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We compute the critical exponents ν, η and ω of O(N ) models for various values of N by implementing the
derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually
denoted O(∂4)]. We analyze the behavior of this approximation scheme at successive orders and observe an
apparent convergence with a small parameter, typically between 1

9 and 1
4 , compatible with previous studies in

the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents
with a precision which is similar or better than those obtained by most field-theoretical techniques. We also
reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case,
where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat
exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.
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I. INTRODUCTION

Systems where microscopic degrees of freedom are
strongly coupled are notoriously difficult to analyze theo-
retically. This difficulty becomes even more involved if the
system is near a critical point because of the large number
of interacting degrees of freedom that must be treated si-
multaneously. From the theoretical viewpoint, two methods
are widely used to study these physical situations. The first
one was introduced by Wilson: the renormalization group
(RG) [1]. This technique, when used in conjunction with
perturbation theory, is able to describe systems with many
interacting degrees of freedom with a small or moderate
effective coupling among infrared degrees of freedom. The
perturbative implementation of the RG [2,3] has become an
efficient method both in statistical physics and in quantum
field theory when very different scales are present [4]. In
the realm of statistical physics, it has been used to describe
both equilibrium and out-of-equilibrium situations, it can deal
with quenched disorder, long range interactions, etc. A main
limitation of this approach is that it is based on an expansion
in some small coupling and it cannot be applied to systems
where no such small parameter is known. Moreover, the alge-
braic complexity of the calculation strongly increases with the
order of the expansion. Due to this complexity, only recently
progress has been made [5] and the perturbative series have
been pushed to seven loops. Another limitation of perturbative
RG is that the series do not converge in general and one has
to resort to some resummation techniques in order to make
precise predictions. These techniques always involve some
unknown parameters that must be fixed by using some extra
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criterion, such as the principle of minimal sensitivity or the
principle of fastest apparent convergence (see below).

The other popular theoretical approach to critical systems
is computer simulations [6]. A major asset of these techniques
is their versatility: they can be applied to a large number of
situations, at criticality or away from criticality, even when
perturbative RG treatment might be very difficult. At a quan-
titative level, high precision estimates of the critical exponents
were obtained by these methods (see [3] for a review). A ma-
jor drawback is that it can require extremely large amounts of
computer time, and statistical and systematic errors only de-
crease slowly with the size of the simulation. To give an exam-
ple, for the Monte Carlo studies of criticality of the pure Ising
model, which are considered to be the most favorable case nu-
merically, the most extensive numerical study [7] reaches lat-
tice sizes of L = 300 in three dimensions (3D), for which 30
years of CPU time are needed. In the case of the most recent
simulation on the XY model [8], on which we comment later
on, the numerical effort is approximately four times bigger.

There also exist methods which apply only to some partic-
ular physical situations. Among these, let us cite the large-N
expansion, high- and low-temperature expansions. The other
method of choice for studying critical exponents uses confor-
mal field theory [9,10] which can be applied to a variety of
systems at equilibrium in their critical regime, which present,
on top of scale invariance, the whole conformal group. These
methods were first developed in the bidimensional case but
were more recently applied to higher dimensions, through the
conformal bootstrap (CB) program [11–13]. This led in the re-
cent past to an unprecedented precision on critical exponents
for the Ising model. Such methods are, however, unable to
access other quantities of physical interest, such as a phase
diagram.
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The two versatile methods mentioned above, perturbative
renormalization group and lattice simulations, both have their
limitations. In order to overcome some of these, a third,
flexible, method was developed in the 1990s [14–18]. It is
known as the nonperturbative RG (NPRG hereafter) or “func-
tional RG” or, even “exact RG.” It is nowadays widely used
in particle physics, solid state physics, statistical mechanics
in and out of equilibrium, quantum gravity, etc. We shall
describe the NPRG in more details below but, in a nutshell,
it is based on an exact RG equation which describes the
evolution of an effective average action when more and more
short-distance fluctuations are integrated over. This equation
is too complex to be solved exactly. In actual calculations,
the strategy consists in looking for approximate solutions to
this exact equation: instead of considering the full functional
dependence of the effective average action, one retains only
a subset of coupling constants and looks for (approximate)
solutions within this subset. The most popular approxima-
tion scheme is the derivative expansion (DE). It consists
in classifying the terms appearing in the effective average
action according to the number of gradients they contain and
retaining only those with up to s gradients. We refer to this
approximation as DE at order O(∂s) and the leading approxi-
mation, where all derivatives of the field are neglected, except
for an unrenormalized gradient (∂φ)2, is called the local
potential approximation (LPA). This is equivalent to saying
that the n-point vertex functions are expanded in powers of
the momenta, up to order ps. Such an expansion is justified if
one is interested in the long-distance properties of the system
(see below for more detail).

What is remarkable about the NPRG is that it is very
resilient: even quite crude truncations can lead to qualita-
tively correct physics. Until recently, a major drawback of
the method was that only limited knowledge was available
concerning the convergence of the results when richer trun-
cations were considered. This situation changed last year
[19] when it was shown, in the case of the Ising model,
that the results in the DE should converge with a conver-
gence parameter in-between 1

4 and 1
9 , which is indeed not

too large. This theoretical prediction was checked explicitly
by computing critical exponents η and ν in the derivative
expansion pushed up to O(∂6). The output of this study is
the determination of the critical exponents ν = 0.6300(2) and
η = 0.0358(6). Remarkably, these are in excellent agreement
with CB values ν = 0.629971(4) and η = 0.0362978(20)
[13], and better than perturbative six-loop ones [2]. This is
an important breakthrough which shows that the NPRG can
be used to obtain precise determinations of critical exponents,
with well-grounded error bars. Note that critical exponents are
just one example of physical quantities that can be computed
by NPRG methods. They provide a good benchmark to test
the convergence of DE because other methods, such as CB
and MC, yield very precise determinations of these quantities.
NPRG, however, can be used to determine other physical
quantities, such as a critical temperature and scaling functions
and we expect that the convergence of the DE is governed by
the same small parameter, of the order of 1

4 to 1
9 .

Our aim in this paper is twofold. We first show that the
convergence of the DE in O(N) models is similar to what
was found in the Ising case, with a convergence parameter

in-between 1
4 and 1

9 . This is checked explicitly by looking
at the convergence of the DE expansion up to O(∂4) for the
critical exponents η and ν. We also treat the correction to
scaling exponent ω which was not considered in [19].1 This
enables us to determine convincing error bars. We describe in
detail the methodology used to determine error bars because
it is quite generic and could be used in many applications
of the NPRG. The second aim of this article is to determine
the critical exponents for different values of N . This is not
only an academic issue because the O(N) universality classes
for N = 1, 2, 3, and 4 have direct physical realizations [4].
Additionally, the limits N → 0 and N → −2 are also of
physical interest, being related to self-avoiding random walks
[20] and loop erased random walks [21,22], respectively.

The N = 2 case is of particular interest because it describes
the normal to superfluid transition in helium-4. Experimental
methods led to a determination of the critical exponent which
governs the singularity of the specific heat with unprecedented
precision. By using hyperscaling relation, this yields an expo-
nent ν = 0.6709(1) [23]. The main limitation on experiments
was the variation of the density of the fluid within the sample
caused by gravity and it was necessary to perform the exper-
iment in the Space Shuttle in order to obtain a sufficiently
homogeneous system.

This high precision experiment triggered an important the-
oretical effort to obtain a determination of critical exponents
with a similar precision. What is curious is that there exists
a discrepancy between the experimental and the most precise
Monte Carlo results [8], which reports ν = 0.67169(7). These
two results are not compatible. Other field-theoretical results
based on perturbative renormalization group led to too large
error bars to settle the controversy. One of the main results of
this article is the determination of the critical exponent ν =
0.6716(6) which is compatible with Monte Carlo results, but
not with experimental ones. We should mention that, during
the completion of this article, a theoretical result based on CB
was reported [24], which leads to the same conclusion (see
below for more detail).

The article is organized as follows. We present the NPRG
method and the approximation scheme (the DE) that we
implement in Sec. II. We then review the analysis of the Ising
case in Sec. III presented in Ref. [19]. Section IV is devoted to
the description of the methodology proposed to estimate error
bars. In Sec. V, we give our determinations of the critical ex-
ponents for various values of N , including the physical cases
N = 2, 3 as well as the nonunitary cases N = 0 and −2. We
also test large values of N to compare with the large-N results.
Some technical details are addressed in the Appendices.

II. NONPERTURBATIVE RENORMALIZATION GROUP
AND DERIVATIVE EXPANSION

A. Nonperturbative renormalization group

We start with a brief review of the NPRG. It is based on
Wilson’s ideas of integrating first the highly oscillating modes

1The authors of [19] had studied this exponent for N = 1 but did
not publish it. We acknowledge discussion with them on this topic.
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(i.e., those with a wave vector larger than some scale k) while
the long-distance modes are frozen.

A convenient implementation of this consists in adding
to the Euclidean action (or Hamiltonian) a regulating term,
quadratic in the fields and dependent on a momentum scale k
[25], S[ϕ] → S[ϕ] + 	Sk[ϕ], with

	Sk[ϕ] = 1

2

∫
x,y

ϕa(x)Rk (x, y)ϕa(y), (1)

where
∫

x = ∫
dd x. The regulating function Rk is chosen to

be invariant under rotations and translations and therefore
depends only on |x − y|. Here and below, Einstein convention
is adopted both on sums over internal and space indices. To
properly regularize the theory in the infrared, the Fourier
transform Rk (q) of Rk (x − y) should

(i) be a smooth function of the modulus of the momen-
tum q;

(ii) behave as a “mass square” of order k2 for long-
distance modes: Rk (q) ∼ Zkk2 for q � k, where Zk is a field
renormalization factor to be specified below;

(iii) go to zero rapidly when q � k (typically faster than
any power law).

With these properties the term (1) regularizes the theory
in the infrared without modifying the ultraviolet regime. One
can then define a scale-dependent partition function in the
presence of an arbitrary external source J [14–16]:

Zk[J] = eWk [J] =
∫

Dϕ e−S[ϕ]−	Sk [ϕ]+∫
x Ja (x)ϕa(x), (2)

where Wk[J] is the Helmholtz free energy or generating
functional of connected correlation functions. The Gibbs free
energy, or scale-dependent effective action, is defined as the
modified Legendre transform of Wk[J]:


k[φ] =
∫

x
φa(x)Ja(x) − Wk[J] − 	Sk[φ]. (3)

In the previous equation, J is an implicit function of φ,
obtained by inverting

φa(x) = δWk

δJa(x)
. (4)

The theory is defined at a microscopic scale � as the inverse
of lattice spacing. 
k[φ] is the generating functional of IR-
regularized proper vertices defined as


(n)
a1...an

[x1, . . . , xn; φ] = δn
k[φ]

δφa1 (x1) · · · δφan (xn)
. (5)

Here and below, we have omitted to indicate the k dependence
of the regularized proper vertices to alleviate notation. As is
well known, only one-particle irreducible (1PI) perturbative
diagrams contribute to proper vertices. In actual calculations,
we will be interested in proper vertices evaluated in a uniform
field. We therefore define


(n)
a1...an

(x1, . . . , xn; φ) = 
(n)
a1...an

[x1, . . . , xn; φ(x)]|φ(x)≡φ. (6)

The Fourier transform of the vertices is defined as


(n)
a1...an

(p1, . . . , pn−1; φ)

=
∫

x1...xn−1

ei
∑n−1

m=1 xm pm
(n)
a1...an

(x1, . . . , xn−1, 0; φ), (7)

which only depend on n − 1 independent wave vectors be-
cause of the invariance under translations.

