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Energy current correlation in solvable long-range interacting systems
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We consider heat transfer in one-dimensional systems with long-range interactions. It is known that typical
short-range interacting systems shows anomalous behavior in heat transport when total momentum is conserved,
whereas momentum-nonconserving systems do not exhibit anomaly. In this study, we focus on the effect of
long-range interaction. We propose an exactly solvable model that reduces to the so-called momentum-exchange
model in the short-range interaction limit. We exactly calculate the asymptotic time decay in the energy current
correlation function, which is related to the thermal conductivity via the Green-Kubo formula. From the time
decay of the current correlation, we show three qualitatively crucial results. First, the anomalous exponent
in the time-decay continuously changes as a function of the index of the long-range interaction. Second,
there is a regime where the current correlation diverges with increasing the system size with fixed time, and
hence, the exponent of the time decay cannot be defined. Third, even momentum-nonconserving systems can
show the anomalous exponent indicating anomalous heat transport. Higher dimensions are also considered,
and we found that long-range interaction can induce the anomalous exponent even in three-dimensional
systems.

DOI: 10.1103/PhysRevE.101.042118

I. INTRODUCTION

In the past few decades, the study of dynamic and ther-
modynamic properties of long-range interacting systems has
attracted considerable attention. These systems are character-
ized by interaction potentials V (r) that decay with the power
law

V (r) ∝ r−δ, (1)

where r is the distance between two interacting particles. The
parameter δ controls the range of interaction; a smaller δ

means a longer range of interactions. When the index δ is
lower than the spatial dimension, the system is called the long-
range interacting system [1,2]. In this regime, the additivity
does not hold, and many unusual properties appear such as
negative specific heat [3–6], the long-lived quasistationary
state [7,8], anomalous diffusion [5,9,10], and suppression of
chaos [8,9,11–13]. In this study, we use the terminology long-
range interaction in a wider sense to refer to the interaction in
the power-law form regardless of the exponent δ.

In contrast to the equilibrium properties, nonequilibrium
properties such as transport have not yet been understood
in such systems. In this study, we address the heat transfer
in long-range interacting systems focusing on energy current
fluctuations. We focus on one-dimensional systems because
there are many studies on the short-range interacting systems.
In short-range interacting one-dimensional systems with total
momentum conservation, the energy transport is, in general,
anomalous, in the sense that the thermal conductivity κ di-
verges as κ ∝ Nα (0 < α � 1) with an increase in the system
size N [14–16]. The thermal conductivity is given by the
Green-Kubo formula, which is the time integral of the energy
current correlation. Hence, the anomalous behavior of the
diverging conductivity is directly related to the slow decay in

the equilibrium current correlation in a closed system:

C(t ) := N−1〈Jtot (t )Jtot〉 ∼ t−β, 0 � β < 1, (2)

where Jtot is the total energy current and 〈· · · 〉 is the equilib-
rium average or microcanonical average. In addition, from the
microscopic viewpoint, this slow relaxation is also related to
the superdiffusive behavior in the energy diffusion [17–19].
If the system has on-site pinning potentials where the total
momentum conservation does not hold, the above anomaly
disappears, and the normal diffusion and normal heat transport
are recovered.

From the above backgrounds on short-range interacting
systems, we consider the effects of long-range potentials
on energy fluctuations. Thus far, several numerical studies
have proposed two paradigmatic models. In Refs. [20–22],
the coupled rotor model was studied. This model shows a
transition from the diffusive transport to the thermal insulator
as δ decreases from infinity. The critical point δc lies between
δ = 1 and 2; however, the explicit value depends on the
temperature regime. In Refs. [22,23], the Fermi-Pasta-Ulam
(FPU) model was investigated, and it was found that the
transport behavior is generally anomalous, except at δ = 2,
where it exhibits ballistic behavior [23]. In the presence of
long-range interactions, the coupling form between the system
and the reservoir is very nontrivial in the choice since the
interaction range of the coupling (i.e., long range or short
range) may cause significant macroscopic difference. In a
recent study [24], the reservoir effect was carefully stud-
ied, and several intriguing effects, including energy diffusion
behavior, were discussed. In studies on the FPU model,
long-range interactions can be added in several ways, e.g.,
long-range quadratic potential terms [25], long-range quartic
potential terms [13,23], and a combination of both [8,22,24].
From these studies, many intriguing transport properties have
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TABLE I. Decay rate β for the one-dimensional long-range
interacting systems. The top summarizes systems with no on-site
potential. The bottom summarizes the results for systems with on-site
potential. Note that the exponent gradually changes depending on δ.
Remarkably, even systems with on-site potentials can exhibit anoma-
lous decay for the range 3/2 < δ � 5/2. At δ = 3, the logarithmic
correction appears in the time decay for both cases of k0 = 0 and
k0 �= 0 [see Eqs. (40) and (43)]. In the regime δ � 2 for k0 = 0 and
the regime δ � 3/2 for k0 �= 0, the amplitude of current correlation
diverges, which is indicated by the symbol ‘–’ in the table; hence, the
exponent cannot be defined.

