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We show that a collection of independent Ising spins evolving stochastically can display surprisingly large
fluctuations toward ordered behavior, as quantified by certain types of time-integrated plaquette observables,
despite the underlying dynamics being noninteracting. In the large-deviation (LD) regime of long times and large
system size, this can give rise to a phase transition in trajectory space. As a noninteracting system we consider a
collection of spins undergoing single spin-flip dynamics at infinite temperature. For the dynamical observables
we study, the associated tilted generators have an exact and explicit spin-plaquette duality. Such setup suggests
the existence of a transition (in the large size limit) at the self-dual point of the tilted generator. The nature
of the LD transition depends on the observable. We consider explicitly two situations: (i) for a pairwise bond
observable the LD transition is continuous and equivalent to that of the transverse field Ising model and (ii)
for a higher-order plaquette observable, in contrast, the LD transition is first order. Case (i) is easy to prove
analytically, while we confirm case (ii) numerically via an efficient trajectory sampling scheme that exploits the
noninteracting nature of the original dynamics.
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I. INTRODUCTION

Phase transitions [1–6] occur when a physical system
undergoes a sudden structural change as a reaction to an
infinitesimal variation of a suitable control parameter across
a critical value. The abrupt modification of the macroscopic
properties of the system is reflected in a nonanalytic be-
havior of an order parameter [1–3]. In classical equilibrium
the parameter driving the phase transition is an intensive
field conjugate to the order parameter, such as the inverse
temperature or a chemical potential, while in quantum phase
transitions it is a coupling constant in the Hamiltonian, such
as the strength of an external field or of the interactions. More
recently, the notion of phase transition has been extended to
include also critical phenomena taking place in large fluc-
tuations of nonequilibrium processes, e.g., Refs. [7–19] (see
Refs. [20–23] for reviews). In this scenario, sudden changes
in the spatiotemporal structures of the system (trajectories)
are witnessed by a nonanalytic behavior in free-energy or
entropy-like functionals describing the statistics of an appro-
priate time-integrated observable.

Similarly to what happens in equilibrium statistical me-
chanics, where the emergence of a phase transition is more
likely expected in the presence of interactions and of an
infinite number of degrees of freedom, one would expect to
observe these large deviation (dynamical) phase transitions
uniquely in many-body interacting dynamics. However, there
are noticeable counterexamples to this paradigm provided by
several recently investigated single-particle models where a
dynamical phase transition occurs without the need of in-
finitely many degrees of freedom [24–29].

Here we consider a complementary setting: We show that it
is possible to observe large-deviation phase transitions, from
a disordered phase to an ordered one, in systems of many,
but independent, degrees of freedom. We focus specifically
on the case of independently evolving Ising spins. This rather
counterintuitive result says that the probability of observing
an ordered dynamical fluctuation, in a system evolving in a
noninteracting manner, can be surprisingly large. This is a
statement about the spontaneous dynamical synchronization
of the independent elementary constituents at the fluctuation
level.

We present examples of these large-deviation (LD) transi-
tions by exploring fluctuations in a class of dynamical observ-
ables that correspond to time-integrated plaquette operators.
For these, the associated tilted generators that encode their
LD behavior (see below for definitions) have an explicit
Kramers-Wannier duality. In the LD formulation, this duality
is an exact mapping between weak tilting (corresponding to
close to typical behavior) and strong tilting (corresponding
to far from typical behavior), cf. weak-strong coupling in
the more standard context of dualities. The dualities are very
informative, as they can help to locate the critical point (at
the self-dual point) in the presence of a phase transition,
something we exploit in the examples we consider.

We study two cases in detail. In the first one, the transition
to the ordered dynamical phase is continuous and the critical
behavior of the dynamical order parameter is of Ising type.
This can be shown analytically as the calculation reduces to
solving the transverse field Ising model. In the second exam-
ple we consider the transition is discontinuous (first order).
Here we can demonstrate the duality analytically and thus

2470-0045/2020/101(4)/042115(11) 042115-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4662-0048
https://orcid.org/0000-0002-6961-7143
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.042115&domain=pdf&date_stamp=2020-04-15
https://doi.org/10.1103/PhysRevE.101.042115


VASILOIU, OAKES, CAROLLO, AND GARRAHAN PHYSICAL REVIEW E 101, 042115 (2020)

determine the self-dual point at which the transition occurs
exactly, but we confirm the existence of an LD transition nu-
merically. We achieve this by devising an efficient trajectory
sampling scheme which relies on the noninteracting nature of
the dynamics.

The dynamical phase transitions discussed here seem to
point to the existence of a far more general class of trajectory
transitions in the large size and long-time arising not due to the
complexity of the underlying dynamics but of the properties
of the time-integrated observable that is probed.

The paper is organized as follows. In Sec. II we establish
our notation and review the basics of dynamical LD methods.
In Sec. III we define the model and dynamical observables
we consider. Sections IV and V presents the main results of
the paper. Finally, in Sec. VI we give our conclusions. In
the Appendix we prove the duality of one of the cases we
consider.