The evolution of 
k[φ] with the RG time t = log(k/�)
[14–16] can be easily obtained:

∂t
k[φ] = 1

2

∫
x,y

∂t Rk (x − y)Gaa[x, y; φ], (8)

where Gab[x, y; φ] is the propagator in an arbitrary external
field φ(x), which has a matrix structure because of the internal
indices. Here again, we omit to indicate the k dependence of
the propagator to alleviate notations. The propagator can be
obtained from the two-point vertex in a standard way:

∫
y

Gac[x, y; φ]
[



(2)
cb [y, z; φ] + Rk (y − z)δcb

] = δ(x − z)δab.

(9)
The exact flow equation (8) is a nonlinear functional equation.
From this functional equation, one can derive equations for
the various proper vertices. For instance, evaluating (8) in a
uniform external field one deduces the exact equation for the
effective potential (or zero-point vertex in a uniform field φ):

∂tUk (φ) = 1

2

∫
q
∂t Rk (q)Gaa(q; φ). (10)

As for the potential, the equation for the two-point function
in a uniform external field can be deduced by taking two
functional derivatives of (8) and then evaluating in a uniform
field. This gives, after Fourier transform,

∂t

(2)
ab (p; φ) =

∫
q
∂t Rk (q)Gmn(q; φ)

{
− 1

2



(4)
abns(p,−p, q; φ)

+ 

(3)
anl (p, q; φ)Glr (p + q; φ)
(3)

bsr (−p,−q; φ)

}

× Gsm(qφ ). (11)

Similarly, one can deduce the equation for any vertex function.
As is well known, it leads to an infinite hierarchy of coupled
equations, where the equation for 
(n) depends on all the ver-
tices up to 
(n+2). As a consequence Eq. (8), or equivalently,
the infinite hierarchy for vertex functions, cannot be solved
without approximations, in the most interesting cases.

The asset of Eq. (8) compared to other functional equations
is that it is well suited to formulate approximations going
beyond perturbation theory. In particular, note the following:

(i) It has a one-loop structure written exclusively in terms
of running and regularized vertices extracted from 
k .

(ii) It has a 1PI structure (only dressed 1PI diagrams
contribute).

(iii) In Fourier space, only internal momenta q � k con-
tribute significantly to the flows of any vertex.

This structure is clearly visible in Eqs. (10) and (11) for the
effective potential and two-point vertex and one can easily see
that the same property holds for any vertex function.

In the next paragraph we present the most studied approx-
imation going beyond perturbation theory within the NPRG:
the DE. It fully exploits the specific properties of the NPRG
that we just mentioned.
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B. Derivative expansion

The DE procedure consists in taking an ansatz for the
effective action 
k[φ] in which only terms with a finite
number of derivatives of the fields appear. Equivalently, in
Fourier space, it corresponds to expanding all proper vertices
in power series of the momenta and truncating to a finite order.
This approximation is only well suited for studying the long-
distance properties of the system since higher momentum
dependence is neglected. In fact, it proved to be a good
approximation scheme for Z2 and O(N ) models with a very
good level of precision (see, for example, [17,19,26,27]). One
of the reasons for the success of the DE in O(N ) models is that
its predictions for many universal quantities, including critical
exponents, become exact not only for 4 − d � 1, but also for
d − 2 � 1 (for N > 2) (see, for example, [17,18]) and for any
d in the large-N limit [28]. The DE is, at least, an educated
interpolation between well-known limits.

Since the original works on NPRG [14,16] it was argued
that the exact equations have a dressed one-loop structure
where all propagators are regularized in the infrared, ensuring
the smoothness of the vertices as a function of momenta
and allowing such an expansion. Moreover, the integral in
Eq. (8), or its derivatives with respect to the fields such as
(10) or (11), includes ∂t Rk (q) in the numerator, which tends
rapidly to zero when q � k. This implies that the integral
over q is dominated by the range q � k. A further progress
was made in Refs. [29,30] where the regime of validity of
this approximation has been discussed. It was observed that
an expansion in all momenta (internal and external) gives
equations that couple only weakly to the regime of momenta
p � k. Accordingly, it makes sense for these equations to
formulate the DE approximation scheme that only applies to
the calculation of vertices and its derivatives for momenta
that are smaller than k or the smallest mass in the problem.
In the case of critical phenomena when k → 0 the regime
of validity of the DE reduces to those quantities dominated
by zero momenta (as thermodynamic properties or critical
exponents).

The radius of convergence of this expansion depends on
the model considered and on the regulating function Rk . How-
ever, in models described by Ginzburg-Landau Hamiltonians
whose analytical continuation to the Minkowskian space gives
unitary models, the radius has been shown to be of the order
q2

radius/k2 � 4–9 [19] once an appropriate regulator is chosen
with very specific a priori criteria. On top of the previous
specifications, one needs to fix the scale associated with the
normalization of the fields in such a way that all correlation
functions at momenta q2/k2 � 4–9 behave as in the massive
theory. In that case, the convergence of the DE takes place
as in the massive theory and the dependence on the regulator
becomes locally smallest. In practice, this requirement is
implemented by using a “principle of minimal sensitivity”
(PMS) [27,31] that is explained in detail below.

Given that the integral in (8) [or similarly the integrals
for vertex functions such as (10) or (11)] are dominated by
internal momenta of order q � k, each successive order in the
DE has an error, in low momenta properties of the theory,
that is suppressed by a factor 1

9 – 1
4 . The radius of order 4 to

9 corresponds to the ratio between the square of the smallest

mass in the Minkowskian version of the model, and the
minimum energy of the two-particle (or three-particle) state. If
the regulator is chosen properly, the error in the calculation of
correlation functions is reduced by a factor 1

9 – 1
4 at successive

order of the DE.
The quality of most DE results is further improved at low

orders because of an independent reason, as explained in
Ref. [19]. Consider the two-point function near the fixed point
and define

γab(p; φ) = 

(2)
ab (p; φ) − 


(2)
ab (p = 0; φ)

p2
. (12)

When p � k and/or φ � k
d−2+η

2 , there is a physical scale
that regulates the theory and the regulator can be neglected.
As a consequence, in this regime, the function has a scaling
behavior and behaves as

γab(p; φ) ∼ p−ηγ̂ab

(
φ

p(d−2+η)/2

)
. (13)

This means that, in the scaling regime, both the dependence
on p and on φ are controlled by an exponent of the order of
η. By continuity, in the opposite regime p � k, the function
γab(p; φ) must show a dependence on p and φ of the order of
magnitude of η. This means that, for the two-point function,
all corrections to the LPA [where all terms with derivatives
are neglected, except for an unrenormalized term (∂φ)2] are
suppressed by a factor of η which, in many models, is very
small. As a consequence, all quantities that can be extracted
from the two-point function in a uniform magnetic field (such
as the exponents η and ν) are already very well estimated at
order O(∂2). This makes the convergence very fast in all cases
where the exponent η is small. It is important to stress that
this does not mean that the expansion parameter of the DE is
of order η. This factor suppresses all corrections to LPA but
does not suppress successive orders of the DE which are only
suppressed by a factor 1

9 – 1
4 .

This analysis is applicable, in particular, in the important
Z2 and O(N ) models with N � 1. This is consistent with the
fact that the DE shows a rapid apparent convergence at low
orders for O(N ) models. In fact, the DE has been pushed with
success to orders O(∂4) [26] and O(∂6) [19] for the Ising
universality class, giving excellent results that significantly
improve with the order of the DE. Below, it will be shown
that the quality of the results extends to all O(N ) models at
order O(∂4). A mention must be made to the appearance of
Goldstone modes in the broken phase of O(N ) models for
N �= 1. Naively, one could think that the analysis of Ref. [19]
does not apply (at least in the low temperature phase) because
of the existence of these zero-mass modes. However, the
expansion must be done by including the full propagator that
includes the regulating function. This gives a square mass
of the order of Rk (0) to all modes, including the Goldstone
modes. Hence, in the same way as in the regulated theory,
the critical regime behaves as a massive theory in the N = 1
case and additionally both the critical regime and the low
temperature phase behave as massive theories for k > 0 (even
if the theory presents massless modes when k → 0).

We indicate here that there exist several exact RG equa-
tions, which have different convergence properties in the DE.
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For example, the Wilson-Polchinski equation [1,25] involves
all one-particle reducible diagrams which generate the con-
nected correlation functions, may they be one-particle irre-
ducible (1PI) or not. This is at odds with NPRG equations
where only 1PI diagrams contribute. As a consequence, the
radius of convergence is of order q2/k2 ∼ 1. This implies that
the DE for the Wilson-Polchinksi flow has a control parameter
of order one, which explains why the DE gives much better
results in the NPRG formulation [17], even at order O(∂2),
than in the Wilson-Polchinski’s one [32] (as had also been
observed in perturbation theory [33]).

In this work we will analyze only critical exponents (that
are universal). We can therefore use as microscopic action
a simple Ginzburg-Landau model with Hamiltonian or Eu-
clidean action:

S[φ] =
∫

x

{
1

2
(∂μφa)2 + r

2
φaφa + u

4!
(φaφa)2

}
. (14)

In order to implement the DE, one considers, at each order of
the approximation, the most general terms compatible with
the symmetries of a given universality class with a limited
number of derivatives. In the case of the critical regime of
O(N ) models, we require invariance under space isometries
and under the internal O(N ) symmetry. To be explicit, in the
O(N ) model, the lowest order approximations are as follows:

(i) The local potential approximation (LPA) or order
O(∂0) which consist in taking no derivative of the field except
a bare, unrenormalized, kinetic term


∂0

k [φ] =
∫

x

{
Uk (ρ) + 1

2
(∂μφa)2

}
. (15)

Here, the running effective potential Uk (ρ) is an arbitrary
function of ρ = φaφa/2.

(ii) The O(∂2), which is the next-to-leading order, consists
in taking all the possible terms compatible with the symme-
tries of the model and with at most two derivatives. In this
case the ansatz reads as


∂2

k [φ] =
∫

x

{
Uk (ρ) + 1

2
Zk (ρ)(∂μφa)2 + 1

4
Yk (ρ)(∂μρ)2

}
.

(16)
For N = 1 the terms in Zk (ρ) and Yk (ρ) are equivalent and,
accordingly, only the Zk (ρ) function is included.

(iii) Along the same lines, the order O(∂4), which is the
next-to-next-to-leading order, gives rise to the ansatz


∂4

k [φ] =
∫

x

{
Uk (ρ ) + 1

2
Zk (ρ )(∂μφa)2 + 1

4
Yk (ρ )(∂μρ )2

+ W1(ρ )

2
(∂μ∂νφ

a)2 + W2(ρ )

2
(φa∂μ∂νφ

a)2

+W3(ρ )∂μρ∂νφ
a∂μ∂νφ

a + W4(ρ )

2
φb∂μφa∂νφ

a∂μ∂νφ
b

+ W5(ρ )

2
ϕa∂μρ∂νρ∂μ∂νϕ

a + W6(ρ )

4
[(∂μϕa)2]2

+ W7(ρ )

4
(∂μφa∂νφ

a)2 + W8(ρ )

2
∂μφa∂νϕ

a∂μρ∂νρ

+ W9(ρ )

2
(∂μϕa)2(∂νρ )2 + W10(ρ )

4
[(∂μρ )2]2

}
. (17)

As for the order O(∂2), there are many terms in the O(N ) case
at order O(∂4) that are identical in the Z2 case. Indeed, in
the Z2 case there are only three independent terms [26] (see
below) with four derivatives.

