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Dynamics of the spin-1/2 Ising two-leg ladder with four-spin plaquette interaction
and transverse field

Wescley Luiz de Souza ,1,2,* Érica de Mello Silva ,2,† and Paulo H. L. Martins 2,‡
1Instituto de Educação, Ciência e Tecnologia de Mato Grosso—Campus Cuiabá

Rua Professora Zulmira Canavarros, 95, 78005-200 Cuiabá, MT, Brazil
2Universidade Federal de Mato Grosso, Instituto de Física, Av. Fernando Corrêa da Costa, 2367,

Bloco F, 78060-900 Cuiabá, MT, Brazil

(Received 10 December 2019; revised manuscript received 24 February 2020; accepted 9 March 2020;
published 3 April 2020)

Multiple-spin coupling is a key tool for investigating magnetic quantum systems. In particular, models with
four-spin interactions became of great interest since they have been applied to describe material properties
such as superconductivity. In this framework, the dynamics of the spin-1/2 Ising two-leg ladder with four-spin
plaquette interaction in a transverse field is investigated. By means of the recurrence relations method, the
first four recurrants are determined exactly for the general model, while five exact recurrants are calculated
for two particular models. In all cases, higher-order recurrants are computed through extrapolation to obtain
time-dependent autocorrelation functions and spectral densities in the long-time regime and infinite-temperature
limit. It is found that the relaxation functions decay slower than the expected behavior of the one-dimensional
transverse Ising model. The spectral lines, characterized by a Lorentzian behavior in the central body and a
Gaussian shape in the tails, display exchange narrowing as the coupling intensities increase.
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I. INTRODUCTION

Spin dynamics of quantum systems has been the object
of countless research in the last decades to better under-
stand phenomena associated with interactions between spins
in magnetic systems [1], high-temperature superconductors
[2], ferromagnetic nanowires [3], and spintronics [4]. More
recently, a great interest in the dynamical properties of low-
dimensional spin-1/2 models emerged due to experimental
applications to ultracold atoms in optical lattices [5,6]. In
this context, spin models of multiple interactions have been
considered, since they provide a more realistic representation
of physical systems, both experimentally and theoretically.
Some of them are the Ising model with next-nearest-neighbor
interactions [7] and with linear interaction of four spins
[8–10], ladder models describing cuprates [11,12], and spin
models with four-spin interactions [13–16], used to explain
ferroelectrics [17,18].

Among the four-spin interactions, one finds the cyclic
coupling [19–21], which has been applied to describe super-
conductivity in cuprates [22,23]. This interaction reproduces
the observed dispersion relation in inelastic neutron scattering
experiments for La6Ca8Cu24O41 [24]; besides, it is necessary
for a quantitative understanding of the experimental results
on spin gap, Raman peaks, and optical conductivity [25–27].
The plaquette interaction appears in a variation of the three-
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dimensional Ising model, named the gonihedric model [28],
which describes interacting closed surfaces without surface
tension, covering areas from biochemistry to high-energy
physics [29,30]. Furthermore, it arises in applications on thin
films [31], quantum computation [32], and superconductor
physics [33]. The static properties of most of these models
have been well studied, but their dynamical properties have
been barely explored, which in turn attracts a lot of inter-
est. For instance, in a recent investigation on Ising ladder
models with generalized plaquettes and transverse field, long
relaxation times of edge spins due to strong zero modes were
addressed [34]. Therefore, in this paper, the dynamics of the
spin-1/2 Ising two-leg ladder model with four-spin plaquettes
in a transverse magnetic field at the infinite-temperature limit
is investigated by means of the recurrence relations method
(RRM), developed by Lee [35,36].

The RRM is an orthogonalization approach that describes
the time evolution of a dynamical variable in a geomet-
ric frame through the recurrants, which constitute a static
property of the Hilbert space and are related to dynamical
correlation functions [35–39]. The basis vectors of this or-
thogonal expansion are obtained recursively by applying a
first recurrence relation, and the time-dependent expansion
coefficients, which correspond to relaxation functions, obey
a second recurrence relation [35,36]. The RRM has been
successfully applied to study the dynamics of both quantum
and classical systems [40–45], such as spin chains [46–60],
Fermi liquids [61–66], harmonic oscillator chains [67–73],
and plasmonic Dirac systems [74,75].