δ � 2 2 < δ < 3 3 < δ

k0 = 0 – β = (δ − 2)/2 β = 1/2
(anomalous) (anomalous)

δ � 3/2 3/2 < δ � 5/2 5/2 < δ < 3 3 < δ

k0 �= 0 – β = (2δ − 3)/2 β = (2δ − 3)/2 β = 3/2
(anomalous) (diffusive) (diffusive)

been numerically indicated. However, note that, in general,
it is very difficult to obtain clear results through numerical
calculations because the finite-size effect is very significant,
especially in long-range systems [22]. Owing to this difficulty,
we require clear-cut results with a solvable model for an
in-depth understanding of the long-range effect.

In this paper, we propose an analytically solvable model,
which mimics the FPU dynamics with the long-range
quadratic potential. The dynamics of the model consists of the
deterministic Hamiltonian dynamics of harmonic interactions
and stochastic perturbation exchanging momenta of nearest
neighbors. The Hamiltonian for the deterministic dynamics is
given in Eqs. (3) and (4). For δ = ∞, without on-site pinning
potential, this model is equivalent to the so-called momentum
exchange (ME) model [26–28]. The ME model rigorously
explains the anomalous transport properties showing the slow
decay in the current correlation β = 1/2 [26,27], superdif-
fusion in the energy diffusion [17–19], and the nonequilib-
rium steady current under a finite thermal gradient [28,29].
Herein, we extend the technique developed in [26,27] to the
long-range interacting case with and without on-site pinning
potential. In particular, we focus on the current correlation.
We present a brief summary of the one-dimensional systems
in Table I. This table includes three important results. The
first result is that the exponent β in the current correlation
continuously changes as a function of the index δ in the
long-range potential. The second result is that there is a regime
where the current correlation diverges with increasing the
system size with fixed time, and hence, the exponent β cannot
be defined. The third result is that even the systems with
the on-site pinning potential can show anomalous behavior,
i.e., β < 1, owing to the long-range interaction. In addition,
we extend the analysis to higher dimensions, and we show
that long-range interaction can induce an anomalous exponent
even in three-dimensional systems. These exact findings show
that the exponent in the anomalous transport can appear
in various systems with long-range interactions, even if the
equilibrium thermodynamic properties such as the additivity
and extensivity are satisfied.

q̃0 q̃1 q̃2 q̃N−1 q̃N q̃N+1

s0 + s1 sN−1 sN+ + +

q̃N+2

sN+1 +

FIG. 1. Schematic of the structure of the spring system.

This paper is organized as follows. In Sec. II, we introduce
our model and explain some notations and definitions. In
Sec. III, our main result about the analytical solution of the
energy current correlation is presented, and we derive the
results listed in the Table I. In Sec. IV, our analysis is extended
to higher dimension, focusing on the momentum-conserving
systems. Finally, we summarize and discuss our results in
Sec. V.

II. MODEL

A. Long-range interacting Harmonic chain

We consider a classical one-dimensional system composed
of N particles. The position and momentum of the xth particle
are denoted by q̃x and px, respectively. For the convenience
of analysis, we consider the structure that is schematically
shown in Fig. 1. That is, the infinite particles are arranged
along the infinite line, and we focus on the dynamics of N
particles by imposing the boundary conditions appropriately.
For momentum variables, we always impose the condition
px = px+N . For the position variables, we impose different
boundary conditions depending on whether the system has
momentum conservation, as discussed below.

We employ the hybrid dynamics containing the determin-
istic dynamics from the Hamiltonian and stochastic exchange
of momentum variables between the nearest neighbor sites,
which is introduced in the subsequent section. The determin-
istic dynamics is induced by the following Hamiltonian that
describes the long-range interacting harmonic chain:

H =
∑

x

p2
x

2
+ k0

2
[q̃x − (x − 1)�]2 +

∑
x

N/2∑
r=1

Vx,r, (3)

Vx,r = 1

Ñrδ

(q̃x+r − q̃x − r�)2

2

(
Ñ =

N/2∑
r=1

1/rδ

)
, (4)

where the index δ controls the range of the harmonic interac-
tions. When δ = ∞, the interaction is reduced to the nearest
neighbor interaction, while δ → 0 implies global coupling.
The factor Ñ is introduced to ensure extensivity on the equi-
librium thermodynamic variables such as the free energy and
entropy for δ < 1, whereas when δ > 1, the extensivity is
satisfied even without this term. The quantity � is the natural
length of the springs.

1. Momentum-conserving case

First, we explain the structure of the system without the on-
site potential, i.e., k0 = 0, called the momentum-conserving
case. In this case, the spatially translational invariance is
satisfied; hence, the total momentum is conserved. We define
the stretch variable as

sx := q̃x+1 − q̃x − �. (5)
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Because we impose the boundary condition on the momentum
px+N ≡ px, we immediately find that the summation of the
stretch variables

∑N+x−1
x′=x sx′ = q̃N+x − q̃x − N� is conserved.