(iv) The order O(∂6) has only been analyzed in the Z2

universality class [19]. In that case, the ansatz for 
k[φ] reads
as



∂6,Z2
k [φ] =

∫
x

{
Uk (φ) + 1

2
Zk (φ)(∂μφ)2

+ 1

2
W a

k (φ)(∂μ∂νφ)2 + 1

2
φW b

k (φ)(∂2φ)(∂μφ)2

+ 1

2
W c

k (φ)[(∂μφ)2]2 + 1

2
X̃ a

k (φ)(∂μ∂ν∂ρφ)2

+ 1

2
φX̃ b

k (φ)(∂μ∂νφ)(∂ν∂ρφ)(∂μ∂ρφ)

+ 1

2
φX̃ c

k (φ)(∂2φ)3 + 1

2
X̃ d

k (φ)(∂2φ)2(∂μφ)2

+ 1

2
X̃ e

k (φ)(∂νφ)2(∂μφ)(∂2∂μφ)

+ 1

2
X̃ f

k (φ)(∂ρφ)2(∂μ∂νφ)2

+ 1

2
φX̃ g

k (φ)(∂2φ)[(∂μφ)2]2

+ 1

96
X̃ h

k (φ)[(∂μφ)2]3

}
. (18)

For O(N ) models at order O(∂6), instead of eight independent
functions X i(ρ) corresponding to terms with six derivatives
as in the N = 1 case, one must introduce 48 independent
functions of ρ whose treatment would be a formidable task.

At a given order of the DE, the flow of the various functions
is obtained by inserting the corresponding ansatz in Eq. (8)
and expanding and truncating the right-hand side on the same
functional subspace. For instance, in order to deduce the
equation for the effective potential at order O(∂2) one must
insert in the exact equation (10) the propagator obtained from
the two-point vertex extracted from the ansatz (16):



(2)
ab (p; φ) = δab[U ′

k (ρ) + Z (ρ)p2]

+ φaφb
[
U ′′

k (ρ) + 1
2Y (ρ)p2

] + O(p4). (19)

As for the potential, the equation for Zk (ρ) or Yk (ρ) can be
obtained from the equation for the two-point function in a
uniform external field. In order to do so, one must express
those functions in terms of the vertices (or its derivatives) in a
uniform field. For example,

Zk (ρ) = 1

N − 1

(
δab − φaφb

2ρ

)
∂p2


(2)
ab (p; φ)|p=0. (20)

It is obvious from the previous expression that the N = 1 case
must be treated separately. This is a manifestation of the fact
that for N = 1 the terms in the effective action including Z (ρ)
and Y (ρ) are different representations of an identical term. A
similar procedure can be implemented at any order of the DE.

The flow equations for the various functions have been
obtained in the past at order O(∂2) (see, for example, [34])

042113-5



DE POLSI, BALOG, TISSIER, AND WSCHEBOR PHYSICAL REVIEW E 101, 042113 (2020)

and, for N = 1, at order O(∂4) [19,26]. We obtained our
equations for arbitrary N at order O(∂4) by implementing
a Mathematica code. We verified that our equations reduce
to previously known O(∂2) equations when O(∂4) terms are
neglected. We also verified that we recovered previous O(∂4)
results for N = 1 in the corresponding limit. We point out
that in this work, like in the previous O(∂6) work of [19], we
implement in the flow equations a strict polynomial expansion
in momenta at the considered order of the DE. For instance,
one of the contributions to the flow of 
(2)(p) at order O(∂4)
involves the product of two 
(3) functions [see Eq. (11)]. At
this order of the DE, these two functions are polynomials of
order 4 in their momenta, and their product therefore involves
up to 8 powers of the momenta. In our implementation of the
DE at O(∂4), we drop such terms, as well as other terms which
contain more than 4 powers of the momenta. This differs from
more standard implementations of the DE [26,34] where all
terms are kept in the flows even though many other terms of
order 6 and 8 have been neglected.2 Of course, we use the
same procedure for all the flows that we consider. We verified
that our Mathematica code recovers properly both versions
of the equations. In practice, our implementation of the DE
yields much simpler expressions for the flows than those
obtained with the standard implementation of the DE. They
are moreover probably much better under control numerically
at order 4 where the flows of some functions involve the
product of four 
(3) functions. The details of the numerical
solution of the equations are presented in Appendix B.

At criticality, the regime on which we focus in this article,
the system is scale invariant. Reaching the critical regime
typically requires to fine tune one bare coupling in the initial
condition for the flow equations. The Ward identities for scale
invariance in the presence of the infrared regulator 	Sk are
equivalent to a fixed point condition on the flow of 
k , that
is, ∂t
k = 0 when it is expressed in terms of dimensionless
and renormalized quantities [35]. More precisely, one defines
renormalized and dimensionless fields and coordinates by

x̃ = kx, (21)

φa(x) = k(d−2)/2Z−1/2
k φ̃a(x̃), (22)

ρ(x) = k(d−2)Z−1
k ρ̃(x̃), (23)

and functions F̃ (ρ̃(x̃)):

F (ρ) = kdF Zn/2
k F̃ (ρ̃), (24)

where F (ρ) is any function appearing in the ansatz for 
k:
Uk (ρ), Zk (ρ), . . . ,W 10(ρ), dF is the canonical dimension of
F and n the number of fields φa that multiply F in 
k .
The field renormalization factor Zk which appears in previous
equations is related to the function Zk (ρ) in the following way.
We first define the renormalized equivalent of Zk (ρ) by the
relation Zk (ρ) = ZkZ̃k (ρ̃). The renormalization factor Zk is
then defined by the (re)normalization condition: Z̃k (ρ̃0) = 1
for a fixed value of ρ̃0. The running anomalous dimension

2We verified explicitly that both versions of the DE give results that
are compatible within error bars at order O(∂2).

ηk is then defined by ηk = −∂t log Zk . At the fixed point, it
becomes the actual anomalous dimension η [17].

III. REVIEW OF PREVIOUS DERIVATIVE EXPANSION
RESULTS FOR THE N = 1 CASE

We now consider results in the Ising universality class
(corresponding to the N = 1 case). This universality class
has been studied many times at LPA and order O(∂2)
[14,17,18,27,34,36–44] and even at order O(∂4) [26]. How-
ever, depending on the authors, slightly different flow equa-
tions have been considered and in some cases, on top of the
DE, the functions Uk (φ), Zk (φ), and W i

k (φ) have been replaced
by their Taylor expansion in ρ truncated at finite order. In
a recent article [19], the order O(∂6) has been analyzed and
the critical exponents η and ν were compared to the very
precise results coming from the CB [11–13]. This calculation
has allowed for a quantitative analysis of the error of the DE
up to order 6 and has suggested a methodology to estimate
the error bars. We show in detail in Sec. IV how to implement
this analysis in the O(N ) case. The information obtained for
N = 1 will be an important guide when estimating error bars
in the more general O(N ) case. In this section we review the
N = 1 results. In Sec. V A we extend them at order O(∂4) for
the exponent ω (related to corrections to scaling).

At this point, it is important to stress that the DE, like
any approximation scheme, introduces a spurious dependence
of the critical exponents on the regulating function Rk men-
tioned in Sec. II B. In the DE the role of the regulator is
more important than in other approximations because the
mere formulation of the approximation requires that we have
introduced the regulator. That is, the approximation is only
justified for momenta smaller than two to three times k, the
scale of the regulator. This is at odds with other approximation
schemes which do not treat only a limited range of momenta
(as, for example, [29,30,45]).

For each family of regulators we analyzed the dependence
of critical exponents on the regulating function on the overall
scale α. For the considered regulators it turns out to be the
most important dependence on the regulating function. In
order to fix this scale, we use the “principle of minimal
sensitivity” (PMS) [27,31]. The underlying rationale is that, in
the exact theory, the exponents do not depend on the overall
scale of the regulator, and therefore an optimal choice of α

is obtained when the physical results depend least on this
parameter. In many cases, the exponents as a function of α

present a local extremum and in those cases the αPMS is just
the value corresponding to this extremum.

In a second step, one can change the shape of the regulating
function and see how the PMS results are spread. In Ref. [19]
three families of regulators were employed:

Wk (q2) = αZkk2 y/[exp(y) − 1], (25a)

�n
k (q2) = αZkk2 (1 − y)nθ (1 − y), (25b)

Ek (q2) = αZkk2 exp(−y), (25c)

where y = q2/k2.
The regulator (25a) with α = 1 was proposed by Wetterich

[14] and the α dependence of physical quantities such as
exponents was studied in [19,26,27]. It turns out that fixing
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the prefactor by the PMS procedure improves significantly the
results of the DE compared to the standard value α = 1. Being
smooth, the DE can be applied with this regulating function
at any order. Another convenient regulator was proposed by
Litim [42]. It is nonanalytic but smoother than the sharp
cutoff [36] commonly employed with the Wilson-Polchinski
equations [1,25] (see below). It corresponds to the �n

k reg-
ulator defined in Eq. (25b) with n = 1 and α = 1. It allows
for the analytic calculation of many integrals involved in the
LPA flows and there are strong indications that this is the
optimal choice at the LPA order [42,46]. However, since it
is nonanalytic, it is not well suited for a systematic expansion
in momenta, as is done in the DE. Moreover, it turns out that
it is not optimal at order O(∂2) [27] and is incompatible with
the DE at order O(∂4) due to the nonanalyticities it induces
in the flows. At any finite order of the DE, regulators of
the family (25b) can be used under the condition that their
index n is large enough to keep the flows smooth enough for
the various considered functions to be well defined. Another
smooth regulator used in [19,47] corresponding to expression
(25c) will be considered below. In that case, also, it has been
observed that the PMS turns out to be an efficient optimization
procedure [19] for N = 1 and, as shown below, this is also true
for more general O(N ) models.

Each regulating function studied in Ref. [19] yielded very
similar results once the overall scale α is fixed by the PMS. It
must be mentioned, however, that in the literature, other regu-
lators have been also considered giving results of lower qual-
ity. In particular, the sharp cutoff was employed by Wegner
and Houghton at order LPA [36] long time before the modern
implementation of NPRG. The sharp cutoff corresponds to the
regulating function

Sk (q2) =
{∞ if q < k,

0 if q > k.
(26)

The strong nonanalyticities induced by this regulator in the
flows do not allow for the implementation of the DE beyond
the LPA.3 Power-law regulators have also been studied by
Morris [39,40]. They, however, yield relatively poor results at
LPA and O(∂2) probably because of two independent reasons.
First, the large momentum region, which is beyond the radius
of convergence of the DE, is only suppressed in the integrals
involved in the flows as power laws at odds with the regulators
(25a), (25b), and (25c). Second, being nonanalytic at q = 0,
the convergence properties of the DE are not controlled by the
small parameter discussed before.

Let us discuss as an example the results obtained in [19]
with the regulator (25c). In Fig. 1 (from Ref. [19]) the de-
pendence of the critical exponents ν(α) and η(α) with the
coefficient α is represented for different orders of the DE. At
each order, the curves for the exponent exhibit a maximum or
a minimum at some value αPMS. When increasing the order of
the DE, the extrema alternate between being a maximum and
a minimum (this is true for both exponents). Following the
PMS criteria, the values ν(αPMS) and η(αPMS) can be selected
as best estimates. Moreover, given that the concavities of the

3Note, however, that Morris implemented a similar momentum
scale expansion [48] for this regulator.

FIG. 1. Dependence of the critical exponents ν(α) and η(α) with
the coefficient α for different orders of the DE (figure from Ref. [19]).
LPA results do not appear within the narrow ranges of values chosen
here (see Table I).

curves alternate, these results are those that give the fastest
apparent convergence because they reduce the difference be-
tween two consecutive orders. At a given order of the DE,
α

(ν)
PMS and α

(η)
PMS are close but different, and their difference

decreases with the order of the DE (see Fig. 1).
The values of the exponents at αPMS converge very fast to

values very close to the CB quasiexact ones. In most cases
they also alternate around these values. The only exception is
at order O(∂6). At this order, the optimal value of ν “crosses”
the CB values, but at this order PMS results coincide with
CB values up to three or four significant digits (see Fig. 1
and Table I). It is possible that this property is exact for
correlation functions [as seen for N = 1 up to order O(∂6)
[19]] but is only an approximation for critical exponents
that are not directly related to a single correlation function.
Surprisingly, the local curvature at αPMS increases with the
order of the DE. That could indicate that for generic values
of α the convergence of the DE could be doubtful but, at
PMS, the exponents seem to converge to the best estimates
in the literature. The increase of curvature at αPMS and the
accompanying faster variations of exponent values with α

when increasing the order of the DE imply that it is crucial
to work with the optimal values given by the PMS criteria,
that is, ν(α(ν)

PMS) and η(α(η)
PMS).