The aim of this paper is to obtain and characterize the time-
dependent autocorrelation function and the spectral density
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FIG. 1. Representation of the spin-1/2 Ising two-leg ladder with
plaquette exchange and transverse field. J1 (J2) is the Ising interaction
along chain 1 (2), I is the rung interaction, Jr is the four-spin
plaquette exchange, and B1 (B2) is the transverse field in the chain
1 (2). The z direction is perpendicular to the plane.

for the Ising ladder with plaquette interaction and transverse
field. The first four recurrants are exactly calculated for the
general model, and one additional recurrant is obtained for
two particular cases. The results are extended to longer times
via an extrapolation, allowing us to analyze the relaxation
and the spectral density functions for several combinations of
the exchange interactions. The spectral lines are characterized
by a Lorentzian behavior in the central body and a Gaussian
shape in the wings, and it is verified that exchange narrowing
takes place as the interactions increase.

The paper is organized as follows. In Sec. II, the model
and the method are introduced. Section III presents the ex-
act recurrants and their corresponding dynamical correlation
functions. In Sec. IV, extrapolated results are discussed. Con-
cluding remarks close the last section.

II. MODEL AND METHOD

The following Hamiltonian is considered:

H = −J1

N∑
i=1

σ z
i,1σ

z
i+1,1 − J2

N∑
i=1

σ z
i,2σ

z
i+1,2

− I
N∑

i=1

σ z
i,1σ

z
i,2 − Jr

N∑
i=1

σ z
i,1σ

z
i+1,1σ

z
i+1,2σ

z
i,2

− B1

N∑
i=1

σ x
i,1 − B2

N∑
i=1

σ x
i,2, (1)

where N is the number of spins in each leg, σα
i, j (α = x, z; j =

1, 2) are spin operators defined by Pauli matrices on site i of
chain j, J1 (J2) is the nearest-neighbor exchange interactions
along the chain 1 (2), I is the interchain (rung) Ising coupling,
Jr is the four-spin plaquette interaction, and B1 (B2) is the
external transverse field acting on chain 1 (2). A schematic
representation is illustrated in Fig. 1.

The dynamical variable of interest is the z component of
a spin operator in chain 1, σ z

k,1(t ), whose time evolution is

governed by the Heisenberg equation,

dσ z
k,1(t )

dt
= i

[
H, σ z

k,1

]
, (2)

with h̄ = 1. In the RRM, the time evolution of a dynamical
variable is studied in a geometric frame. For times t � 0,
the tagged spin operator σ z

k,1(t ) is written as an orthogonal
expansion,

σ z
k,1(t ) =

d−1∑
ν=0

fνaν (t ), (3)

where {aν} is a set of time-dependent functions representing
the projections of σ z

k,1(t ) onto the time-independent orthogo-
nal basis vectors { fν}. The Hilbert space S has dimensionality
d and is realized by an inner product called the Kubo product
[35,37–39], defined by

(X,Y ) = β−1
∫ β

0
dλ〈X (λ)Y †〉 − 〈X 〉〈Y †〉, (4)

in which X and Y ∈ S are Hermitian operators,
β = 1/kBT , kB is the Boltzmann constant, T is the
temperature, X (λ) = exp(λH)X exp(−λH), and 〈XY †〉 =
Tr[XY † exp(−βH)]/Tr[exp(−βH)] is the canonical ensem-
ble average. At the infinite-temperature limit, the Kubo prod-
uct (4) reduces to [76]

(X,Y ) = 1

Z
Tr[XY †], (5)

where Z is the partition function.
The realization of S by the Kubo product leads to a

recurrence relation for the basis vectors,

fν+1 = i[H, fν] + �ν fν−1, 0 � ν � d − 2, (6)

where �ν , called ν recurrant, is given by

�ν = ( fν, fν )

( fν−1, fν−1)
. (7)

The relation (6) shall be referred to as RR I. By definition,
�0 ≡ 1 and f−1 ≡ 0. Once f0 = σ z

k,1(0) is chosen, the remain-
ing basis vectors are obtained recursively by RR I (6) and
the recurrants (7). The coefficients aν (t ), which are relaxation
functions, are determined from the second recurrence relation
(RR II),

�ν+1aν+1(t ) = −ȧν (t ) + aν−1(t ), 0 � ν � d − 2, (8)

where ȧν (t ) = daν (t )/dt and a−1 ≡ 0.
The choice of σ z

k,1 as the dynamical variable implies that
the coefficient a0(t ) corresponds to the time-dependent auto-
correlation function Cz(t ),

a0(t ) = (
σ z

k,1, σ
z
k,1(t )