II. STOCHASTIC DYNAMICS AND LARGE DEVIATIONS

We focus on classical stochastic systems with continuous-
time Markovian dynamics. Our notation is similar to that of,
for example, Refs. [14,22,30,31]. The state of the system is
described by a vector |Pt 〉 collecting the probabilities Pt (C) of
observing the state in a given configuration C at time t

|Pt 〉 =
∑

C

Pt (C) |C〉 . (1)

In classical stochastic dynamics such a vector evolves accord-
ing to a master equation (ME)

∂t |Pt 〉 = W |Pt 〉 . (2)

The classical stochastic generator W contains information
about transition probabilities and the escape rate from a given
configuration. Explicitly it reads,

W =
∑

C,C′ �=C

W (C → C′) |C′〉 〈C| −
∑

C

R(C) |C〉 〈C| , (3)

where W (C → C′) is the transition rate from C to C′ and
R(C) = ∑

C′ �=C W (C → C′) is the escape rate from C. The
dynamics encoded in the ME (2) is realized by means of
stochastic trajectories. Starting from configuration C, the sys-
tem survives in this state for a random time �t , which is
distributed exponentially according to S(�t ) = R(C)e−R(C)�t ,
and then jumps into a new configuration according to the rates
W (C → C′).

As such, a trajectory of total time t consists in a sequence
of configurations, ωt = (C0 → Ct1 → Ct2 → · · · → Ctn ), and
waiting times for jumps between them, where 0 < t1 < t2 <

t3 < · · · < tn < t are the times at which the change of config-
uration occurs, and C0 is the initial configuration. Between the
time of the last jump tn, and the final time t of the trajectory,
the configuration remains unchanged (i.e., “survives” in Ctn ).
The evolution of the probability state vector |Pt 〉 can be
recovered by averaging over all stochastic trajectories.

To investigate the emergence of ordered dynamical
phases and of strong spatiotemporal correlations it is nec-
essary to investigate the full probability of time-integrated

observables [20–23]. We represent observables as vectors,

〈O| =
∑

C

O(C)〈C|, (4)

where O(C) is the value of the observable in configuration C.
Given that classical observables are diagonal in the configu-
ration basis, this is equivalent to representing observables as
matrices Ô and multiplying on the left by the flat state,

〈−| =
∑

C

〈C|, (5)

so that 〈O| = 〈−|Ô.
We consider dynamical observables defined as time inte-

gral of configuration operators over a trajectory

O[ωt ] =
∫ t

0
dt ′〈O|Ct ′ 〉, (6)

where Ct ′ is the configuration of the state at time t ′ in a
stochastic realization ωt . Note that while O is a static observ-
able (a function only of the configuration), O is a dynamical
observable, a functional of the trajectory and extensive in time
(and in space if O is space additive).

For each realization of the process, i.e., for each trajectory
ωt , there is associated a value of the time-integrated observ-
able, O[ωt ]. Its probability distribution can thus be written as

πt (O) =
∑
ωt

P (ωt )δ(O[ωt ] − O), (7)

where P (ωt ) is the probability of trajectory ωt to occur. For
long times this probability distribution obeys an LD princi-
ple [9,20–23]

πt (O) � e−tϕ(O/t ). (8)

The so-called LD rate function ϕ(o), which is the analog of an
entropy density in the ensemble of trajectories, is a function of
the intensive order parameter o = O/t and gives information
about the exponential decay of the probability of observing a
large deviation far away from the typical value of o. Indeed,
this function is positive ϕ(o) � 0 and equal to zero only at the
typical outcome of the observable.

The moment generating function (MGF) for the observ-
able, Zt (s), defined as

Zt (s) =
∑
O

πt (O)esO, (9)

also obeys a LD principle for large times [20–23],

Zt (s) � et θ (s), (10)

where θ (s) is the scaled cumulant generating function
(SCGF). Its derivatives evaluated at s = 0 give the cumulants
of O scaled by time. The LD function θ (s) is the analog of a
free energy density for the ensemble of trajectories and s is a
parameter conjugate to the observable O. This parameter has
a role akin to the temperature in this dynamical LD setting
and it can be seen as a parameter modifying the original
probability of the observables. Tuning this parameter allows
one to explore the tails of the distribution πt (O).
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The SCGF θ (s) contains the full statistical information
about the observable O; indeed, the nth scaled cumulant of
the observable is

〈〈On〉〉
t

= ∂n

∂sn
θ (s)

∣∣∣∣
s=0

, (11)

where 〈〈·〉〉 indicates cumulant. Interesting phase behaviors in
trajectory space are encoded in the analytic properties of the
SCGF and its singularities are indicative of dynamical phase
transitions. The rate function ϕ(o) and the SCGF θ (s) are
related by a Legendre-Fenchel transform [20–23]

θ (s) = sup
o

[os − ϕ(o)]. (12)

For finite s, the SCGF θ (s) encodes information about large
fluctuations of the stochastic dynamics. More precisely, for a
given s, θ (s) provides a way to investigate the trajectories of
the process giving an atypical time-average value of 〈o〉s [32]
identified by the relation

〈o〉s = θ ′(s). (13)

The SCGF θ (s) can be obtained by means of tilted opera-
tors techniques [9,20–23,26,33]. In particular, it is the largest
eigenvalue associated with a deformation of the original
stochastic generator W, which for observables of the form (6)
reads

Ws =
∑

C,C′ �=C

W (C → C′) |C′〉 〈C|

−
∑

C

[R(C) − s O(C)] |C〉 〈C| . (14)

III. MODEL AND OBSERVABLES

We now introduce the specific class of models that is
addressed in this paper. We consider systems which consist of
N noninteracting Ising spins. For each spin, the state space is
spanned by two configurations: an up state |↑〉 indicating the
spin has a positive magnetization and a down state |↓〉 indicat-
ing instead a negative local magnetization. The magnetization
operator for each spin is the Pauli matrix σ z, i.e., σ z |↑〉 = |↑〉
and σ z |↓〉 = − |↓〉. The basis state |C〉 for a configuration C
of the whole system can thus be written as a tensor product of
the state of each individual spin.