Namely, for a given initial state, the length of the N particles is
conserved. For the momentum-conserving systems, a specific
value of q̃x does not matter because the global shift gives
arbitrary values without changing the dynamics; hence, we
impose the boundary condition for stretch variables as sx+N ≡
sx and not for position variables. This boundary condition can
be achieved once we set an initial configuration correctly.
For each initial state, we define an average stretch as s̄ =∑N

x=1 sx/N . In addition, we introduce a displacement variable

qx := q̃x − (x − 1)(s̄ + �). (6)

Then, we find that qN+x = qx automatically holds from the
conservation of the length of N particles. In this paper, for
the momentum-conserving case, we consider the initial states
satisfying s̄ = 0. In such initial states, the potential Vx,r is
rewritten as Vx,r = [1/(Ñrδ )](qx+r − qx )2/2.

In the momentum-conserving case, there are three con-
served quantities: total stretch, momentum, and energy. For
the calculation of current correlation, we take a microcanoni-
cal average over the phase space with zero total stretch, zero
total momentum, and a finite fixed total energy.

2. Momentum-nonconserving case

We next explain the structure of the system with the
on-site potential, k0 �= 0, which we call the momentum-
nonconserving case. In this case, there is a mechanical equilib-
rium position for each particle, i.e., (x − 1)� for the xth parti-
cle. In this system, a specific value in the position does matter;
hence, we impose the boundary condition q̃x+N ≡ q̃x + N�

in addition to px+N ≡ px. It is convenient to introduce a
displacement variable

qx := q̃x − (x − 1)�. (7)

Then we find that qx+N = qx is also satisfied. The potential
Vx,r is also rewritten as Vx,r = [1/(Ñrδ )](qx+r − qx )2/2.

In momentum-nonconserving systems, only the total en-
ergy is an important conserved quantity relevant to the de-
tailed calculation of the current correlation. To calculate the
current correlation, we take a microcanonical average over the
phase space with a finite fixed energy.

3. Dispersion relation

We consider the dispersion relation by which the sound
velocity is defined. The dispersion relation and sound velocity
are fundamental properties to characterize the macroscopic
dynamics. A recent work [30] pointed out that the sound ve-
locity can be important, especially in an open system attached
to two reservoirs with different temperatures. Although in this
study we focus on the current fluctuation in the closed setup,
we list the classification of the sound velocities for different
classes of systems.

Note that for momentum-conserving and -nonconserving
cases, the potential term is reduced to the same expression

with appropriately defined displacement variables qx. We
define the Fourier transform as follows:

qx = 1√
N

∑
k

qke−ikx, (8)

px = 1√
N

∑
k

pke−ikx, (9)

where the wave number is k = 2π/N, 4π/N, . . . , 2π . In this
study, the same Fourier transform is applied for different vari-
ables. Through straightforward calculation for the potential
term, the dispersion relation can be obtained as

ωk =
[

k0 + 1

Ñ

N/2∑
r=1

4 sin2 (kr/2)

rδ

]1/2

. (10)

In the proximity of k = 0, this has the following asymptotic
behavior:

ω2
k ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
const, 0 < δ < 1,

k0 + aδ (ln k−1)−1, δ = 1,

k0 + a′
δ kδ−1, 1 < δ < 3,

k0 + a′′
δ k2 ln k−1, δ = 3,

k0 + a′′′
δ k2, δ > 3,

(11)

where aδ , a′
δ , a′′

δ , and a′′′
δ are constants dependent on δ. The

sound velocity is given by the slope of ωk at k = 0. In the
momentum-conserving case k0 = 0, we find that the sound
wave does not exist for 0 < δ < 1, whereas the sound velocity
is infinite for 1 < δ � 3, and it is finite for δ > 3. In the
momentum-nonconserving case, the sound wave does not
exist for 0 < δ < 1, whereas the sound velocity is infinite for
1 < δ < 2, and it is zero for δ > 2.

B. Momentum-exchange dynamics with long-range interaction

The dynamics is hybrid dynamics consisting of the deter-
ministic part from the Hamiltonian and the stochastic part
described by the random exchange of momenta between the
nearest neighbor sites. For both momentum-conserving and
-nonconserving cases, the microscopic dynamics for variables
qx and px are the same. The infinitesimal changes in the
variables from time t to t + dt are described as follows:

dqx = pxdt, (12)

d px =
[
−k0qx + Ñ−1

N/2∑
r=1

r−δ (qx+r + qx−r − 2qx )

]
dt

+ dnx(px+1 − px ) + dnx−1(px−1 − px ), (13)

where {dnx}N
x=1 are independent stochastic variables, which

take the value 0 or 1, with the Poisson process satisfying
the noise average 〈dnx〉n = γ dt . The noises stochastically
exchange momenta between the nearest neighbor sites. This
hybrid dynamics conserves total energy. In addition, for the
momentum-conserving case, the dynamics still satisfies the
conservation of total momentum. When δ is infinite, the in-
teraction between the particles contains only nearest neighbor
harmonic interaction; hence, the dynamics reduces to the
original ME model discussed in Refs. [26–28].
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The corresponding dynamics for the distribution function
can be obtained easily. Here, we show only the momentum-
nonconserving case, where the distribution function for the
phase space (q, p) := (q1, . . . , qN , p1, . . . , pN ) is defined
[31]. Let P(q, p, t ) be the probability distribution. Because the
stochastic noise is generated according to the Poisson process,
the time evolution is given as

∂

∂t
P(q, p, t ) = (−A + γS)P(q, p, t ), (14)

where the operator −A denotes the deterministic dynamics
given by Liouville’s operator,

A :=
N∑

x=1

(
∂H

∂ px

∂

∂qx
− ∂H

∂qx

∂

∂ px

)
. (15)

The operator γS is the part of the stochastic dynamics that
acts as

SP(q, p, t ) :=
N∑

x=1

[P(q, px|x+1, t ) − P(q, p, t )], (16)

where px|x+1 is obtained by substituting px, px+1 by px+1, px

in p.

