian dynamics and anomalous
diffusion should be discussed in the future study.
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APPENDIX: TAUBERIAN THEOREM FOR SLOWLY
VARYING FUNCTIONS

In the Tauberian theorem [22], for the function f (t ), t �
0, when its Laplace transform has the following asymptotic
form,

f (s) � s−θG

(
1

s

)
, s → 0, θ � 0, (A1)

then the function f (t ) satisfies

f (t ) = L−1[r(s)] � 1

�(θ )
t θ−1 G(t ), t → ∞, (A2)

where G(t ) should be a slowing varying function at infinity,
which satisfies limt→∞ G(at )

G(t ) = 1, a > 0.
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