The probability vector |Pt 〉 evolves according to a noninter-
acting thermal dynamics

W = γ+
N∑

i=1

[σ+
i − (1 − ni )] + γ−

N∑
i=1

(σ−
i − ni ), (15)

where σ
+/−
i is the ladder operator flipping the ith spin up

or down. The operator n is the number operator, defined as
n = σ+σ−, taking values 0 or 1 for a spin-down or -up,
respectively. We denote the rate for the up transition |↓〉 →
|↑〉 by γ+ and the rate for the down transition |↑〉 → |↓〉 by
γ−. The shape of the generator, which is a separate sum over
spins without any interaction terms, makes explicit the fact
that the spins evolve in a completely independent way. The
dynamics (15) is “thermal” as it obeys detailed balance. The
stationary state is therefore an equilibrium state, which given

the noninteracting nature of the dynamics takes the form of a
product state,

|eqT 〉 = ⊗N
i=1

(
γ+

γ+ + γ−
|↑〉i + γ−

γ+ + γ−
|↓〉i

)
, (16)

where the “temperature” is defined in terms of the ratio of
the rates, T = 1/ log (γ−/γ+) (assuming γ+ < γ−). That is,
this corresponds to the equilibrium state of a collection of
noninteracting spins in a magnetic field of unit strength at
temperature T .

When γ+ = γ− = γ , up and down transitions have the
same probability. In this case, which is the one we consider
below, the generator further simplifies to

W = γ

N∑
i=1

(
σ x

i − 1
)
, (17)

where σ x
i = σ+

i + σ−
i is the first Pauli matrix acting on the

ith spin. For this case, the equilibrium state of the system is
an equal superposition of all states, i.e., the T = ∞ state

|eq∞〉 = ⊗N
i=1

(
1

2
|↑〉i + 1

2
|↓〉i

)
= 2−N |−〉 . (18)

We term the dynamics generated by (17) an infinite tem-
perature dynamics. Note that in this case the generator is
Hermitian and the left and right eigenvectors coincide (up to
normalization).

For a collection of independently evolving Ising spins,
as expected, typical trajectories are uncorrelated and lack
structure. We are interested in studying large fluctuations
of time-integrated observables which represent a measure of
“order” in the spin configuration. We will consider what we
call in general a plaquette operator over the spins, of the
general form

Oplaquette(C) =
∑

μ

pμ(C). (19)

Here pμ are N operators (we always consider periodic bound-
ary conditions)

pμ(C) = σ z
iμ1

σ z
iμ2

· · · σ z
iμm

, (20)

formed by the product of m spins. We call the product (20) a
plaquette. Each spin in the system belongs to m plaquettes.
This means the following: For each configuration of spins
C = {σ z

i }N
i=1 there is a corresponding set of values of the

plaquettes {pμ}N
μ=1 which is unique (or almost unique, up

to symmetries) and therefore a one-to-one correspondence
between spins and plaquettes. The corresponding dynamical
order parameters that we consider then take the form

Oplaquette =
∫ t

0
dt ′ ∑

μ

pμ[C(t ′)]. (21)

We consider in detail two specific plaquette operators, as
they illustrate the range of behavior that we expect to see more
generally. The first one corresponds to m = 2 and we call it a
bond operator. It is a sum of the simplest plaquettes formed
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FIG. 1. Left: Geometrical illustration of 24 noninteracting spins.
We represent them as randomly distributed in space as without
interactions there is no notion of a geometrical arrangement. Their
dynamics is described by the generator of Eq. (17). Right: When con-
sidering an observable we induce a particular geometry. For Eq. (24)
this corresponds to one-dimensional sequence, corresponding to the
red solid lines connecting the spins. For Eq. (25) it is that of a
triangular lattice geometry where triplets of spins defining the local
plaquettes sit on the vertices of up-triangles (shaded gray). Here we
are representing only a subsection of these lattices and therefore we
do not describe their corresponding boundary conditions.

by the product of two spins,

Obond =
N−1∑
i=1

σ z
i σ z

i+1 + σ z
Nσ z

1 . (22)

It measures the degree of ordering between consecutive spins.
The last term is a “boundary condition” connecting the first
and last spins. Each term in (22) is a local plaquette pμ,
and the set of them obeys the conditions above: There are
N plaquettes and each plaquette is composed of m = 2 spins
and each spin belongs to exactly m = 2 plaquettes. For each
arrangement of the plaquettes there is a unique arrangement
of spins, to a global up-down symmetry in the spins (a
consequence of m being even).