C. Energy current

The energy current is defined by the continuity equation of
the local energy. Therefore, we define the local energy as

εx = p2
x

2
+ 1

2Ñ

N/2∑
r=1

[
(qx+r − qx )2

2rδ
+ (qx − qx−r )2

2rδ

]
. (17)

The evolution of the local energy is calculated according
to (12) and (13). We need to be careful as the time evolu-
tion involves stochastic terms. In addition, we also note that
the dynamics contains nonlocal interaction, which inevitably
leads to nonlocal expression of the energy current. First, we
consider the infinitesimal change in the local energy:

dεx = 1

Ñ

N/2∑
r=1

1

2rδ
[−(qx − qx+r )(px+r + px )dt

+ (qx−r − qx )(px−r + px )dt]

+ dnx

(
p2

x+1

2
− p2

x

2

)
+ dnx−1

(
p2

x−1

2
− p2

x

2

)
, (18)

where the expression containing the noise terms denotes the
exchange of kinetic energies caused by the exchange of mo-
menta between the nearest neighbor sites.

Next, we compare the above expression with the continuity
equation with respect to energy dεx = −d jx + d jx−1. Note
that the Hamiltonian satisfies translational invariance; hence,
the current expressions should be constructed such that the
expressions of d jx and d jx−1 are identical to each other once
we shift the site index. From this criterion, we can derive the

x x+1

FIG. 2. Interpretation of energy current jA
x . Each arrow indicates

the direct transmission of energy from one site to another. The energy
current is defined by counting all transmissions through the surface
between sites x and x + 1.

following expression of energy current:

d jx := (
jA
x + γ jS

x

)
dt + djx, (19)

jA
x := − 1

Ñ

x+N/2∑
x′=x+1

N/2∑
r=x′−x

qx′ − qx′−r

rδ

px′ + px′−r

2
, (20)

jS
x := − p2

x+1 − p2
x

2
, (21)

djx := − p2
x+1 − p2

x

2
dmx. (22)

Here, dmx is the Martingale noise, defined as dmx := dnx −
γ dt [32]. The currents jA

x and jS
x are the instantaneous cur-

rents from the deterministic dynamics and average stochastic
noise, respectively. The third current dj is a current from the
Martingale noise. Note that the expression of jA

x is nonlocal,
which is a direct consequence of long-range interactions.
By considering all contributions of the energy transmissions
across the surface between sites x and x + 1, the expression jA

x
is defined. Figure 2 shows the schematic for the interpretation.

III. ENERGY CURRENT CORRELATION

A. Definition of the current correlation

We consider the energy current correlation that is directly
related to thermal conductivity via the Green-Kubo formula.
From the current expressions, we note jtot := ∑N

x=1 jA
x +

jS
x = jA

tot, where jA
tot := ∑N

x=1 jA
x . Then, we consider the fol-

lowing current correlation [26,27,30,33]:

CN (t ) := 1

N
〈 jtot (t ) jtot〉mc:n = 〈

jA
tot (t ) j′0

〉
mc:n, (23)

where the symbol 〈· · · 〉mc:n denotes the microcanonical aver-
age (mc) as well as the noise average (n). The variable j′0 is
defined by noting that the total current jA

tot is simplified from
the expression of local current (20) and is rewritten with the
new variable j′x as

jA
tot = −1

Ñ

∑
x

N/2∑
r=1

qx − qx−r

rδ−1

px + px−r

2
=

∑
x

j′x, (24)

j′x := −1

Ñ

N/2∑
r=1

qx − qx−r

rδ−1

px + px−r

2
. (25)

Using the translational invariance in the system, we selected
one site in Eq. (23).

The current correlation is directly related to the thermal
conductivity via the Green-Kubo formula if the time integral
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is finite [34]. In anomalous heat transport, the combination of
power law decay in the current correlation and time integra-
tion up to the cutoff time N/c, where c is the sound velocity, is
thought to explain the system size dependence of the diverging
thermal conductivity.

Note that the current expression (19) also has the Martin-
gale part. However, it is known that its contribution to the
thermal conductivity is constant, and the correlations between
the Martingale part and jA, jS vanish [26–28]. Hence, we
do not involve the Martingale current in the definition of the
current correlation.