Once the parameter α is fixed with the PMS procedure, the
speed of convergence is in agreement with the considerations
about the radius of convergence of the DE at criticality. That
is, the amplitude of the oscillations of the optimal values
considered as functions of the order of the DE decreases
typically by a factor that is consistent with the convergence
estimate at each successive order (4 to 9, see Table I). More-
over, for each exponent, the dispersion of values (over all
regulators studied) typically also decreases by similar factors
when going from one order to the next. This can also be
interpreted as a manifestation of the radius of convergence of
the DE (see Table I).

After a rather extensive exploration of different regulators,
the authors of [19] have conjectured the existence, for a
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TABLE I. Raw results of the DE from various previous refer-
ences for the Ising critical exponents ν and η in d = 3 obtained with
various regulators. The numbers in parentheses for DE results give
the distance of the results to the CB [13] values given here as the
almost exact reference.

Regulator ν η

LPA W [19,27] 0.65059(2062) 0
�1 [42] 0.64956(1956) 0
�3 [19] 0.65003(2006) 0
�4 [19] 0.65020(2023) 0
�8 [19] 0.65056(2059) 0
E [19] 0.65103(2106) 0
E [19] 0.65103(2106) 0

Power law [40] 0.66 0
S [37] 0.687 0

O(∂2) W [19] 0.62779(218) 0.04500(870)
W (α = 1) [41] 0.6307 0.0467

�1 [27] 0.6260 0.0470
�2 [19] 0.62814(183) 0.04428(798)
�3 [19] 0.62802(195) 0.04454 (824)
�4 [19] 0.62793(204) 0.04474(844)
�8 [19] 0.62775(222) 0.04509(879)
E [19] 0.62752(245) 0.04551(921)

Power law [40] 0.618 0.054

O(∂4) W [19] 0.63027(30) 0.03454(176)
W (field expansion) [26] 0.632 0.033

�3 [19] 0.63014(17) 0.03507(123)
�4 [19] 0.63021(24) 0.03480(150)
�8 [19] 0.63036(39) 0.03426(204)
E [19] 0.63057(60) 0.03357(272)

O(∂6) W [19] 0.63017(20) 0.03581(49)
�4 [19] 0.63013(16) 0.03591(39)
�8 [19] 0.63012(15) 0.03610(20)
E [19] 0.63007(10) 0.03648(18)

CB [13] 0.629971(4) 0.0362978(20)

given exponent and a given order of the DE, of an absolute
extremum value (an absolute maximum or an absolute min-
imum, depending on the exponent and the order considered)
that cannot be passed by any regulator. As we discuss below,
this general conjecture seems not to be fulfilled for all O(N )
models and all exponents. However, in many important cases,
at least up to order O(∂4) and for exponents ν and η, it seems
to be correct. We discuss this point in the next section and
explain how it can be used to improve the estimate of critical
exponents.

IV. EXPANSION PARAMETER AND ERROR BARS

In this section, we exploit the existence of a small expan-
sion parameter in the DE of O(N ) models to estimate the error
bars for various critical exponents. As explained in Ref. [19]
and reviewed in the previous sections, when calculating vertex
functions or their derivatives at zero momenta, the DE is
controlled by a small parameter of order 1

9 – 1
4 . This leads to a

well-grounded estimate of error bars that can be employed in
general models. We discuss and implement them concretely
below both for the Ising universality class and for general
O(N ) models.

A. A first estimate of error bars

Let us first discuss a generic estimate of error bars
within the DE (at least for models where there is a unitary
Minkowskian extension). Consider a physical quantity Q that
we aim at computing. The procedure is simple:

(i) For a given regulator family and at a given order of the
DE, we choose as value of Q the one corresponding to the α

determined by PMS procedure.
(ii) When comparing among different families of regulat-

ing functions, without further information, it is reasonable to
choose the value at the center of the range of values for Q
obtained for the considered regulators. Let us call Q̄(s) this
estimate at order O(∂s).

(iii) Having determined the estimates Q̄(s) at various or-
ders, we choose as first error estimate at order O(∂s), 	̄Q(s) =
|Q̄(s) − Q̄(s−2)|/4. The 1

4 corresponds to the more conservative
estimation of the small parameter. Indeed, dividing by four in
many cases turns out to be a pessimistic choice. Nevertheless,
without further information, it is convenient to choose pes-
simistic error bars.

Observe that this procedure does not lead to an estimate
of error bars at order LPA because it requires at least two
consecutive orders. It is also interesting to observe that it
can be employed for any physical observable (which can be
extracted from a vertex or its derivatives at zero momenta). In
Table II the results of the present analysis are presented for
the exponents ν and η in the Ising universality class given in
Ref. [19]. Comparing with the results of the CB, one observes
that the DE estimates seem to converge to the quasiexact
values and that estimated error bars are correct (or, more
precisely, somewhat pessimistic).

On top of these estimates of error bars, it is necessary
to take into account the dependence of the results among
the various families of regulators which is an independent
source of errors (in most cases much smaller than the one
that we just considered). Moreover, we should have in mind

TABLE II. Analysis of error bars at orders O(∂0) (LPA) to O(∂6). Raw data extracted of [19]. See text for the precise definitions of various
possible central values and error bars. CB [13] values are also given for comparison.

DE ν̄ 	̄ν ν̃ 	̃ν 	regν 	ν η̄ 	̄η η̃ 	̃η 	regη 	η

LPA 0.65030 0.64956 0.00147 0 0 0
O(∂2) 0.62783 0.00562 0.63082 0.00268 0.00062 0.00268 0.04490 0.01122 0.03875 0.00554 0.00123 0.00554
O(∂4) 0.63036 0.00063 0.62989 0.00025 0.00043 0.00025 0.03432 0.00264 0.03622 0.00115 0.00150 0.00115
O(∂6) 0.63012 0.00006 0.00010 0.00016 0.03615 0.00046 0.03597 0.00018 0.00067 0.00113

CB 0.629971(4) 0.0362978(20)
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that these estimates are typically pessimistic but can become
too optimistic in the exceptional case where two consecutive
orders of the DE accidentally cross. This possibility can
be avoided by considering a more typical (and pessimistic)
estimate in the case of exceptional “crossings.” We discuss
these independent sources of error in Sec. IV C.

Before considering this point, it is important to stress that
given our knowledge of the actual behavior of exponents at
the various orders in the Ising universality class, one can
test in this case the quality of the proposed estimate of error
bars. This information can be used to improve the estimate
of central values and error bars as explained in the next
subsection. This will be exploited in Sec. V in the analysis
of other O(N ) models at order O(∂4).

B. Improving the estimate of central values and error bars

As explained in the previous section, in most cases the con-
cavity of the curve of exponents as a function of α alternates.
Moreover, the results obtained at a given order of the DE do
not intersect with the previous one. As a consequence, in those
cases, choosing the PMS also leads to the fastest apparent
convergence by reducing the difference of critical exponents
estimates in consecutive orders. In those cases we also have
strong reasons to believe that, up to that order, the DE gives
alternating bounds (upper or lower) of critical exponents. As
a consequence, the estimate Q̄(s) is clearly not the optimal
choice and the extremum among the values obtained via PMS
for various reasonable regulators seems to be a much more
reasonable estimate. Let us call this extremum Q(s)

ext.
Note, however, that this estimate does not fully exploit the

information that DE expansion, in those cases, are bounds.
One then expects the exponent to lie in-between the results
obtained in two consecutive orders of the DE. For example,
for the N = 1 exponent ν at order O(∂4) one would expect that
the actual value of the exponent lies in the interval [ν (2)

ext , ν
(4)
ext ].

The value ν
(4)
ext = 0.630 14 is not an optimal estimate of the ex-

ponent at that order because it is in the border of the interval of
expected values. Moreover, given the fact that two consecutive
orders give alternating errors that are reduced by a factor 1

9 – 1
4 ,

one expects the actual value of the exponent to be closer to ν
(4)
ext

than to ν
(2)
ext . Taking into account these considerations, when

the values Q(s)
ext for some quantity are expected to be extrema,

an improved estimate corresponds to shifting Q(s)
ext toward the

center of interval between Q(s)
ext and Q(s−2)

ext by |Q(s)
ext − Q(s−2)

ext |/8
and consider as error estimate 	̃Q(s) = |Q(s)

ext − Q(s−2)
ext |/8.4

This new estimate of central value will be called Q̃(s) and its
explicit expression is

Q̃(s) = 1
8

(
7 Q(s)

ext + Q(s−2)
ext

)
. (27)

For example, in the same example as before, it is reason-
able to give as estimate of ν at order O(∂4) the following

4For a radius of convergence a, we would shift by |Q(s)
ext −

Q(s−2)
ext |/(2a). We choose the most conservative radius of convergence

a = 4.

improved estimate of central values and error bars:

ν̃ (4) = ν
(4)
ext − ∣∣ν (2)

ext − ν
(4)
ext

∣∣/8 = 0.62989,

	̃ν (4) = ∣∣ν (2)
ext − ν

(4)
ext

∣∣/8 = 0.00025. (28)

These improved estimates are reasonable (see Table II) as long
as we have strong reasons to believe that the DE gives, at
this order, a bound for the considered physical quantity Q.
A necessary condition for this is that two consecutive orders
of the DE give results for the various families of regulators
that are disjoints and that, for any regulator, the considered
quantity represented as a function of α shows the appropriate
convexity. Among the results obtained for N = 1 there is
a single exception. The results of orders O(∂4) and O(∂6)
overlap for the exponent ν: the ν exponent obtained with
regulator W at order O(∂6) is larger than the one obtained with
regulator �3 at order O(∂4) (see Table I). In that case, it makes
no sense anymore to choose as optimal value the extremum
among regulators because the precision of the DE has reached
a point where exponents coming from the various families of
regulators spread around the exact value. When an overlap
between two consecutive orders has been reached, there is
no reason to expect that the results represent bounds for a
given quantity and it is necessary to go back to the estimate
Q̄(s) described in Sec. IV A. More generally, without a strong
reason supporting that a certain order of the DE gives bounds
on a certain physical quantity, it is safer to use the previously
presented more conservative central value and error bar. As
an example, for the exponent η there is no broad empirical
experience or theoretical information that could lead us to
think that the order O(∂6) gives a bound for the exponent
(except from an extrapolation of the behavior at previous
orders).5 At order O(∂6), a single model has been studied and
only two exponents have been calculated. This does not give
us enough experience to use improved estimates of central
values and error bars but it does give us a good control of
the previous order O(∂4) that we can exploit when studying
the O(N ) models.

In the case of O(N ) models up to order O(∂4) there are
strong indications that the raw results for the considered
exponents coming from the DE are, in many cases, bounds
for the actual values for ν and η and, accordingly, we will
consider the improved estimate of exponents in those cases.
This seems clearly to be the case for η for all values of N
and for ν for moderate values of N , at least for 1 � N � 5.
It is important, however, to point out that in nonunitary cases
(N = 0 and −2) that we analyze in Sec. V E, the DE does
not seem to show consistent bounds on the exponents for η

and ν. In the same way, when N is large (N � 10), there are
indications that the DE expansion does not give bounds for
the exponent ν. Let us note, however, that the dependence on

5In fact, O(∂6) does not give a bound on this exponent but we
only know that by exploiting the good estimates obtained for this
exponent by other means. In any case, when we have no strong
reasons for assuming that results are bounds, the more pessimistic
estimate should be used.
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FIG. 2. Exponent ω as a function of α for N = 1 for the regulat-
ing function (25c).

the regulator becomes very small when N grows, making the
optimization of the regulator a much less relevant issue in that
limit.