The second operator we consider below is the sum of pla-
quettes with m = 3 formed by triplets of spins or triangular
plaquettes,

OTP =
∑

i, j,k∈
σ z

i σ z
j σ

z
k , (23)

where the sum is over triplets of sites (i, j, k) involved in the
triangular plaquette , chosen such that the one-to-one con-
dition above is obeyed. Note that by defining the observables
we are introducing a certain geometrical arrangement of the
otherwise-unstructured ensemble of N spins. For Obond the
corresponding arrangement is that of a one-dimensional chain
with periodic boundaries, where the observable is defined in
terms of the bonds between nearest-neighboring spins. For
OTP, it is that of a two-dimensional triangular lattice, and
the plaquettes are up-triangles of nearest neighbors (as in the
classical triangular plaquette model, see Refs. [34–37]). For
OTP we also obey the conditions above: There are as many
up-triangles as spins, and since there is no up-down symmetry,
plaquette arrangements and spin configurations are one to one
(for periodic boundary conditions in at least one direction, see,
e.g., Ref. [36]). The arrangements for the two observables are
illustrated in Fig. 1.

The corresponding dynamical order parameters are

Obond =
∫ t

0
dt ′

N∑
i=1

σ z
i (t ′)σ z

i+1(t ′), (24)

where i runs through the spins and we identify site N + 1 with
site 1, and

OTP =
∫ t

0
dt ′ ∑

i, j,k∈
σ z

i (t ′)σ z
j (t ′)σ z

k (t ′). (25)

These trajectory observables probe spontaneous fluctuations
in the dynamics displaying the two different kinds of order in
the spin patterns.

The associated tilted generators Ws, cf. (14), which encode
the LD statistics of these observables, are

Ws,bond =
N∑

i=1

(
σ x

i − 1
) + s

N∑
i=1

σ z
i σ z

i+1 (26)

and

Ws,TP =
N∑

i=1

(
σ x

i − 1
) + s

∑
i, j,k∈

σ z
i σ z

j σ
z
k , (27)

These two deformed operators look, respectively, like (up
to a sign and an additive constant N) the 1D transverse
field Ising model (TFIM) with periodic boundary conditions
(PBC) [4,38]

HTFIM = −J
N∑

i=1

σ z
i σ z

i+1 − h
N∑

i=1

σ x
i , (28)

and the 2D quantum triangular plaquette model
(QTPM) [37,39,40], cf. Fig. 1,

HQTPM = −J
∑

i, j,k∈
σ z

i σ z
j σ

z
k − h

N∑
i=1

σ x
i . (29)

The identification being

Ws,bond = −HTFIM − N, (30)

Ws,TP = −HQTPM − N, (31)

with

J = s and h = 1. (32)

These two models have an exact Kramers-Wannier duality.
This duality is well known for the TFIM [4], and we prove it
for the QTPM in the Appendix. Duality symmetries like this
one are very informative. They often help to locate the critical
point at which a phase transition occurs in the large size limit.
For the models above, the self-dual point is at J = |h|. This
is known to be the phase transition point of the TFIM and, as
we show below, also a transition point for the QTPM. As we
discuss below, the duality has important consequences for the
SCGF θ (s) and therefore for the statistics of trajectories of the
noninteracting spin system.
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FIG. 2. Continuous LD transition for bond observable. (a) Order parameter 〈o〉s = 〈Obond〉/(Nt ) = θ ′(s)/N as a function of the counting
field s, cf. Eqs. (13) and (24). There is a continuous transition of the 2D Ising type at the self-dual points s = 1 (to a ferromagnetic phase
with finite positive magnetization) and s = −1 (to an antiferromagnetic phase with finite negative magnetization). Around s = 0 we observe
a linear trend in 〈o〉s, while for s > 1 (s < 1) it saturates asymptotically to its minimum and maximum values. Here we display 〈o〉s with
appropriate scaling for different system sizes by means of Eq. (33). Inset: Susceptibility as a function of s illustrating a finite-size scaling
around the critical points s = 1 and s = −1. The hydrodynamic limit, given by θ (s) � ∫ 1

0 dx[
√

1 − 2s cos(2πx) + s2 − 1], is represented by
the dot-dashed black lines. (b) Rate function ϕ(o) for the observable Obond (24) for different system sizes. We compare this function with
the Gaussian LD rate function accounting for the Gaussian fluctuations of the noninteracting spin system. This has zero mean and variance
σ 2 = θ ′′(0) = 0.5 (back dashed curve). The existence of a singularity of this observable is manifested in the broadening of ϕ(o), with respect
to the Gaussian distribution, as well as in the existence of nonanalytic points in the higher derivatives of ϕ(o), indicating that fluctuations of
the order parameter are correlated. Also in this case the hydrodynamic limit is represented by the dot-dashed black line.

IV. LARGE DEVIATIONS OF THE BOND
ORDER PARAMETER

The one-dimensional spin-1/2 TFIM is one of the most
studied models in physics. It allows for amenable analyt-
ical considerations and it has direct experimental realiza-
tions [4,41]. One of its prominent features is an exact duality
between an ordered and a disordered phase, which has been
proved in Refs. [42,43]. Here we discuss the consequences
of this duality in the TFIM with PBC for the SCGF θ (s).
We denote as E0(J, h) the ground-state energy of the TFIM
Hamiltonian with PBC HTFIM(J, h) [38,44], where

E0(J, h) = −J
2N−1∑
m = 0
m odd

[(
1 − h

J

)2

+ 4
h

J
sin2

(mπ

2N

)]1/2

(33)

and perform the duality transformation

HTFIM(J, h) = HTFIM(h, J ) = J HTFIM(h/J, 1) (34)

which for the ground-state energy means

E0(J, h) = J E0(h/J, 1). (35)

As seen in the previous section, the associated tilted oper-
ator describing the statistics of the observable Obond is given
by (30). The SCGF is therefore

θ (s) = −E0(s, 1) − N, (36)

and the duality relation (35) gives

θ (s) = s θ (1/s) + N (s − 1). (37)

If we take the derivative with respect to s of (36), then we
get the average of the order parameter, 〈Obond〉/t , cf. Eq. (24).