B. Laplace transform of CN (t )

We outline the calculation below. First, we consider the
Laplace transform:

ĈN (λ) :=
∫ ∞

0
dt e−λtCN (t )

=
∫ ∞

0
dte−λt

〈[
e(A+γS)t jA

tot

]
j′0

〉
mc

= 〈[
(λ − A − γS)−1 jA

tot

]
j′0

〉
mc, (26)

where, from the second line, the expression is the form while
taking the noise average. The dynamics for the variables is
given by the operator A and S; the dynamics is conjugate to
the distribution function (14).

For further calculation (26), we consider the equation

(λ − A − γS)u(λ) = jA
tot. (27)

Note that using the quantity u(λ), the Laplace transform of
the current correlation can be written as ĈN (λ) = 〈u(λ) j′0〉mc.
To obtain the explicit expression of u(λ), we impose the
following form:

u(λ) =
∑
x,x′

gx−x′qx px′ , (28)

where we also assume the relation g−x = −gx and gx+N = gx.
Substituting this expression into Eq. (27) and comparing the
coefficients of the term qx px′ , the relation is satisfied:

(λ − γx′ )gx−x′ = −1

2Ñrδ−1
(δ̄x−x′,r − δ̄x−x′,−r ), (29)

where δ̄x,a is Kronecker’s delta function, i.e., δ̄x,a = 1 for
x = a and δ̄x,a = 0 otherwise. The symbol x′ is the discrete
Laplacian that acts as x′ fx′ := fx′+1 + fx′−1 − 2 fx′ . Through
the Fourier transform for both sides in the equation, the
explicit form of the function gx−x′ is easily obtained as

gx−x′ = 1√
N

∑
k

gke−ik(x−x′ ), (30)

gk = −i√
N

�k

λ + γ [2 sin(k/2)]2 , (31)

where

�k := 1

Ñ

N/2∑
r=1

sin (kr)

rδ−1
. (32)

The function �k is related to the Fourier representation of the
total instantaneous current as jA

tot = −i
∑

k �kq−k pk .

Finally, we consider taking the average over the micro-
canonical average, where we proceed with computation based
on the ensemble equivalence between microcanonical and
canonical distributions. Note the expression

ĈN (λ) =
∑
r,x,x′

−1

2Ñrδ−1
gx−x′ 〈qx px′ (q0 − q−r )(p0 + p−r )〉mc

=
∑
r,x,x′

−1

2Ñrδ−1
gx−x′

× 〈qx(q0 − q−r )〉mc〈px′ (p0 + p−r )〉mc

= −〈
p2

0

〉
mc

2Ñ

∑
r

1

rδ−1

∑
x

gxhr (x), (33)

hr (x) := 〈qx(qr − q−r )〉mc, (34)

where, to obtain the function hr (x), we used the translational
invariance to shift the site index in the correlation. For the
expression of the function hr (x), we further use the ensemble
equivalence between the microcanonical and canonical en-
sembles (the detailed calculation is provided in the Appendix),
and we have the following expression for the Fourier trans-
form:

hr (k) = 4ikBT√
N

sin(kr)

ω2
k

. (35)

The Fourier transform of the resultant expression of
〈u(λ) j′0〉mc is as follows:

ĈN (λ) = 2(kBT )2

N

∑
k

1

λ + γ [2 sin(k/2)]2

�2
k

ω2
k

∼ 2(kBT )2

π

∫ π

N−1
dk

1

λ + γ [2 sin(k/2)]2

�2
k

ω2
k

, (36)

where we take the continuous expression in terms of the wave
number in the last line. We reduced the interval of integration
to [N−1, π ] using the symmetry with respect to k = π . The
constant kB is the Boltzmann constant.

C. Asymptotic behavior of the current correlation

Now, we can analyze the asymptotic behavior of the current
correlation. The correlation function in the time domain is
obtained with the inverse Laplace transform

CN (t ) = 1

2π i

∫ c+i∞

c−i∞
dλ ĈN (λ)eλt

= 2(kBT )2

π

∫ π

N−1
dk

�2
k

ω2
k

e−γ [2 sin(k/2)]2t . (37)

Here, we have selected the pole −γ [2 sin(k/2)]2 in the λ

plane. From this, one can recognize that the asymptotic be-
havior in time is obtained from the small wave number regime.
The asymptotic behavior in the time domain considering the
behavior of small wave numbers is discussed below.

1. Momentum-conserving case

In the short-range interacting case, i.e., in the ME model,
it is exactly shown that the exponent of the time decay in
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the current correlation function is 1/2 (< 1), which implies
anomalous transport. Now we consider the long-range inter-
acting case satisfying total momentum conservation [26].

For small k, the function �2
k/ω

2
k behaves as

�2
k

ω2
k

∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−2, δ < 1,

k−2(ln k−1)−1, δ = 1,

k−(3−δ), 1 < δ < 3,

ln k−1, δ = 3,

const, δ < 3.