The case of exponent ω is different. As explained below,
the estimates of various orders of the DE for this exponent do
not seem to correspond to bounds in any particular domain
of N . For this exponent we employ the more conservative
estimate of central values and errors presented in Sec. IV A. It
is interesting to note that even the concavities of the curves of
ω as a function of α change for N ∼ 1 (see Figs. 2, 3, and 6
below).

C. Other sources of error

In this section we analyze two other sources of error to
be taken into account. First, in the previous analysis, only
the error associated with the distance between some central
value and the exact value coming from the systematic error of
the DE has been considered. However, in the cases where the
improvement presented in Sec. IV B can not be considered,
one must add a further source of uncertainty. That is, when
considering various families of regulators, we made the choice
of the center of the interval of studied families of regulators
but there is no definite reason to take one value or the other.
As an estimate of error coming from the uncertainty due
to the dependence on the family of regulators, we choose
for any quantity Q the distance between the two extreme
values obtained among the families of regulators considered
and we call it 	regQ. This source of uncertainty in most
studied cases is much smaller than the one coming from the
difference between one order of the DE and the following.
However, it turns out that at order O(∂6), one can not neglect
it. In all cases that we choose the nonoptimized central
value Q̄ we will choose as error bar 	Q = 	regQ + 	̄Q
(see Table II).

We now analyze a second possible source of error. When
the estimates coming from the DE are not bounds on a given
quantity Q it may happen that the estimates of two consecutive
orders of the DE cross when we vary some parameter, such
as the space dimension d or the number of components of
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FIG. 3. From top to bottom: exponents ν (a), η (b), and ω (c) as
a function of α for N = 2 for the regulating function (25c).

the field N .6 In those cases, the error estimate presented in
Sec. IV A is no longer appropriate because the difference

6This difficulty can not take place in the “improved” version
because, in that case, successive orders are disjoint.
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between two consecutive orders is accidentally small (see
Ref. [49] where the same phenomenon takes place for other
exponents). In that case, it is more convenient to use a typical
value of the error bars and not a particular value which is
near the “crossing.” This difficulty is encountered in practice
for the exponent ω at order O(∂2) because the values for this
exponent at that order crosses those of the LPA for N between
3 and 4 (as explained in detail in Sec. V C). To avoid such
difficulty, we exploit the fact that the exponent ω becomes
exact in the large-N limit. As such, we impose the error to be,
at each order of the DE, a monotonically decreasing function
of N . This avoids the artificial reduction of error bars for
N = 3, 4, and 5. Of course, this can give a pessimistic error
bar but, as stated before, it is preferable to use conservative
error bars than the opposite. A similar difficulty takes place at
order O(∂4) for ω because the results from O(∂2) and O(∂4)
cross around N ∼ 2. In that case, however, one can exploit
the error bars calculated at order O(∂2) to estimate a very
conservative error bars at order O(∂4) without needing to
assume a monotonic behavior of error bars. In order to do so,
we adopted the following criterion: whenever the estimated
error for ω at order O(∂4) is smaller than the error calculated
at order O(∂2) divided by four, we adopt this last expression.
Doing so, we exclude abnormally small estimates of error bars
due to the crossing. In practice, this procedure is needed when
evaluating error estimates for N = 0, 1, and 2.

V. CRITICAL EXPONENTS FOR O(N) MODELS:
DERIVATIVE EXPANSION RESULTS

In this section we extend previous results to O(N ) models
at order O(∂4) of the DE. We first compute the correction
to scaling exponent ω for N = 1, which was not studied
previously at this order. We then analyze other values of N
and compute the leading exponents η and ν and the correction
to scaling exponent ω.

Before considering each particular value of N , it is worth
mentioning that the nature of error bars is different in the
various methods. CB are able (in many cases) to give rigor-
ous bounds on the values of critical exponents, under mild
assumptions on the spectrum of operators for unitary theories.
When quoting CB results, we employed for all positive values
of N such rigorous bounds when available for exponents
η and ν. In the case N = 0 and for ω most results in the
literature within the CB do not have the same level of rigor.
In those cases, we should keep in mind that error bars do
not have the same meaning as for exponents η and ν in
unitary models. In MC studies, statistical error bars are well
under control but have a probabilistic interpretation. Other
systematic sources of error are much more difficult to han-
dle but for the quoted MC studies, they seem to be under
control and consistent with other estimates. For perturbation
theory, high-temperature expansion, and DE results, the error
bars do not have the same level of rigor. They depend on
assumptions and on semiempirical analysis of the results at
various orders. Other estimates of various methods seem to
give consistent results, but we observe that some perturbative
error bars seem to be too optimistic because the state-of-
the-art results are not within their uncertainty range. This is
the case, for example, for the recent ε6 results of Ref. [50]

TABLE III. Raw data for N = 1 of the critical exponent ω in
d = 3 obtained with various families of regulators at various orders
of the DE. The results are also compared to previous results of the
DE. The results of the CB [51] are given for comparison.

Regulator ω

LPA W 0.6541
�1 [42] 0.6557

�3 0.6551
E 0.6533

Power law [40] 0.63
S [37] 0.595

O(∂2) W 0.8702
�3 0.8698
E 0.8707

Power law [40] 0.897

O(∂4) W 0.8313
�3 0.8310
E 0.8321

CB [51] 0.82968(23)

where the resummation technique and the methodology to
determine error bars are presented in great detail. However,
some of their results are incompatible with the most precise
results of the literature. The authors of Ref. [50] mention
this point but they suggest that it is too soon to know if the
discrepancies of ε6 results with most precise estimates are
significant or not and they suggest to await ε7 results in order
to decide.

In this study, error bars are to be understood as a bracketing
of the exact values. For all critical exponents and values of N
that we have considered, we obtain results that are compatible,
within error bars, with the most precise estimates in the
literature (whenever a prediction more precise than ours is
available). The only exception is the value of ω for N = 100
at order O(∂4) of DE. In this case, it may be that we underes-
timate the error bars [from our O(∂4) result or from large-N
expansion]. Even in that case, error bands almost overlap.

A. Results for the critical exponent ω for N = 1

Let us consider first the raw data for the correction to
scaling exponent ω that can be seen in Table III. In this work
we focus on the regulators that were analyzed in Ref. [19],
that can be employed at order O(∂4). When N = 1, as for the
case of η and ν, the raw data for the critical exponent ω give
PMS results at successive orders of the DE [up to order O(∂4)]
which are disjoints. However, as seen in Fig. 2, both O(∂2)
and O(∂4) curves present a minimum, which indicates that
the various orders of the DE are not bounds on this critical ex-
ponent. The same behavior was observed for other regulators.
As a consequence, we use for this exponent the nonimproved
estimate of central values and errors presented in Sec. IV A.
We observe, nevertheless, a very fast convergence achieving a
precision of the same order of MC estimates, but as for most
other methods in the literature, we have a larger error bar than
for leading exponents ν and η.

Before considering other values of N let us sum up the
results obtained up to now for the three-dimensional Ising
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TABLE IV. Final results at various orders of the DE with ap-
propriate error bars for N = 1 in d = 3. Results for η and ν are
taken from [19]. Results of the CB ([13] for η and ν and [51] for
ω), MC [7], high-temperature expansion [52], and six-loop, d = 3
perturbative RG values [2], and ε expansion at order ε5 [2] and at
order ε6 [50] are also given for comparison.

ν η ω

LPA 0.64956 0 0.654
O(∂2) 0.6308(27) 0.0387(55) 0.870(55)
O(∂4) 0.62989(25) 0.0362(12) 0.832(14)
O(∂6) 0.63012(16) 0.0361(11)

CB 0.629971(4) 0.0362978(20) 0.82968(23)
Six-loop, d = 3 0.6304(13) 0.0335(25) 0.799(11)
ε expansion, ε5 0.6290(25) 0.0360(50) 0.814(18)
ε expansion, ε6 0.6292(5) 0.0362(6) 0.820(7)
High T 0.63012(16) 0.03639(15) 0.83(5)
MC 0.63002(10) 0.03627(10) 0.832(6)

universality class, presented in Table IV. It is worth stressing
that the results are very precise (particularly for ν and ω). At
first sight one could get the impression that the order O(∂6)
does not improve the results significantly with respect to order
O(∂4) for η and ν. However, this only reflects our poorer
experience on the behavior of the DE at order O(∂6) and
the consequent use of a much more pessimistic estimate of
central values and error bars. In fact, by looking directly at the
raw data presented in Table I one observes that the DE does
give better estimates for any regulator at successive orders,
including order O(∂6).

Another strategy in order to estimate central values fol-
lowed in Ref. [19] is to exploit the whole series of data for
a given exponent in order to extrapolate the central value
and error bars. This strategy gives better estimates of central
values and a smaller error bar. However, we follow here a
strategy that can be implemented for O(N ) models where we
only have at our disposal the results for the DE up to order
O(∂4). More generally, we propose a general method that can
be employed safely for very general models where, in most
cases, the DE has only been studied up to order O(∂2).

B. Controversial N = 2 case: Derivative expansion take

The N = 2 case describes the important XY universality
class that corresponds to many physical systems, including
easy plane magnetic systems and the λ transition of the
helium-4 superfluid. For a classical review of various systems
in this universality class, we refer to [3]. The O(2) case is par-
ticularly important because, as discussed in the Introduction,
there is a long-standing controversy concerning the value of
the critical exponent ν between the most precise experiments7

[23] and the best theoretical estimates given by some MC
simulations [54,55] and very recent CB results [24]. Most

7Indeed, the critical exponent that is actually measured is the
specific heat exponent α for the transition of the superfluid helium-
4, that can be related to ν by a hyperscaling relation. See also [53]
for estimations of the specific heat of helium-4.

TABLE V. Final results at various orders of the DE with appro-
priate error bars for N = 2 in d = 3. Results to the CB from 2016
([56] for η and ν and [58] for ω) and also from 2019 [24], combined
MC and high-temperature analysis from [54] and recent (2019) MC
from [8], and six-loop, d = 3 perturbative RG values [2], and ε

expansion at order ε5 [2] and order ε6 [50] are also given for compari-
son. Results for most precise experiments are also included: helium-4
superfluid from [23,59] for ν, XY antiferromagnets (CsMnF3 from
[60] and SmMnO3 from [61]), and XY ferromagnets (Gd2IFe2 and
Gd2ICo2 from [62]). Whenever needed, scaling relations are used in
order to express results in terms of η and ν.

ν η ω

LPA 0.7090 0 0.672
O(∂2) 0.6725(52) 0.0410(59) 0.798(34)
O(∂4) 0.6716(6) 0.0380(13) 0.791(8)

CB (2016) 0.6719(12) 0.0385(7) 0.811(19)
CB (2019) 0.6718(1) 0.03818(4) 0.794(8)
Six-loop, d = 3 0.6703(15) 0.0354(25) 0.789(11)
ε expansion, ε5 0.6680(35) 0.0380(50) 0.802(18)
ε expansion, ε6 0.6690(10) 0.0380(6) 0.804(3)
MC+High T (2006) 0.6717(1) 0.0381(2) 0.785(20)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)

Helium-4 (2003) 0.6709(1)
Helium-4 (1984) 0.6717(4)
XY -AF (CsMnF3) 0.6710(7)
XY -AF (SmMnO3) 0.6710(3)
XY -F (Gd2IFe2) 0.671(24) 0.034(47)
XY -F (Gd2ICo2) 0.668(24) 0.032(47)

field-theoretical methods [2,56] (including CB before [24])
have been unable to settle the issue because of the high level of
precision reached by experiments and simulations. Indeed, as
discussed in [55], there is even a discrepancy among various
MC results that in some cases give results compatible with
experiments [57], but a consensus seems to have been reached
that the most precise simulations [8,54,55] are very far away
from the experimental prediction. We present now our O(∂4)
DE estimate of critical exponents η, ν, and ω.