In Fig. 2(a) we plot it for a range of system sizes. We observe
a second-order phase transition at the self-dual points, which
are s = 1 and, because of a Z2 symmetry, s = −1. Finite-size
effects are present for the smaller sizes shown, N = 6, 10, but
for N = 50 and beyond the SCGFs show convergence, with
the exception of points close to the transition, as expected.

Using the relation between the SCGF and the rate function
as defined by Eq. (12) we plot the rate function in Fig. 2(b).
The transitions that can be seen in the observables appear
as a broadening of the rate function. This broadening is due
to the transition between two different dynamical phases of
the model. The rate function being broader than the cor-
responding Gaussian (dashed line), with variance given by
the second scaled cumulant of the observable, shows that
the fluctuations associated with the order detected by (24) are
more pronounced than one could have anticipated from the
noninteracting nature of the dynamics.

V. LARGE DEVIATIONS OF THE TRIANGULAR
PLAQUETTE ORDER PARAMETER

A. Sampling LDs with transition path sampling

The same relation as in Eq. (37) holds also for the SCGF
of the TPM, but unlike the TFIM, this model is not exactly
solvable. In order to numerically access the statistics of the
triangular plaquette observable (25) in the trajectories of the
noninteracting spin system we employ the method of tran-
sition path sampling (TPS) [45], as adapted for the study
of LDs, see, e.g., Refs. [16,31,46]. The basic idea behind
TPS is similar to that of Markov chain Monte Carlo but
applied to trajectories rather than configurations [45]. For the
case of LDs, it amounts to an importance sampling method
that helps overcome some of the exponential (in size and
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time) cost of sampling the rare event. TPS is well suited
for dynamics that is reversible—like the infinite temperature
dynamics we study here—for reasons we explain below. Other
numerical methods for LDs include sampling exponentially
rare trajectories via “cloning” (also known as splitting) [47],
variational approximations to rate functions [48], or tensor
network methods to directly estimate SCGFs [49,50].

TPS [16,31,45] does a biased random walk in trajectory
space (just like normal Monte Carlo does in configuration
space) by starting from a seed trajectory and updating it by
proposing modifications to it. These are accepted or rejected
according a Metropolis rule, that is, with probability of accep-
tance min (1, es�O ), where �O is the change in the observable
of interest in the case of LD studies, cf. Eq. (9). A key aspect
of TPS is how to propose trajectories. In two commonly
used approaches, such as “shooting” or “shifting” [45], the
proposed update to the trial trajectory begins by selecting a
given time τcut during the previous trajectory. Starting from
the configuration at τcut in the old trajectory, a new section of
trajectory is produced ending at either the end of the trajectory
tmax = t (in the case of forward dynamics) or at the start of
the trajectory t = 0 (in the case of reversible dynamics). In
either case, the new section of trajectory is bounded only
by configuration at τcut, since the configurations at either
t = 0 or tmax can be changed. This is a desired property of
TPS methods, since the initial and final configurations will
typically be sampled using the original dynamics, i.e., they
will be representative of the s = 0 distribution of trajectories.

The drawback of the above ways of proposing trajectories
comes in the convergence (in terms of TPS iterations) of the
bulk of the trajectory. Since the acceptance rule is exponential
in the change �O, smaller updates are accepted exponentially
(in time) more frequently. The consequence is that the ends
of the trajectories converge more quickly that its bulk, which
gets updated very rarely. This means that the decorrelation
of TPS moves takes a number of iterations that increases
exponentially both in time and system size.

B. Improvement to TPS trajectory proposal and acceptance

To sample the desired trajectory ensemble 〈O(ω)e−sO(ω)〉
we use a modified form of the TPS method that takes advan-
tage of the noninteracting nature of our spin dynamics. We do
two things that allow to overcome the exponential in time and
size cost of TPS equilibration.

First, since the dynamics is noninteracting we can propose
a new trajectory from an old one by only changing the
dynamics of a single spin. This guarantees that the change �O
will be of order 1 in terms of system size rather than order N
as usual (while still for the moment extensive in time). This
obvious trick already represents a significant speed up to the
acceptance of TPS moves. Of course, this is only possible in
a noninteracting case as the one we are considering.