(38)

Hence, for δ � 2, the integral in Eq. (36) exhibits infrared
divergence in the limit of N → ∞. The asymptotic behavior
is expressed as

lim
N→∞

CN (t ) ∼

⎧⎪⎪⎨⎪⎪⎩
N, δ < 1,

N2−δ, 1 < δ < 2,

ln N, δ = 2,

C(t ), δ > 2,

(39)

where C(t ) is the saturated continuous function in the ther-
modynamics limit. The current correlation is ill defined in
the thermodynamic limit for δ < 2. Note that the appropri-
ately scaled current correlation, i.e., CN/N for 0 < δ < 1 and
CN/N2−δ for 1 < δ < 2, is independent of t for large t . From
the structure of the inverse Laplace transform, we can find the
asymptotic behavior of the function C(t ) given for δ > 2:

lim
t→∞C(t ) ∼

⎧⎨⎩
t−(δ−2)/2, 2 < δ < 3,

t−1/2 ln t, δ = 3,

t−1/2, δ > 3.

(40)

This result leads to the classification of the exponent β in
Eq. (2) and the results listed in Table I. A crucial observa-
tion here is that the exponent of the asymptotic time decay
continuously changes as a function of the index of long-
range potential δ. Another crucial observation is that there
is an ill-defined regime (δ < 2) where the current correlation
diverges. The exponent 1/2 for δ > 3 implies that this regime
is regarded as a short-range interaction in the context of heat
transfer.

2. Momentum-nonconserving case

Next, we consider the momentum-nonconserving case, i.e.,
k0 �= 0. We note that in the short-range interacting case, the
on-site potential induces normal thermal conduction. It is
already known that the exponent in the time decay in the
current correlation is 3/2 (>1) [26]. Here, we consider the
effect of long-range potential based on the exact expression.
We perform an analysis similar to the one in the previous
section. For the term (�2

k/ω
2
k ), the main contribution to the

small wave number regime is from �2
k because the dispersion

relation is constant for the regime. Then, we have

�2
k

ω2
k

∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−2, δ < 1,

(k ln k−1)−2, δ = 1,

k2(δ−2), 1 < δ < 3,

(k ln k−1)2, δ = 3,

k2, δ > 3.

(41)

From this expression, we can discuss the thermodynamic limit
by considering the system size dependence:

lim
N→∞

CN (t ) ∼

⎧⎪⎪⎨⎪⎪⎩
N, δ < 1,

N−(2δ−3), 1 < δ < 3/2,

ln N, δ = 3/2,

C(t ), δ > 3/2.

(42)

From this, we find that there is a regime where the current
correlation shows infrared divergence (δ < 3/2). For δ >

3/2, we have the well-defined continuous function C(t ). The
asymptotic behavior in the time domain of the function is
estimated as

lim
t→∞C(t ) ∼

⎧⎨⎩
t−(2δ−3)/2, 3/2 < δ < 3,

t−3/2(ln t )2, δ = 3,

t−3/2. δ > 3.

(43)

This leads to the classification of the exponent β in the time
decay listed in Table I. A critical observation here is that
the exponent can be less than 1 for 3/2 < δ < 5/2, which
indicates anomalous behavior in the heat conduction. This is
physically important because the momentum-nonconserving
systems have been thought to show normal heat conduction.
This anomalous behavior originates from the long-range in-
teraction. Hence, one can say that long-range interactions
induce the anomaly. Again, we observe that the exponent
continuously changes as a function of the index of the long-
range interaction δ. For δ > 3, we have the exponent 3/2,
which is the same as in the short-range interacting case.
Considering the exponent, the regime δ > 3 can be regarded
as a short-range interaction. On the other hand, in the context
of the normal heat conduction, the index δ = 5/2 is critical
since the exponent β is larger than 1 for δ > 5/2.

IV. EXTENSION TO HIGH DIMENSIONS

We herein consider the effect of higher dimensions. Having
computed the one-dimensional systems, it is now straight-
forward to extend the calculation to higher dimensions. It is
known that in short-range interacting momentum-conserving
systems, the dimensionality significantly affects the long-time
tail of current correlation, which, in general, leads to the
normal thermal conductivity in three dimensions. This has
been checked numerically for the FPU lattices [35] and the
exact analysis for the three-dimensional extension of the ME
model showing the convergence of the Green-Kubo integral
in [26]. We also remark that the transport behavior in the
two-dimensional systems seem to show several varieties de-
pending on the dynamics [26,35,36]. Given these observations
for short-range interacting systems, we here examine what
happens in the long-range interacting systems within the
present model. High-dimensionality tends to enhance a fast
relaxation, while long-range interaction tends to induce slow
relaxation. To focus on such competition, we here consider
only the momentum-conserving systems. As shown below,
even the three-dimensional systems can be anomalous in the
exponent of the time decay due to the long-range interaction.
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A. Dynamics

Let us consider the d-dimensional hypercubic lattice with
the size Nd . We assign a d-dimensional vector for displace-
ment variables and momentum variables. The Hamiltonian is
described as

H =
∑

x∈Zd
N

|px|2
2

+
∑
r∈Id

N

V (|q̃x+r − q̃x − �r|), (44)

where x labels a site ∈ Zd
N where Zd

N = Zd/NZd . The vari-
ables px and q̃x are, respectively, the momentum and position
variable at site x. The term V is a long-range spring potential
between positions x and x + r, where r is a relative vector
taken from the set

Id
N =

{
r =

d∑
i=1

νiei | νi = 0, 1, . . . , N/2 \{0}
}

, (45)

with the unit vector ei (i = 1, . . . , d ). The detailed expression
of the long-range potential term is written as