) = 1

Z
Tr

[
σ z

k,1σ
z
k,1(t )

] ≡ Cz(t ). (9)

The function Cz(t ) can be evaluated by

Cz(t ) =
∞∑

ν=0

(−1)ν

(2ν)!
μ2νt2ν, (10)

where the moments μ2ν are [76]

μ2 = �1, μ4 = �1(�1 + �2), (11)

μ6 = �1[(�1 + �2)2 + �2�3], . . . , (12)
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with lengthier expressions for higher-order moments. By tak-
ing the Laplace transform of RR II (8), one reaches

1 = zã0(z) + �1ã1(z), (13a)

ãν−1(z) = zãν (z) + �ν+1ãν+1(z), (13b)

where ãν (z) is the Laplace transform of aν (t ). By using
Eqs. (13a) and (13b), the continued fraction representation for
ã0(z) is written as

ã0(z) = 1

z + �1

z + �2

z + �3

z + . . . ,

, (14)

which implies the existence of a d-dimensional space defined
by the set of recurrants �ν . Therefore, once one knows the
basal function ã0(z), the remaining relaxation functions can
be readily calculated through RR II (8).

The spectral density Sz(ω) is defined as the time Fourier
transform of the relaxation function Cz(t ) [76],

Sz(ω) =
∫ +∞

−∞
Cz(t )e−iωt dt, (15)

and it can also be directly obtained from ã0(z) [77]:

Sz(ω) = lim
ε→0+

Re[2ã0(ε − iω)]. (16)

In the RRM approach, the recurrants �ν are the key
quantities to be determined. Their analytical calculation, how-
ever, usually involves an intractable amount of terms and,
in general, only the first ones are known. For most cases,
one must resort to an extrapolation, such as the Gaussian
terminator [76] or numerical approaches [50,51] in order to
get higher-order �s.

III. EXACT RESULTS FOR THE BASIS VECTORS

The basis vector f0 corresponds to the dynamical variable
σ z

k,1(0), and its norm is ( f0, f0) = 1. To determine f1, RR I is
applied with ν = 0:

f1 = i[H, f0] = i
[
H, σ z

k,1

]
. (17)

For the general model (1), it is given by

f1 = −2B1σ
y
k,1, (18)

and the recurrant �1 is determined:

�1 = 4B2
1. (19)

The next basis vector is f2. Applying RR I with ν = 1, one
has

f2 = i[H, f1] + �1 f0, (20)

and the expression for f2 reads as

f2 = 4J1B1σ
z
k−1,1σ

x
k,1 + 4J1B1σ

x
k,1σ

z
k+1,1

+ 4IB1σ
x
k,1σ

z
k,2 + 4JrB1σ

z
k−1,1σ

x
k,1σ

z
k−1,2σ

x
k,2

+ 4JrB1σ
x
k,1σ

z
k+1,1σ

x
k,2σ

z
k+1,2. (21)
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FIG. 2. (a) Exact recurrants of the standard two-leg ladder Ising
model (Jr = 0), for J1 = J2 = B1 = B2 = 1.0, and different values of
the rung coupling I , together with the 1D TIM from Ref. [46]. (The
lines connecting the symbols are just an aid to the eye.) (b) Time-
dependent spin autocorrelation functions Cz(t ) evaluated from the
exact recurrants. The expected Gaussian decay (1D TIM) is also
shown for the sake of comparison.

The second recurrant is then

�2 = 8J2
1 + 4I2 + 8J2

r . (22)

By following this recipe, the next basis vectors, f3 and f4,
and recurrants, �3 and �4, are calculated; their expressions,
however, are too lengthy to be reproduced here. Therefore,
for the general model (1), the first four basis vectors of
the realized Hilbert space of σ z

k,1(t ) are exactly computed.
Hereafter, two particular cases are analyzed: (i) without the
plaquette interaction (Jr = 0) and (ii) with it, but without
the two-spin interchain coupling (I = 0). For such reduced
models, it is still manageable to evaluate one additional vector,
f5, and recurrant, �5. The coupling parameters are set as
J1 = J2 = 1.0 and the fields as B1 = B2 = 1.0 (in units of J).
The interchain coupling I and the plaquette interaction Jr are
also measured in units of J .