The second improvement is to propose only changes in a
single spin trajectory which are localized in time. Specifically,
rather than using τcut as the only point along the spin trajectory
defining the change, we also introduce a window of variable
time for the new section of trajectory, whose maximum is
τwindow = τcut + τlim, where τlim is uniformly sampled from
1 � τlim � 0.2 τmax. The boundary conditions imposed at the

FIG. 3. WTPS trajectory proposal scheme. This schematic shows
a system of four spins si, where i = 1, 2, 3, 4. The many-body
trajectory is composed of four individual spin trajectories which are
independent due to the noninteracting underlying dynamics (black
solid lines indicate the original trajectory). Each spin is either up
or down. The proposed trajectory changes a single spin only, i = 2
in the sketch. The change starts at time τcut and ends at τwindow as
described in the main text. Only for the selected spin a new part of
the trajectory is created between τcut and τwindow (red solid line).

two edges of the window are dictated by the orientation of the
spins at the times τcut and τwindow. That is, the orientation of the
spin in the new trajectory at τcut(τwindow) has to match up with
the orientation that it had at τcut(τwindow) in the old trajectory.
Since each spin can take only one of two values, this limitation
does not impose too much of an extra computational cost.
This cost of discarding trajectories that do not satisfy the
boundary conditions of the time window is compensated by
the ability of these windows to equilibrate (in the TPS sense)
the whole trajectory faster. The reason is that between the two
improvements �O becomes order 1 in both the space and time
extent.

Figure 3 shows a schematic of how a new trajectory is
produced by modifying only the chosen window τwindow of
the selected spin trajectory rather than the usual update to part
of the trajectory for the whole system as used in other typical
TPS methods [45].

C. Trajectory umbrella sampling and choice
of alternative dynamics

In order to efficiently sample trajectories for value of s
across the LD transition, expected to occur at the self-dual
points s = ±1, we need further enhancements to the efficiency
of the TPS scheme. We achieve this by means of umbrella
sampling in trajectory space [31,51–54].

We are trying to calculate quantities like

〈A(ω)esO(ω)〉 =
∑

ω

P (ω)A(ω) esO(ω), (38)

by sampling trajectories in the exponential tilted ensemble,
where TPS deals with the exponential factor in the expression
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FIG. 4. LD transition for the triangular plaquette observable. (a) Discontinuous phase transition of time-averaged value of the TPM-like
plaquette observable at s = 1 and s = −1. Data obtained by utilizing the method discussed in Sec. V are shown for various system sizes.
As a further numerical tool to improve the analysis of the data we used multistate Bennett acceptance ratio (MBAR) [57,58]. Also for this
model we observe linear regime around s = 0 and asymptotic behavior beyond the critical point s > 1 and s < −1. Inset: Susceptibility as a
function of s illustrating a finite-size scaling around the critical points s = 1 and s = −1. (b) Rate function ϕ(o) for the observable OTP (25) for
different system sizes. This is also compared with the Gaussian fluctuations of the noninteracting spin system. In this case such Gaussian LD
rate function has zero mean and variance σ 2 = θ ′′(0) ≈ 0.34 (back dashed curve). The existence of a first-order phase transition is manifested
in the linear behavior of ϕ(o) in the region delimited by the values across the first-order jumps in the SCGF of the left panel. The rate function
is thus much broader than the corresponding Gaussian, indicating the higher likelihood of trajectories with plaquette order. The slope of the
linear parts is given by the critical values s = ±1, shown as the dot-dashed lines for comparison.

above. The idea of umbrella sampling is to exploit the identity,

〈A(ω)esO(ω)〉 =
∑

ω

P (ω)A(ω) esO(ω)

=
∑

ω

Pref (ω)
P (ω)

Pref (ω)
A(ω) esO(ω)

= 〈A(ω)esO(ω)eG(ω)〉ref , (39)

where

G(ω) = logP (ω) − logPref (ω). (40)

Equation (39) means that we can estimate (38) by means of
a “reference” dynamics different from the original dynamics
and adjusting through the exponential of G to account for the
change in measure over the trajectories [31,51–54]. Chosen
judiciously, the reference dynamics may reduce the sampling
error due to the exponential weighting in (39). There is an op-
timal choice for this reference, that of the dynamics obtained
via a generalized Doob transformation [17,55,56]. This opti-
mal choice is in general impossible to implement explicitly
(as it requires the diagonalization of the tilted generator) and
one has to resort to tractable approximations.

For the specific model we are investigating, we choose
dynamics to maintain the interesting nature of a collective
phase transition for a set of stochastic independently evolving
spins. The plaquette observable we are considering, cf. (4),
may suggest a reference dynamics that contains interactions.
But to really emphasize that this collective behavior emerges
from the noninteracting nature, we chose a reference dynam-
ics which is also noninteracting.

Specifically, we choose dynamics generated by (15), where
the reference dynamics differs from the original one in that

γ+ �= γ−. That is, we use “temperature” as the control pa-
rameters of the trajectory umbrella sampling. The exponent
G of the reweighing factor is easy to calculate in terms of the
original dynamics rate, γ , and those of the reference, γ±. In
order to sample (39) we ran TPS with the reference dynamics,
under the proposal rules described in the previous subsection,
and with acceptance criterion where s�O is replaced by
s�O + �G [31,51–54].

D. First-order transition in triangular plaquette order

In Fig. 4(a) we show the results of sampling the average
of the observable (25) using the TPS scheme described above
for system sizes N = 8, 16, 32, 64, 128, 256 (full lines). For
comparison we also show the results from ED of small sizes,
L = 8, 16 (dashed lines). For increased system size it is clear
that the order parameter tends toward becoming discontinuous
at the self-dual points s = 1 and s = −1. This indicates that
the trajectory transition is of the first-order kind between
a dynamically disordered phase for |s| < 1 and dynamical
phases with triangular plaquette order for |s| > 1.