V (|q̃x+r − q̃x − �r|) = 1

2Ñ

|q̃x+r − q̃x − �r|2
|r|δ , (46)

Ñ = 1

d

∑
r∈Id

N

1

|r|δ . (47)

Now we take the same procedure as in Sec. II A 1. First,
we impose px+Nei

= px for i = 1, . . . , d . Next, introducing
the stretch variable s(i)

x = q̃x+ei
− q̃x − �ei, we impose the

boundary condition s(i)
x = s(i)

x+Nei
. As in the one-dimensional

case, we consider the microcanonical ensemble with the con-
figuration space

∑N
j=1 s(i)

x+ jei
= 0. In addition, we define the

new displacement variable:

qx := q̃x − (x − 1)�, (48)

where 1 = (1, . . . , 1). This variable satisfies qx = qx+Nei
.

Introducing the exchange noise between the nearest neigh-
bor sites nx,x+ei , the dynamics for the infinitesimal time step
is given as follows:

dqx,i = px,idt, (49)

d px,i = Ñ−1
∑
r∈Id

N

|r|−δ (qx+r,i + qx−r,i − 2qx,i )dt

+
d∑

j=1

[dnx,x+e j (px+e j ,i − px,i )

+ dnx,x−e j (px−e j ,i − px,i )], (50)

where qx,i and px,i are, respectively, the ith component of
the vectors qx and px. The exchange noises obey the Poisson
statistics, i.e., 〈dnx,x+e j 〉n = γ dt .

B. Current correlations

We set the local energy as

εx := |px|2
2

+ 1

2Ñ

∑
r∈Id

N

[ |qx+r − qx|2
2|r|δ + |qx − qx−r|2

2|r|δ
]
. (51)

Then, through the continuity equation with respect to en-
ergy, one can identify the energy current expression, and we
eventually arrive at the following expression for the current
correlation:

C(i,i)
N (t ) = 1

Nd

〈
jA
tot,i(t ) jA

tot,i

〉
mc:n = 〈

jA
tot,i(t ) j′0,i

〉
mc:n, (52)

jA
tot,i =

∑
x

j′x,i, (53)

j′x,i = 1

Ñ

∑
r∈Id

N

ri(qx−r,i − qx,i )

|r|δ
(px,i + px−r,i )

2
, (54)

where the superscript (i, i) means that we consider the corre-
lation between currents in only the ith direction. The compu-
tation is completely parallel to the one-dimensional case. The
resultant expression reads

C(i,i)
N (t ) = 2d (kBT )2

Nd

∑
k

(
�

(i)
k

)2

ω2
k

e−tγ
∑d

j=1 [2 sin(k·e j/2)]2

, (55)

where k is the d-dimensional wave length vector, i.e., the ith
component is ki = 2π/N, 4π/N, . . . , 2π . The term ωk is a
dispersion relation. The detailed expressions of ωk and �

(i)
k

are given as follows:

ω2
k = 1

Ñ

∑
r∈Id

N

[2 sin(k · r/2)]2

|r|δ , (56)

�
(i)
k = 1

Ñ

∑
r∈Id

N

ri

|r|δ sin(k · r). (57)

C. Asymptotic behavior

In order to consider the long-time tail, we note the expres-
sions at small wave numbers for (�(i)

k )2/ω2
k:

(
�

(i)
k

)2

ω2
k

∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−2, δ < d,

k−2/ ln k−1, δ = d,

k−(d+2−δ), d < δ < d + 2,

ln k−1, δ = d + 2,

const, δ > d + 2.

(58)

We should also note

Ñ ∼
⎧⎨⎩

k−(d−δ), δ < d,

ln k−1, δ = d,

const, δ > d.

(59)

Then, through a computation similar to the one-dimensional
case, we can obtain the following dimension dependence:

d = 1 : lim
N→∞

C(i,i)
N (t ) =

⎧⎪⎪⎨⎪⎪⎩
∞, δ � 2,

t−(δ−2)/2, 2 < δ < 3,

t−1/2 ln t, δ = 3,

t−1/2, δ > 3,

(60)

d = 2 : lim
N→∞

C(i,i)
N (t ) =

⎧⎪⎪⎨⎪⎪⎩
∞, δ � 2,

t−(δ−2)/2, 2 < δ < 4,

t−1 ln t, δ = 4,

t−1, δ > 4,

(61)
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d � 3 : lim
N→∞

C(i,i)
N (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t−(d−2)/2, δ � d,

t−(δ−2)/2, d < δ < d + 2,

t−d/2 ln t, δ = d + 2,

t−d/2, δ > d + 2.

(62)

Now we see that even in high-dimensional systems, the cur-
rent correlation can be anomalous in the sense of (2). Remark-
ably, even the three-dimensional systems can be anomalous
due to the long-range interaction for the parameter region
δ < 4.

V. SUMMARY AND DISCUSSION

In this study, we considered the effect of long-range inter-
action in the energy current correlation. The current correla-
tion is a key component in the Kubo formula leading to ther-
mal conductivity. To obtain clear-cut results, we introduced
the exactly soluble model, which reduces to the momentum
exchange model in the short-range interaction limit, and we
derived the exponent β in Eq. (2) exactly.