The particular case (I �= 0, Jr = 0) corresponds to the
standard ladder with two-spin interchain interaction. To have
a picture of the recurrants, the first five �ν (ν = 1, . . . , 5) are
shown in Fig. 2(a) for Jr = 0 and several values of the rung
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FIG. 3. (a) Exact recurrants of the Ising ladder with I = 0, J1 =
J2 = B1 = B2 = 1.0, and some values of the plaquette interaction
Jr . (The lines connecting the symbols are just an aid to the eye.)
(b) Time-dependent spin autocorrelation functions Cz(t ) obtained
from the first five recurrants.

interaction I . For the sake of comparison, the recurrants of the
one-dimensional transverse Ising model (1D TIM)—which
corresponds to (I = 0, Jr = 0) [46], are also shown. It is
noticeable that increasing I makes the recurrants grow at a
higher rate, on average.

Figure 2(b) shows the autocorrelation functions Cz(t ),
given by Eq. (10), with the moments evaluated from the first
five recurrants. For J1 = B1 = 1.0, the expected behavior of
the 1D TIM is Cz(t ) ∼ exp(−2t2) [78,79]; it also appears
in Fig. 2(b) on account of comparison. The exact recurrants
provided reliable results up to time t ≈ 0.7 (measured in units
of the inverse of the exchange interaction, J−1).

Analogously, the case where the legs are coupled through
plaquette interaction only (I = 0, Jr �= 0) is analyzed. In
Fig. 3(a), the first five exact �ν for I = 0 and some values
of Jr are shown. Similarly to the standard Ising two-leg ladder
model, there is an irregular character in the sequences of the
recurrants as Jr increases [46]. The autocorrelation functions
are presented in Fig. 3(b) for some values of Jr and also for
the 1D TIM. In the latter case, Cz(t ) decays faster. The results
are reliable up to time t ≈ 0.7.

Regarding the general model (1), the behavior of the first
recurrants resembles the ones of the particular cases exploited.
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FIG. 4. (a) Time-dependent correlation functions for Jr = 0,
J1 = J2 = B1 = B2 = 1.0, and some values of I , using 100 recurrants
�ν . The exact Gaussian decay of the 1D TIM is also shown on
account of comparison (black line). (b) Spectral densities obtained
from Eq. (16). They also correspond to the Fourier transforms of the
correlation functions shown in (a).

For smaller values of I and Jr , the recurrants �ν increase
almost linearly with ν and the ensuing time-dependent cor-
relation function is valid for relatively short times. From now
on, to get higher-ordered recurrants to extend the time domain,
some sort of numerical approximation is considered, since
hand calculation is quite prohibitive for the Hamiltonian (1)
and its particular cases.

IV. EXTRAPOLATED RESULTS

A. Spin-1/2 Ising ladder model (I �= 0, Jr = 0)

A linear growth of the recurrants has already been observed
on variations of the Ising model [7,54,56–58]. According to
Figs. 2 and 3, for I � 2.0 and Jr � 1.0, the behavior of the
first five recurrants does not deviate too much from a linear
fit. Thus, the proposed extrapolation is �ν = aν + b, ν � 6,
where the parameters a and b are determined from a linear
regression of the exact recurrants. The 1D TIM corresponds
to b = 0 [46].

Figure 4(a) shows the time-dependent correlation function
for J1 = J2 = B1 = B2 = 1.0 and several values of I using
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100 recurrants. It is found that the relaxation function Cz(t )
has a slower decay compared to that of the 1D TIM, for which
the decay is an exact Gaussian [7,78,79]. For higher values
of I , the decay slowed down even more, leading the tagged
spin σ z

k,1 to delay its relaxation process toward an equilibrium
state. It is worth mentioning that the short-time regime is well
captured by the first recurrants, since for t � 0.7 the curves
are identical to the ones in Fig. 2(b).

A recent work [59] shows the spectral density being evalu-
ated from the Fourier transform of the correlation function, as
in Eq. (15), which allows us to get Sz(ω) for some discrete val-
ues of ω only. A noteworthy feature of the present work is the
evaluation of Sz(ω) from ã0(z), which is directly determined
from the set of �ν . This approach provides a smooth spectral
density for any frequency range.

The spectral density Sz(ω), evaluated from Eq. (16), is
depicted in Fig. 4(b) for different values of the interchain
coupling I . For a given frequency ω and parameter ε, one sets
z = ε − iω and ã0(z) is computed from Eq. (14). Variation
of ε allows us to obtain the limiting behavior ε → 0+ and
thus the spectral density for that frequency ω. Repeating
this process for several values of ω gives the continuouslike
function Sz(ω). In this investigation, a range of values of ε,
both greater and smaller than 0.1, is tested to analyze the limit
ε → 0+, which ensures that ε = 0.1 is suitable for the current
analysis.