In Fig. 4(b) we show the corresponding rate function. We
observe that the latter has broader tails than as compared
to a Gaussian rate function (i.e., a parabola) with the same
average and variance. We see that the first-order nature of
the transition is reflected in a linear behavior of the rate
function for values of the observable which lie in between the
extreme values across the discontinuous jumps of the SCGF
at s = ±1. The linear behavior of the rate function correspond
to a Maxwell construct for the first-order transitions of the
SCGF. This becomes exact in the N → ∞ limit, and the
slope which coincides with the critical s-field values (s =
−1 and s = 1), shown for comparison in Fig. 4(b) as the
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dot-dashed lines. The broadness of the rate function indicates
the enhanced probability of the triangular plaquette order in
the dynamics.

Operators similar to (27) have been considered before in
the context of quantum codes [39] and of “fractons” [40]. The
first-order transition we find numerically at the self-dual point
via our augmented TPS scheme is also compatible with the
results of Ref. [39].

VI. CONCLUSIONS

In this paper we have investigated the dynamical fluctua-
tions of a collection of independent spins evolving stochasti-
cally. We have shown that despite the noninteracting nature
of their dynamics, the statistics of time-integrated interacting
observables can be nontrivial and give rise to correlated
behavior at the fluctuation level. We considered two examples
of a general class of plaquette observables, showing that in the
large number of spins limit they give rise to both continuous
and first-order LD transitions.

Our findings here fit with recent results for few-body
problems [24,25] where singularities in long-time trajectory
ensembles were not a consequence of interactions in the
dynamics in the large size limit (like in most other sys-
tems displaying LD transitions [22,23]) but of the properties
of the dynamical observables probed. We focused on spin
systems and observables where tilted generators displayed
a duality symmetry, which we exploited to identify pre-
cisely the location of the dynamical transitions. Our approach
here directly generalizes to other plaquette observables for
which their tilted generators will have dualities. These cases
will display similar dynamical transitions at their self-dual
points.

We expect the kind of behavior we uncovered in this paper
to be more widespread. Our results suggest that a large collec-
tion of noninteracting degrees of freedom can have atypical
fluctuations where the system dynamically synchronizes and
behaves cooperatively for long times. Furthermore, such rare
events would correspond to dynamical singularities in the
ensemble of trajectories, making them much more likely than
the noninteracting nature of the dynamics would indicate. It
will be interesting to explore this spontaneous synchronization
at the fluctuation level beyond the simple models considered
here.
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APPENDIX: DUALITY OF THE QUANTUM
TRIANGULAR PLAQUETTE MODEL

In this Appendix we prove the duality of the QTPM. To do
this we make use of the generalization in higher dimensions

21 3 4
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BBBBB

6 7 8

10 11 12

14 15 16

FIG. 5. Geometrical illustration of the QTPM with periodic
boundary conditions for 16 spins (gray triangles). The spins σ

β

i are
positioned at the vertices of up-triangles  of the original lattice. In
the dual problem (blue triangles), the dual spins τ

β

i are located at the
vertices of down-triangles �, which are at the centers of the original
plaquettes, on the dual lattice.

of the Kramers-Wannier duality [43] of the classical Ising
model in 2D [59]. This method uses the mapping between the
D-dimensional classical statistical mechanical models and the
d-dimensional quantum Ising models where D = d + 1, D >

1 [4]; this technique allows us to show the duality of the
QTPM in its classical form for simplicity.

The 2d QTPM is described by a plaquette spin model,
defined in terms of Ising spins, on a regular triangular lattice,
with Hamiltonian

HQTPM = −J
∑


σ z
1σ z

2σ z
3 − h

∑
i

σ x
i , (A1)

where σ
β
i , with β = x, y, z, are the local Pauli matrices in the

direction β acting on the ith site. The interaction, embodied
in the parameter J , occurs between triplets of spins, which for
simplicity we denote as σ z

1 , σ z
2 , σ z

3 , positioned at the vertices
of up-triangles , while h is a transverse magnetic field
in the x direction. We consider a system whose linear size
is an integer power of two and periodic boundary condi-
tions [36,37,60,61], cf. Fig. 5.

The energy function of the corresponding 3D classical
model has the form

βE = −K
∑


s
1 s

2 s
3 − Jz

∑
b

sb
1sb

2, (A2)

where sα
i = ±1, with α = , b as Ising variables correspond-

ing to the ith site. The first sum in the right-hand side of (A2)
is over all triangular plaquettes  in the xy plane, where
K represents the magnetic interaction among the dynamic
variables s

i , while the second sum is over all the bonds b
in the z direction with coupling constant Jz, cf. Fig. 6. The
mapping relations between classical and quantum coupling
constants are the conventional ones [4,59]: K = aJ , e−2Jz =
tanh (ah), and T = 1/(Ma), where a is the lattice spacing,
M is the number of sites in the z direction of the classical
model, and T is the temperature in the quantum model.
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FIG. 6. Geometrical illustration of plaquette  = s
1 s

2 s
3 and

bond b = sb
1sb

2 interactions on the original lattice (gray triangles) in
the classical 3D model. In the dual problem (blue triangles), the spins
are located on the dual lattice at the vertices of down-triangles �. The
blue prism is the geometrical illustration of the plaquette and bond
interactions on the dual lattice in the classical 3D model.