We compared the momentum-conserving case with non-
conserving case because it is known that the momentum-
conserving case with a short-range interacting case shows
anomalous transport with the exponent β = 1/2 (<1),
whereas the momentum-nonconserving case does not show
an anomaly, i.e., β = 3/2 (>1). In terms of the index of
long-range interaction δ, the results of the exponents are
summarized in Table I. We have three main results. First, the
exponent β continuously changes as a function of the index
of the long-range potential δ. Second, there is a regime where
the current correlation function is ill defined. Finally, the most
remarkable finding is that even the momentum-nonconserving
case can exhibit anomalous transport for a certain range of δ.
We note that recent paper [24] carefully discusses the effect on
the scaling factor Ñ . In the present model, the essential results
do not depend on the existence (or absence) of the scaling
factor. These observations might be suggestive for realistic
experiments with physical objects that involve long-range
terms in potentials.

We also extended the one-dimensional analysis to high di-
mensions, focusing on the momentum-conserving case. Then
we exactly showed that the long-range interaction can induce
the anomalous exponent even in three-dimensional systems.
This is another important message in this paper.

In this paper, we employed a toy model with stochas-
tic noises to solve the current fluctuation exactly, which is
definitely useful to understand anomalous behavior in the
transport. In the nonlinear dynamics, however, there are many
unsolved problems that originate from the nonlinearity in the
dynamics. For short-range interacting cases, many types of
interactions are investigated to study the transport properties.
Recently, fluctuating hydrodynamics has had a central role in
the analysis of transport phenomena in short-range interacting
systems [37–39]. On the other hand, it is not yet clear how to
connect the fluctuating hydrodynamics to the nonlinear long-
range interacting systems. It is a crucial future problem to find
the connection to understand the underlying mechanism of the
transport.
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APPENDIX: CALCULATION OF hr(x)

We consider the microcanonical average for the function
hr (x):

hr (x) := 〈qx(qr − q−r )〉mc. (A1)

We consider this function for momentum-conserving and -
nonconserving cases separately.

First, we consider the momentum-nonconserving case.
Note that the function hr (x) is the correlation on the local
observables. Calculating the local observable in terms of
the microcanonical ensemble is equivalent to calculating the
expectation value of the local observable in terms of the
locally reduced distribution function from the microcanonical
ensemble. Now, we impose the ensemble equivalence between
the microcanonical ensemble with a fixed energy and the
canonical ensemble with the corresponding temperature T :

〈qx(qr − q−r )〉mc ∼
∫

d�qx(qr − q−r )ρcan(q, p), (A2)

ρcan(q, p) = exp[−H/(kBT )]/ZT , (A3)

where
∫

d� · · · is the phase space average, i.e.,∫
dq1dq2 · · · d p1d p2 · · · . The function ZT is the partition

function. The boundary condition for this case is qx+N = qx.
We obtain the expression as

hr (x) = 1√
N

∑
k

hr (k)e−ikx, (A4)

hr (k) = 4ikBT√
N

sin(kr)

ω2
k

. (A5)

Next, we consider the momentum-conserving case. In this
case, we use the phase space (s, p) instead of (q, p). Hence,
we note the following argument on the function hr (x). Using
the discrete Laplacian, we have the following expression:

hr (x) = 〈(sx − sx−1)(qr − q−r )〉mc

= 〈(sx − sx−1)(sr−1 + sr−2 + · · · + s−r )〉mc

= 〈sx(sr−1 + sr−2 + · · · + s−r )〉mc

− 〈sx(sr + sr−1 + · · · + s−r+1)〉mc

= 〈sx(−sr + s−r )〉mc. (A6)

From the second to the third line, we used the translational
invariance to shift from the index x − 1 to x. We consider
the microcanonical ensemble with zero total stretch, momen-
tum, and a fixed finite total energy. We then impose the
ensemble equivalence between the microcanonical ensemble
with the ground canonical ensemble and the corresponding
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temperature T and chemical potential μ:

〈sxsr〉mc =
∫

ds1 · · · dsN sxsr e−(V (s)−μ
∑N

i=1 si )/(kBT )

ZT,μ

, (A7)

V (s) = 1

2Ñ

N∑
x=1

N/2∑
r=1

(sx + sx+1 + · · · + sx+r−1)2

rδ

=
∑

k

|sk|2
∑N/2

r=1
1
Ñ

sin2(kr/2)
rδ

2 sin2(k/2)
, (A8)

where the Fourier transform is used in the last line. The bound-
ary condition for this case is sx+N = sx. Now, we take μ = 0,
which corresponds to

∑N
i=1 si = 0. With these parameters, we

have

hr (k) = ikBT√
N

sin(kr)∑N/2
r=1

1
Ñ

sin2(kr/2)
rδ

. (A9)

This is equivalent to Eq. (A5) with k0 = 0.
Note that here we do not prove the ensemble equivalence

rigorously but simply impose it. We remark that for he
short-range interacting case, i.e., the original ME model, the
ensemble equivalence can be rigorously proven [27].
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