The raw data for these exponents obtained at successive
orders of the DE for the same regulators mentioned in the
previous section are presented in Appendix A. We also in-
cluded in this table the previous results obtained with the DE.
As for N = 1, for all considered families of regulators the
concavity of the curves of exponents η and ν as a function
of the parameter α alternates (see Fig. 3). Moreover, the
results at successive orders of the DE are disjoint, which
strongly indicates alternating bounds on the critical exponents
at this order of the DE. Accordingly, we employ the improved
estimate of central values and error bars presented in Sec. IV B
for those exponents. The corresponding results are presented
in Table V where they are compared to other results in the
literature both theoretical and experimental. Special attention
must be given to the exponent ω where it is seen in Fig. 3
that the results at order (∂2) and (∂4) intersect. Moreover,
the LPA curve, which is below the O(∂2) one, presents a
minimum, not a maximum. The various orders of the DE
definitely do not give bounds on that exponent. We therefore
use for this exponent the more conservative estimate of error
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FIG. 4. Exponent ω as a function of 1/N for N � 1 at various
orders of the DE.

bars described in Sec. IV A. For what concerns ω, we shall
use the same pessimistic error bar for other values of N .

We reach for the three exponents very precise estimates.
In particular, we obtain a better precision than perturbative
estimates. We do not reach, however, the level of accuracy
of MC [8,54,55] and (for ν and η) from the CB [24] which
appeared during the completion of this work. We find, for
the controversial value of ν, a result that turns out to be
compatible with the most precise MC simulations and CB and
incompatible with experiments from [23].

MC and CB clearly give more precise determinations of the
critical exponents. We would like to mention, however, that
the numerical effort is much bigger in these two methods than
the one we had to face. Typically, finding a fixed point takes
about 2 hours in a laptop while MC involved several years of
CPU time and CB about 102 years of CPU time.

C. Results for some physically interesting cases

We present now the result for two other physically relevant
cases with positive integer values of N (and, as such, unitary).
These are the Heisenberg universality class N = 3, relevant
for isotropic ferromagnets, and the N = 4 universality class
relevant for the chiral phase transition in the physics of strong
interactions. We refer to [3] for a detailed description of
various systems in these two universality classes.

We present now our results at successive orders of the
DE up to order O(∂4) for critical exponents η, ν, and ω. The
raw data for these exponents obtained at successive orders
of the DE (for the same regulators mentioned in previous
sections) are presented in Appendix A. For completeness,
results from previous DE analysis are also included in these
tables. The same considerations as for N = 1 and 2 apply
here, concerning the strong indication that successive orders
of the DE give bounds on exponents η and ν but not for ω. As
such, we implement the “improved” version of central values
and error estimates for the first two exponents but not for ω.

A special mention must be made for the calculation of error
bars for the exponent ω. We employ the most conservative
estimates for this exponent and a particular analysis (already
discussed in Sec. IV C) must be done in that case. Indeed, as

TABLE VI. Final results at various orders of the DE with ap-
propriate error bars for N = 3 in d = 3. For reference results of CB
([56] for η and ν and [58] for ω), MC ([63] for η and ν and [64]
for ω), combined MC and high-temperature analysis from [65], and
six-loop, d = 3 perturbative RG values [2], and ε expansion at order
ε5 [2] and order ε6 [50] are also given for comparison. Results for
most precise experiments are also included (isotropic ferromagnets
Gd2BrC and Gd2IC from [66] and CdCr2Se4 from [67]). Whenever
needed, scaling relations are used in order to express results in terms
of η and ν.

ν η ω

LPA 0.7620 0 0.702
O(∂2) 0.7125(71) 0.0408(58) 0.754(34)
O(∂4) 0.7114(9) 0.0376(13) 0.769(11)

CB 0.7120(23) 0.0385(13) 0.791(22)
Six-loop, d = 3 0.7073(35) 0.0355(25) 0.782(13)
ε expansion, ε5 0.7045(55) 0.0375(45) 0.794(18)
ε expansion, ε6 0.7059(20) 0.0378(5) 0.795(7)
MC 0.7116(10) 0.0378(3) 0.773
MC+High T 0.7112(5) 0.0375(5)

Ferromagnet Gd2BrC 0.7073(43) 0.032(10)
Ferromagnet Gd2IC 0.7067(60) 0.061(15)
Ferromagnet CdCr2Se4 0.656(56) 0.041(23)

shown in Fig. 4, when varying N the exponent ω turns out to
be relatively stable at orders O(∂2) and O(∂4) but varies in a
very important way at order LPA. More importantly, the curve
of orders LPA and O(∂2) crosses in a point between N = 3
and 4. Similarly, the curves for orders O(∂2) and O(∂4) cross
in a point for N ∼ 2. These exceptional points where two
consecutive orders of the DE cross can make the uncertainty
presented in Sec. IV too optimistic. To avoid this artificially
small error bar, we employ a conservative estimate of error
bars explained in Sec. IV C. The corresponding results are
presented in Tables VI and VII where, as before, they are
compared to other results in the literature both theoretical and
experimental.

We obtain again very precise estimates for the three ex-
ponents that, in some cases, are the most precise exponents
obtained in the literature for these universality classes from

TABLE VII. Final results at various orders of the DE with
appropriate error bars for N = 4 in d = 3. For reference results of
CB (η and ν from [68] and ω from [58]), MC (η and ν from [69] and
ω from [64]), and six-loop, d = 3 perturbative RG values [2] and ε

expansion at order ε5 [2] and order ε6 [50] and are also given for
comparison.

ν η ω

LPA 0.805 0 0.737
O(∂2) 0.749(8) 0.0389(56) 0.731(34)
O(∂4) 0.7478(9) 0.0360(12) 0.761(12)

CB 0.7472(87) 0.0378(32) 0.817(30)
Six-loop, d = 3 0.741(6) 0.0350(45) 0.774(20)
ε expansion, ε5 0.737(8) 0.036(4) 0.795(30)
ε expansion, ε6 0.7397(35) 0.0366(4) 0.794(9)
MC 0.7477(8) 0.0360(4) 0.765
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TABLE VIII. Final results at various orders of the DE with ap-
propriate error bars for N = 5 in d = 3. For reference results of MC
[74], large-N expansion [70–72] and six-loop, d = 3 perturbative RG
as well as ε expansion at order ε5 values [73] are also given for
comparison.

ν η ω

LPA 0.839 0 0.770
O(∂2) 0.782(8) 0.0364(52) 0.724(34)
O(∂4) 0.7797(9) 0.0338(11) 0.760(18)

Six-loop, d = 3 0.764(2) 0.030(1)
ε expansion, ε5 0.764(6) 0.034(2)
MC 0.728(18)
Large N 0.71(7) 0.031(15) 0.51(6)

field-theoretical methods. The results are in some cases even
more precise than MC simulations. Moreover, all our results
are compatible (within error bars) with the best estimates
in the literature (whenever more precise results than ours
are available). This is a strong indication that our estimates
of error bars are reliable. In Table VI experimental results
are also presented for various physical realizations of N = 3
universality class. As for N = 2, the experimental precision
for the exponent η is much lower than for exponent ν.

D. Large-N case

Even if the N = 5 has been proposed to describe a possible
universality class in some superconductors [3], the main pur-
pose of this section is to test our DE results in a limit where
different kinds of approximations have been implemented,
including the large-N expansion. In fact, the expressions for
the critical exponents η, ν, and ω in this limit have been
computed at next-to-next-to-leading order [70–72] :

η = 8

3π2

1

N
− 512

27π4

1

N2
− 8

27π6N3

×
{
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N2

(
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2

)
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TABLE IX. Final results at various orders of the DE with appro-
priate error bars for N = 10 in d = 3. For reference from large-N
expansion [70–72] and six-loop, d = 3 perturbative RG values [75]
are also given for comparison.

ν η ω

LPA 0.919 0 0.874
O(∂2) 0.877(11) 0.0240(34) 0.788(26)
O(∂4) 0.8776(10) 0.0231(6) 0.807(7)

Six-loop, d = 3 0.859 0.024
Large N 0.87(2) 0.023(2) 0.77(1)

TABLE X. Final results at various orders of the DE with appro-
priate error bars for N = 20 in d = 3. For reference results of CB
[68], large-N expansion [70–72] and six-loop, d = 3 perturbative RG
values [75] are also given for comparison.

ν η ω

LPA 0.9610 0 0.938
O(∂2) 0.9414(49) 0.0130(19) 0.887(14)
O(∂4) 0.9409(6) 0.0129(3) 0.887(2)

CB 0.9416(87) 0.0128(16)
Six-loop, d = 3 0.930 0.014
Large N 0.941(5) 0.0128(2) 0.888(3)

We used these expressions as reference values. As well
known, the large-N expansion is expected to be a good ap-
proximation only for N larger than about 10. However, for ref-
erence, we compare also to this expansion in the N = 5 case.
In order to estimate central values and error bars of the 1/N
expansion, we use a very conservative estimate: we choose
as central value the exponent obtained at the highest known
order in the 1/N expansion and we estimate the error bar as
the difference between this order and the previous one. This
estimate may be too pessimistic for N large enough and the
actual errors bars at N = 20 or 100 could be smaller. However,
given that coefficients in the large-N expansion are typically
not of order one, we employed this conservative estimate. It is
important to note that even with such conservative error bars
some results of the large-N expansion becomes incompatible
with other estimates for N = 5 and 10. For some of the
considered values of N there are also available resummed
six-loops, ε expansion up to order ε5 and MC results that we
include for comparison.

In order to estimate our central values and error bars, we
employed for all the considered values of N > 5 and for the
exponents ν and ω the most conservative estimate presented in
Secs. IV A and IV C. The reason is that we do not have clear
indications that for those values of N the estimates coming
from the DE constitute bounds on those critical exponents.
Even more, in some cases for N � 10 we observe overlaps
between the values obtained in consecutive orders of the DE
for these exponents, indicating that, at least for those orders
and values of O(∂4), the hypothesis of being bounds is not
fulfilled (see Fig. 5). The case of the exponent η is different
because we observe the same qualitative behavior for all
N � 0 which strongly indicates that, at least up to order
O(∂4), the estimates are bounds on the exponents (as a typical
example, see Fig. 5). In any case, the dependence on regulator

TABLE XI. Final results at various orders of the DE with appro-
priate error bars for N = 100 in d = 3. For reference, results from
large-N expansion [70–72] are also given for comparison.

ν η ω

LPA 0.9925 0 0.9882
O(∂2) 0.9892(11) 0.00257(37) 0.9782(26)
O(∂4) 0.9888(2) 0.00268(4) 0.9770(8)

Large N 0.9890(2) 0.002681(1) 0.9782(2)
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TABLE XII. Final results at various orders of the DE with ap-
propriate error bars for N = 0 in d = 3. For reference results of CB
[79], MC [80,81], length doubling method series [82], and six-loop,
d = 3 perturbative RG values [2], and ε expansion at order ε5 [2] and
order ε6 [50] are also given for comparison. Results for most precise
experiment are also included (polystyrene benzene dilute solutions)
[78]. Whenever needed, scaling relations are used in order to express
results in terms of η and ν.

ν η ω

LPA 0.5925 0 0.66
O(∂2) 0.5879(13) 0.0326(47) 1.00(19)
O(∂4) 0.5876(2) 0.0312(9) 0.901(24)

CB 0.5876(12) 0.0282(4)
Series LDM 0.58785(40) 0.0327(22)
MC 0.58759700(40) 0.0310434(30) 0.899(14)
Six-loop, d = 3 0.5882(11) 0.0284(25) 0.812(16)
ε expansion, ε5 0.5875(25) 0.0300(50) 0.828(23)
ε expansion, ε6 0.5874(3) 0.0310(7) 0.841(13)

Polymer solution 0.586(4)

families and on the regulating function parameter α becomes
much less pronounced for N large enough. Accordingly, the
relevance of the precise choice of regulator becomes less
important. Our results given in Tables VIII, IX, X, and XI
turn out to be mostly compatible with other estimates in the
literature and seem to be even more precise. Indeed, only
for very large values of N , of order 20, the 1/N expansion
becomes more precise than our O(∂4) results. Of course, as
is well known, the large-N limit is obtained exactly [28] with
the DE already at order LPA, but we also observe that 1/N
corrections seem to be very well estimated at order O(∂4).