The mapping between the quantum and the classical model
becomes exact in the scaling limits: a → 0, M → ∞, and
T → 0. The partition function of the 3D classical model is

Z =
∑
{s}

e−βE =
∑
{s}

eK
∑

 s
1 s

2 s
3 +Jz

∑
b sb

1sb
2

=
∑
{s}

⎡
⎣∏



(
cosh K + s

1 s
2 s

3 sinh K
)

×
∏

b

(
cosh Jz + sb

1sb
2 sinh Jz

)]
. (A3)

By defining the face variables k = 0, 1, the bond variables
kb = 0, 1 and the constants c0 = cosh K , c1 = sinh K , d0 =
cosh Jz, and d1 = sinh Jz, we can express the partition function
as

Z =
∑
{s}

∑
k

∑
kb

⎧⎨
⎩

⎡
⎣∏


ck

(
s

1 s
2 s

3

)k

⎤
⎦

⎡
⎣ ∏

b

dkb

(
sb

1sb
2

)kb

⎤
⎦

⎫⎬
⎭.

(A4)

We can note that if an Ising variable sα
i is raised to an even

power, then we obtain a factor 2 in the partition function
Z , originated from the sum over all the spin configurations;
otherwise, we get a factor 0. This can be expressed in formulas
by rewriting the partition function Z as a constrained sum

∑′

over the k variables

Z = 2N
∑
k,kb

′
⎛
⎝∏


ck

⎞
⎠

⎛
⎝ ∏

b

dkb

⎞
⎠, (A5)

where N is the total number of sites. Since every site of the
original lattice belongs to three triangular face terms and to
two bond terms, the restriction on the partition function is
equivalent to ask that the sum of all 5 k/b variables has
to be an even number for each site. In order to solve this
constraint dual variables are introduced. The dual spins s∗
are positioned at the centers of the triangular prisms of the
original prismatic lattice, cf. Fig. 6. For each site i, belonging
to the original lattice, three vertical bonds, of the dual lattice,
bisect the three neighboring spacelike faces  of the site i.
Thus, each bisecting bond b of the dual lattice is given by
the relation k = 1

2 (1 − s∗b
1s∗b

2). Each spacelike face � of
the dual lattice is pierced by a vertical bond b between two
spins of the original lattice, and thus the plaquette on the
dual lattice is set by kb = 1

2 (1 − s∗�
1 s∗�

2 s∗�
3 ), cf. Fig. 6. The

constraint on the variables k/b is fulfilled since the six dual
lattice sites around one site on the original lattice meet the
condition

k1 + k2 + k3 + kb1 + kb2

= 1
2

(
1 − s∗b

1s∗b
4

) + 1
2

(
1 − s∗b

2s∗b
5

)
+ 1

2

(
1 − s∗b

3s∗b
6

) + 1
2

(
1 − s∗�

1 s∗�
2 s∗�

3

)
+ 1

2

(
1 − s∗�

4 s∗�
5 s∗�

6

) ≡ 0 (mod 2). (A6)

In order to calculate the dual constant couplings (K̃, J̃z )
it is useful to rewrite ck = k sinh K + (1 − k) cosh K by us-
ing the fact that ck has been defined for a face  of the
original lattice that is pierced by a Ising bond b in the dual
problem,

ck = 1 + s∗b
1s∗b

2

2
cosh K + 1 − s∗b

1s∗b
2

2
sinh K

= 1

2
eK

(
1 + s∗b

1s∗b
2 e−2K

)

= 1√
2 sinh 2J̃z

eJ̃zs∗b
1s∗b

2 , (A7)

with J̃z determined by e−2K = tanh J̃z. By defining tanh K̃ =
e−2Jz we obtain

dkb = kb sinh Jz + (1 − kb) cosh Jz = 1√
2 sinh 2K̃

eK̃s∗�
1 s∗�

2 s∗�
3 .

(A8)

Using the results of Eqs. (A7) and (A8), we can write, for the
3D classical model, the relation between the partition function
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of the original lattice Z (K, Jz ) and dual lattice Z (K̃, J̃z )

Z (K, Jz ) = 1

Vol(G)
(sinh 2J̃z )−

N
2 (sinh 2K̃ )−

N
2 Z (K̃, J̃z ),

(A9)

and the duality relation for the coupling constants

sinh 2Jz sinh 2K = 1, (A10)

where the size of the gauge group Vol(G) = 1 because if
the linear size of the system is an integer power of two
and the system has periodic boundary conditions in at least
one direction of the lattice, then the ground state is unique,
and thus one dual spin configuration corresponds to one spin
configuration in the original lattice [36].

The corresponding 2d quantum model has the same
duality,

HQTPM = −J
∑


σ z
1σ z

2σ z
3 − h

∑
i

σ x
i

= −J
∑

i

τ x
i − h

∑
�

τ z
1τ

z
2τ

z
3 , sinh 2J sinh 2h = 1,

(A11)

where τ
β
i , with β = x, y, z, are the dual Ising spins.

This Kramers-Wannier duality shows that if the QTPM
has a phase transition at zero temperature, then the transition
should take place at the self-dual point J/h = 1.
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