E. Analysis of some nonunitary cases: N = 0 and −2

In this section we consider two cases of O(N ) models
for nonpositive values of N . These are interesting for two
different reasons. First, they describe situations of physical
interest. N = 0 corresponds to self-avoiding walks [20] which
model long polymer chain with self-repulsion. The case N =
−2 corresponds to loop-erased random walks [76]. In such a
random walk every loop is erased when it is formed. Second,
these cases are interesting because unitarity is probably not
valid when N is not a positive integer. Indeed, for positive
integer values of N and d , O(N ) models have a clear interpre-
tation in terms of a Ginzburg-Landau field theory verifying
reflection positivity. However, in the cases that are obtained
by analytical continuation, the validity of unitarity of the
Minkowskian version of the model is far from obvious. Since
unitarity was explicitly used in the proof of the convergence of
DE, we have to analyze the convergence properties in nonuni-
tary situation. In this sense, the cases N = 0 and −2 can be
seen as benchmarks for nonunitary theories. A similar issue
occurs in the case of analytical continuation to noninteger d . It
has been pointed out that unitarity is lost [77] in this situation,
which makes the CB program more difficult to implement (at
least with the same level of rigor as for positive integer values
of d).
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FIG. 5. From top to bottom: exponents ν (a), η (b), and ω (c) as
a function of α for N = 20 for the regulating function (25c).

Let us mention, however, that the estimates on the con-
vergence of the DE from Ref. [19] do not rely on all the
information coming from the structure of a unitary theory
but only on the position of singularities on the complex
plane of squared momenta. In particular, at all orders of
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TABLE XIII. Final results at various orders of the DE with
appropriate error bars for N = −2 in d = 3. For reference results
from exact or perturbative results [21,22].

ν η ω

LPA 1/2 0 0.700
O(∂2) 0.5000(12) 0.0000(47) 0.84(19)
O(∂4) 0.5001(1) 0.0004(9) 0.838(24)

Exact/six-loop 1/2 0 0.83(1)

perturbation theory, these singularities are located, for all
values of N including negative values, at the same positions as
for unitary theories. As a consequence, at least at all orders of
perturbation theory, one should expect that our estimate of the
convergence of the DE and the existence of a small parameter
should remain correct. Of course, the information coming
from unitarity is that this structure remains correct nonper-
turbatively. Another information that comes from unitarity is
that series for correlation functions are alternating (at least at
large order). This comes from the fact that it is dominated by
the two- or three-particle threshold which has a definite sign
due to unitarity. For N that are not positive integers there is no
reason at all to believe that successive orders of the DE give
bounds on exponents. For example, see Fig. 6 where there is
no indication of alternating values for ν (but the results for η

do seem to alternate).
From a practical point of view we will continue to assume

that there is a relative factor of order 4 that suppresses
successive orders of the DE in order to estimate error bars,
but we will employ the more conservative estimate that do
not assume that they give bounds on the exponents. The raw
data obtained at various orders with various regulators are
presented in Appendix A. They indicate that these assump-
tions seem to be justified. The results with corresponding
error bars are presented in Tables XII and XIII which seem
to confirm that our methodology for estimating errors (at
least the most conservative version) remains valid for those
nonpositive values of N . It must be pointed out that the results
of the CB for N = 0 are not as rigorous as for positive integer
values of N . As a consequence, in this case their error bars
do not constitute rigorous error bars. In Table XII we also
compare to an experimental realization of the N = 0 case in a
polymer solution [78].

A special mention must be done for some exact results
known for the N = −2 case. In fact, the exponents η and ν are
known exactly to take their mean-field value 0 and 1

2 . This re-
sult is well known from an all-order perturbative analysis (see,
for example, [4]) but a nice proof going beyond perturbation
theory has been proposed recently [21,22]. In these references,
the exponent ω (which is not known exactly) is also estimated
to be ω = 0.83 ± 0.01. It is interesting that the DE recovers
these results with high precision. Indeed, it was observed a
long time ago that the LPA order reproduces the exact result
for η and ν exactly for N = −2 [40]. However, the reason
that makes the result exact at LPA order is somehow too
simple. The fact, that η = 0 at LPA order is by construction
true for any N . Therefore, its coincidence with the exact value
for N = −2 is then an accident. Moreover, the flow of the
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FIG. 6. From top to bottom: exponents ν (a), η (b), and ω (c) as
a function of α for N = 0 for the regulating function (25c).

mass term at zero field in LPA is controlled exclusively by the
four-point vertex at zero momenta and field which, for any N ,
verifies



(4)
i jkl (pi = 0; φ = 0) ∝ (δi jδkl + δikδ jl + δilδ jk ). (30)
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TABLE XIV. Raw data for N = −2 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 1/2 0 0.7000
�3 1/2 0 0.7021
E 1/2 0 0.6983

Power law [40] 1/2 0

O(∂2) W 0.5 + 2.8 × 10−8 5.9 × 10−8 0.8451
�3 0.5 + 5.9 × 10−7 1.2 × 10−6 0.8447
E 0.5 + 7.4 × 10−8 1.3 × 10−7 0.8446

O(∂4) W 0.5 + 7.0 × 10−5 8.5 × 10−5 0.8368
�3 0.5 + 5.9 × 10−5 9.7 × 10−5 0.8344
E 0.5 + 8.5 × 10−5 9.2 × 10−4 0.8411

Now, the flow of the mass at zero field is proportional to



(4)
i jkk (pi = 0; φ = 0) ∝ δi j (N + 2). (31)

The consequence is that the mass parameter does not flow for
N = −2 and then ν = 1

2 .
This simple analysis does not extend beyond LPA and

the exactness of η = 0 and ν = 1
2 is slightly spoiled by the

DE approximation. In order to remain true, very non-trivial
relations must be preserved along the flow that, given the
analysis of [21,22], must be exact but are only satisfied within
DE (beyond LPA) approximately. The systematic errors seem
to grow in the raw data when going from order O(∂2) to order
O(∂4) as seen in Table XIV. Let us mention, however, that
the relations η = 0 and ν = 1

2 are extremely well satisfied and
the exact values are obtained in all cases within the expected
error bars as seen in Table XIII.8 One must point out that the
estimate of systematic error bars is, however, problematic for
those exponents at N = −2. As mentioned in Sec. IV C, when
two consecutive orders of the DE cross, our estimates of error
bars are not justified and it is better to employ a “typical”
value of error bars. In the present analysis we employ as
“typical” value for these two exponents those of N = 0. For
the nontrivial exponent ω one can employ without difficulty
our error bar estimate and results are compatible, and with the
same order of precision as, the one coming from perturbation
theory.

The study of these two nonunitary models then suggests
that the domain of application of our methodology for esti-
mating error bars goes beyond the realm of unitary theories.

VI. CONCLUSION AND PERSPECTIVES

The DE of the NPRG equations has proved to be an ap-
proximation scheme which is versatile and capable of tackling
a very broad range of physical systems. However, until very
recently, the success of such a method remained suspicious
because of the apparent lack of a control parameter in order
to estimate a priori the precision of the results. In a recent

8It is interesting to observe that, apparently, the distance with exact
results is as expected at order O(∂4) but is abnormally small at order
O(∂2) (see Table XIV). We do not have an explanation for such high
precision at order O(∂2).

work [19] this important difficulty has been addressed and it
was shown that the DE has a control parameter of order 1

9 to
1
4 . This has been shown in two ways. First, on a theoretical
basis, by considering the position of the singularities on the
complex plane of 1PI correlation functions as a function of
momenta. Second, by corroborating this general analysis with
an empirical study of the precision of the DE at large order
[O(∂6)] when applied to the critical regime of a Ginzburg-
Landau model in the Ising universality class.

In this article we used this general analysis to study the
critical exponents η, ν, and ω of an important family of crit-
ical phenomena characterized by O(N )-invariant Ginzburg-
Landau models. Previous studies performed within the DE
at order O(∂2) had shown good precision but in this work
we show that when going to order O(∂4) one achieves, in
most cases, the best precision for those systems with field-
theoretical methods.9 In some cases we were even able to
attain a better precision than Monte Carlo estimates. In order
to perform this analysis, we developed a systematic procedure
to compute error bars within the DE. This procedure was
corroborated by a careful analysis of the very precisely studied
Ising universality class (corresponding to N = 1) obtained
in Ref. [19] and extending it to various values of N in the
three-dimensional case.

An important application is the analysis of the O(2) or
XY model where a long-standing controversy exists between
experiments [23] and the state-of-the-art Monte Carlo esti-
mates [8,54,55] and very recent results from the CB [24] for
the specific heat α (or, equivalently, the correlation length
exponent ν). Most theoretical estimates, based on fixed di-
mension resummed perturbation theory, ε expansion or pre-
vious CB works were unable to achieve a precision high
enough to disentangle between the estimates of experiments
and simulations. Our results are in agreement with Monte
Carlo simulations and new CB results but exclude the results
obtained with helium-4 in microgravity. This result can be
interpreted in many ways. One possible explanation is the
one proposed in [56]: It could be that the analysis of the
experimental data made in Ref. [23] underestimate error bars.
Alternatively, we could consider other possible sources of sys-
tematic errors in the experiment whose exceptional realization
in microgravity makes difficult to repeat. Another possible
explanation, but much more challenging from the theoretical
viewpoint, could be that for some unexplained reason the O(2)
model does not describe properly the helium-4 critical point.
This is difficult to believe because scale-invariant theories are
typically a discrete set and there is no doubt that the O(2)
model describes at least three digits of critical exponents of
helium-4 superfluid transition. This explanation would require
another scale-invariant model extremely close to but different
from the O(2) model. In any case, the agreement between
two independent theoretical estimates calls in favor of a new
realization of the experiment in order to confirm or discard
previous experimental results.

9The only exceptions are the N = 1 [11–13] and N = 2 cases [24]
in which quasiexact results of the CB are available and for very large
values of N (N � 20) where the large-N expansion becomes very
precise [70–72].

042113-17



DE POLSI, BALOG, TISSIER, AND WSCHEBOR PHYSICAL REVIEW E 101, 042113 (2020)

The results of this article pave the way toward many
applications in the near future. First, the methodology used
to estimate error bars within the DE can be applied in many
applications within NPRG [even at order O(∂2)]. Second, this
analysis of error estimates, even if probably very pessimisti-
cally, applies also to other approximation schemes such as
the Blaizot-Méndez-Wschebor scheme [29,30,45]. This pos-
sibility should be exploited because many finite momentum
physical properties are beyond the reach of the DE. Third, in
this article we only considered the two independent dominant
exponents and the correction to scaling exponent of O(N )
universality class at order O(∂4). It is clear that with the same
methodology we can analyze a very broad set of universal
and nonuniversal properties of O(N ) models well studied
in the literature with other methods (see, for example, [3]
for many universal aspects that could be analyzed with the
present setup). Given the precision reached for leading critical
exponents is to be expected that we can improve for several
quantities the best current theoretical estimates by using the
DE at order O(∂4). Fourth, on more fundamental aspects, the
present analysis is strongly based on the use of “principle of
minimal sensitivity” that turned out to improve significantly
the results of the DE but requires a more solid theoretical
foundation. In this direction, an important underexploited
information that could bring some clarity on this point may
come from the use of conformal symmetry that, up to now,
has almost not been exploited in the NPRG context in order to
improve physical predictions (see, however, [35,49,83–85]).
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APPENDIX A: RAW DATA FOR DE ESTIMATES
OF CRITICAL EXPONENTS

In this Appendix we present in Tables XIV, XV, XVI,
XVII, XVIII, XIX, XX, XXI, and XXII the raw data for
exponents ν, η, and ω obtained for various values of N
with the regulators presented in Eqs. (25) [in the case of
�n regulators we present in all cases the results for n = 3
since for this value of n the DE is well behaved until order
O(∂4) and, for N = 1, it turned out to be optimum at that
order]. For almost all cases, the results are presented at a PMS,
determined as an extremum of the corresponding exponent
as a function of α for each regulator. The only exceptions
are marked with an asterisk in the tables. In those cases,
there are no PMS for some particular exponents. In order

TABLE XV. Raw data for N = 0 critical exponents in d = 3
obtained with various regulators at various orders of the DE. When a
value of α different of PMS is employed, this is explicitly indicated
with a ∗.

Regulator ν η ω

LPA W 0.5925 0 0.6549
�1 [42] 0.5921 0 0.6579

�3 0.5923 0 0.6567
E 0.5926 0 0.6535

Power law [40] 0.596 0 0.62

O(∂2) W 0.5878 * 0.0384 1.0407
W (α = 1) [34] 0.590 0.039

�3 0.5879 0.0373 0.9431
E 0.5878 * 0.0388 1.0489

O(∂4) W 0.5875 * 0.0299 0.9006
�3 0.5876* 0.0303 0.9007
E 0.5875 * 0.0292 0.9005

TABLE XVI. Raw data for N = 2 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 0.7099 0 0.6717
�1 [42] 0.7082 0 0.6712

�3 0.7090 0 0.6715
E 0.7106 0 0.6716

Power law [40] 0.73 0 0.66

O(∂2) W 0.6669 0.0474 0.7983
W (α = 1) [34] 0.666 0.049

�3 0.6673 0.0469 0.7992
E 0.6663 0.0480 0.7972

Power law [40] 0.65 0.044 0.38

O(∂4) W 0.6725 0.0361 0.7906
�3 0.6722 0.0367 0.7893
E 0.6732 0.0350 0.7934

TABLE XVII. Raw data for N = 3 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 0.7631 0 0.7019
�1 [42] 0.7611 0 0.6998

�3 0.7620 0 0.7010
E 0.7639 0 0.7026

Power law [40] 0.78 0 0.71

O(∂2) W 0.7047 0.0471 0.7541
W (α = 1) [34] 0.704 0.049

�3 0.7054 0.0466 0.7563
E 0.7039 0.0476 0.7516

Power law [40] 0.745 0.035 0.33

O(∂4) W 0.7126 0.0358 0.7681
�3 0.7122 0.0363 0.7659
E 0.7136 0.0347 0.7729
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TABLE XVIII. Raw data for N = 4 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 0.8063 0 0.7370
W (α = 1) [34] 0.739 0.047

�1 [42] 0.8043 0 0.7338
�3 0.8052 0 0.7354
E 0.8071 0 0.7383

Power law [40] 0.824 0 0.75

O(∂2) W 0.7405 0.0450 0.7310
�3 0.7412 0.0445 0.7340
E 0.7396 0.0455 0.7274

Power law [40] 0.816 0.022 0.42

O(∂4) W 0.7490 0.0343 0.7588
�3 0.7487 0.0348 0.7561
E 0.7500 0.0332 0.7649

TABLE XIX. Raw data for N = 5 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 0.8395 0 0.7706
�1 [42] 0.8377 0 0.7667

�3 0.8385 0 0.7687
E 0.8402 0 0.7721

O(∂2) W 0.7731 0.0420 0.7241
�3 0.7737 0.0416 0.7275
E 0.7722 0.0425 0.7199

O(∂4) W 0.7808 0.0323 0.7584
�3 0.7806 0.0327 0.7558
E 0.7815 0.0313 0.7648

TABLE XX. Raw data for N = 10 critical exponents in d = 3
obtained with various regulators at various orders of the DE.

Regulator ν η ω

LPA W 0.9194 0 0.8745
�1 [42] 0.9186 0 0.8713

�3 0.9190 0 0.8729
E 0.9198 0 0.8758

Power law [40] 0.94 0 0.89

O(∂2) W 0.8774 0.0276 0.7882
W (α = 1) [34] 0.881 0.028

�3 0.8775 0.0274 0.7903
E 0.8772 0.0279 0.7853

Power law [40] 0.95 0.0054 0.82

O(∂4) W 0.8777 0.0222 0.8063
�3 0.8780 0.0225 0.8062
E 0.8771 0.0218 0.8081

TABLE XXI. Raw data for N = 20 critical exponents in d = 3
obtained with various regulators at various orders of the DE. When a
value of α different of PMS is employed, this is explicitly indicated
with a ∗.

Regulator ν η ω

LPA W 0.9610 0 0.9384
�3 0.9608 0 0.9376
E 0.9612 0 0.9391

Power law [40] 0.96 0 0.95

O(∂2) W 0.9414* 0.0149 0.8875
�3 0.9414 0.0148 0.8880
E 0.9414* 0.0151 0.8867

Power law [40] 0.98 0.0021 0.93

O(∂4) W 0.9409 0.0125 0.8875
�3 0.9411 0.0126 0.8884
E 0.9406 0.0123 0.8863

to choose a particular value of α when no standard PMS is
present, we extend the philosophy of PMS which requires
the “minimum sensitivity.” When no extremum is present, we
verified in each case that the point with lower sensitivity, in
the studied exponents to the parameter α corresponds to an
inflexion point and, accordingly, we choose that value. We
also included in the various tables previous DE results when
available.

APPENDIX B: NUMERICAL METHOD

We describe in this Appendix the details of the numerical
method used to determine the fixed points and critical ex-
ponents at order O(∂s) of the DE approximation within the
NPRG with s = 0, 2, and 4. The general structure of the pro-
cedure can be split in three steps: (1) deriving the flow equa-
tions of each function in the ansatz for the effective action;
(2) finding the fixed point which governs the critical behavior
of the system, and (3) obtaining the critical exponents from
the fixed point solution.

TABLE XXII. Raw data for N = 100 critical exponents in d = 3
obtained with various regulators at various orders of the DE. When a
value of α different of PMS is employed, this is explicitly indicated
with a ∗.

Regulator ν η ω

LPA W 0.9925 0 0.9882
�3 0.9924 0 0.9880
E 0.9925 0 0.9883

Power law [40] 0.994 0 0.991

O(∂2) W 0.98906 0.00308 0.9781
W (α = 1) [34] 0.990 0.0030

�3 0.98933 0.00294 0.9782*
E 0.98908 0.00310 0.9781

Power law [40] 0.998 0.00034 0.988

O(∂4) W 0.98884 0.00263 0.9771
�3 0.98888 0.00264 0.9772
E 0.98877 0.00260 0.9767
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1. Deriving flow equations and truncation

In order to determine the flow equations for each of the
functions in the ansatz of the effective action (17), we compute
from this ansatz the general n-point vertex function 


(n)
k i1,...,in

and evaluate it in a homogeneous field configuration. As a
rule of thumb for the DE approximation at order O(∂s), one
needs to compute all n-point vertex functions up to n = 2 + s.
Indeed, this is easy to understand by noticing that to isolate
the flow of all functions, which are characterized by differ-
ent internal indices and momentum structures, one needs to
compute the flow of all vertex functions up to 


(s)
k . However,

computing the flow of any 

(n)
k involves the vertex functions



(n+1)
k and 


(n+2)
k .

We highlight that, when plugging in the vertex functions in
the right-hand side of the flow equations for the different 


(n)
k ,

we truncate the product of vertex functions before expanding
propagators at order s. This is different from what was usually
done in previous uses of the DE, where all terms coming
from the product were taken into account, leading to bigger
equations (which are more complicated to handle). Anyway,
although this could be done in principle, the difference be-
tween the two schemes is of order O(ps+2) which makes the
shorter and simpler flow equations the selected option.

Finally, matching in the left- and right-hand sides of the
flow equations the indices and momentum structures allows to
compute separately each of the flow equations for the different
functions in the ansatz.

2. Finding the fixed point

There are two ways to go for finding the fixed point of the
flow equations. The first one, which is more traceable to an ex-
perimental procedure, is to start from a microscopic theory or
initial condition for 
k=� and integrate the flow equation. One
can do this for different values of the initial conditions and, in
particular, vary or fine tune one parameter. By a dichotomy
procedure (which can be easily implemented by observing the
flow of a certain quantity, say the derivative with respect to ρ

of the potential at zero field), one can find an initial condition
which leads the RG flow as close to the fixed point as required.
This is equivalent to varying the temperature and measuring
the system in order to find the critical temperature Tc. The
other method, which is numerically more efficient, faster,
and more precise, consists in finding the zeros of the beta
functions. There exist efficient root-finding procedures which
work fine if one initializes the procedure sufficiently close to
the fixed point. We will call this procedure the root-finding
algorithm.

Since having a good initial condition from scratch is not
simple, we combined both approaches. The procedure imple-
mented was then to start with some value of N (say N = 2)
and dimension d (we set from start d = 3 and never changed
it) and start with a dichotomy procedure. This only takes a few
hours in a personal computer if one takes a smart ansatz for the
microscopic theory. After a few dichotomies, the algorithm
reaches a vicinity of the fixed point and the root-finding
algorithm can be used. Once the fixed point is found, we use
this as an initial condition for the root-finding procedure for
another value of N (say 2.1). (Since the equations are well

behaved for noninteger values, one can take small variations
of N and/or d and trace the fixed point to a new value of
interest of N and d .) In our particular case, we varied N
and obtained the fixed point solution for all values of N
considered in the article at d = 3. Each new value of N is
obtained in a few minutes for a given regulator in a personal
computer.

We discretized the ρ variable into a grid of Nρ = 40 points
and evolved the flow equations using a fourth order Runge-
Kutta with fixed step with free boundary conditions for the ρ

direction. Because of the procedure used, there was no need
to optimize in the time step taken; this part was merely to find
a good enough fixed point solution for the root-finding part,
which was implemented with a Newton-Raphson algorithm.

The normalization condition is fixed as Z̃ (ρ̃i)|i=Nρ/4 = 1,
where Z̃ (ρ̃) is the dimensionless version of Zk (ρ) and ρ̃i is
the value of ρ̃ at site i. On top of this, the size of the box
Lρ is adjusted for every N value in order for the minimum
of the potential to fall always in the site i = Nρ/4. From this
definition, the value of ηk was extracted at every step of the
procedure.

In all cases, the momentum integrals were performed using
an adaptative 21-point Gauss-Kronrod quadrature rule (qags)
provided in the quadpack library and ρ derivatives were
approximated using a five-point centered discretization except
at the borders of the grid where five points were still used but,
of course, not centered for the first two and last two points in
the ρ grid.

3. Obtaining critical exponents

With a very precise fixed point solution, we turn to finding
the critical exponents. As just mentioned, ηk is extracted from
the normalization condition and is obtained simultaneously
with the fixed point solution. Indeed, the factor Zk is the field
renormalization which is related to the running anomalous
dimension by ∂t Zk = −ηkZk and when approaching the fixed
point ηk approaches the field anomalous dimension η.

For the critical exponents ν and ω we performed a linear
stability analysis around the fixed point. We computed the
M stability matrix by evaluating at perturbed position of the
fixed point and computed the eigenvectors of the 13Nρ −
1 linear system (Nρ variables for each function U , Z , Y ,
W1, ..., W10). The −1 corresponds to the normalization condi-
tion which removes the variable attribute of Z̃ (ρ̃i)|i=Nρ/4 = 1.
The smallest eigenvalue λ1 is identified with ν as λ1 = −ν−1,
while the second smallest eigenvalue is simply λ2 = ω.

We also tested that the results that we obtain by diagonal-
izing the stability matrix coincide with those corresponding,
for example, to the evolution with t of the derivative of the
potential with respect to ρ at zero field near the fixed point
given by

U ′
k (ρ = 0) ∼ U ′

∗(ρ = 0) + A exp(−t/ν) + B exp(tω) + · · · .

(B1)
All our results have been checked against changing pa-

rameters in order to use an optimal or near optimal set of
parameters. The extent of the field domain considered was
also varied, as well as the accuracy with which integrals were
calculated.
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