The Gaussian Sz(ω), corresponding to the 1D TIM, is also
plotted in Fig. 4(b). The present approach is corroborated
at this limiting case. Furthermore, one can observe in the
spectral density that, as the intensity of I increases, there is an
enhancement of the central peak, which becomes higher and
narrower, highlighting the dominant central mode behavior.

The specific shapes of Cz(t ) and Sz(ω) are analyzed in
Fig. 5. As an example, for I = 1.0 and Jr = 0.0, in the short-
time regime (t � 0.5), the autocorrelation function is well ad-
justed by a Gaussian line, as displayed in Fig. 5(a). For longer
times (t � 1.3), an exponential fit is observed. A transition
between both forms occurs in the region 0.5 � t � 1.3. As
the spectrum Sz(ω) and the autocorrelation function Cz(t ) are
mutually Fourier transforms, the spectral density central part
assumes a Lorentzian form, while the high-frequency region
presents a Gaussian behavior. For the sake of clarity, Fig. 5
comprises other values of I and Jr , which will be discussed
ahead.

B. Spin-1/2 Ising ladder with plaquette interaction
(I = 0, Jr �= 0)

The routine is analogous to the one described above.
Considering 100 recurrants, the time-dependent correlation
functions for J1 = J2 = B1 = B2 = 1.0 and several values of
Jr (and the exact correlation function of the 1D TIM) are
shown in Fig. 6(a). The relaxation function Cz(t ) diminishes
slower than the one for the 1D TIM, and the decay becomes
even slower for higher values of Jr . It should be attributed
to the fact that the plaquette interaction involves four spins
(two in each leg), so the dynamical variable σ z

k,1 takes a longer
time for relaxing towards an equilibrium state. As time runs,
Cz(t ) changes from Gaussian to exponential, as shown in
Fig. 5(a).
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FIG. 5. (a) Best fits for the autocorrelation functions. At short
times, the Gaussian decay is observed (blue squares). For clarity,
only the fit corresponding to I = 0.0 and Jr = 1.0 is shown in this
region. For longer times, the best fits are exponential (open circles).
A transition between both forms occurs in the region 0.5 � t � 1.3.
(b) Spectral density line shape. The results are very well adjusted
by a combination of a Lorentzian peak (for |w| � 2.0) and Gaussian
wings (|w| � 3.3). A transition between both regimes is observed
in the region 2.0 � |w| � 3.3. Similar behavior is detected for other
values of I and Jr .

Figure 6(b) presents the spectral density for several values
of the plaquette interaction Jr and the known Gaussian curve
for the 1D TIM. Similarly to the previous case, the increase
of Jr brings forth the Lorentzian character of the central peak
around ω = 0, which remains dominant in the dynamics, as
displayed in Fig. 5(b).

C. Spin-1/2 Ising ladder with plaquette and rung interactions
(I �= 0, Jr �= 0)

The general case (I �= 0, Jr �= 0) is now considered using
100 recurrants. Figure 7(a) brings the time-dependent cor-
relation functions for J1 = J2 = B1 = B2 = 1.0 and different
values of I and Jr . With both two- and four-spin interactions
combined, the relaxation function decay is slower than in any
of those particular cases already investigated. Therefore, the
tagged spin σ z

k,1 continues to lag its relaxation process toward
an equilibrium state if compared to the 1D TIM. Nevertheless,
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FIG. 6. (a) Time-dependent correlation functions for I = 0, J1 =
J2 = B1 = B2 = 1.0, and different values of Jr , using 100 recurrants
�ν . (b) Corresponding spectral densities.

regarding the cases (I = 0.5, Jr = 0.5) and (I = 0.75, Jr =
0.75), one observes the correlation functions crossing each
other at t ≈ 2.1. From that time on, Cz(t ) decays faster for
(I = 0.75, Jr = 0.75).

Figure 7(b) shows the corresponding spectral densities for
the values of I and Jr depicted in Fig. 7(a). One notices that
the increase of the coupling intensity also raises the central
peak around ω = 0. This rise is more pronounced than in the
particular cases previously discussed, and this phenomenon
can be better understood by inspecting Fig. 5.

For the (I = 0.5, Jr = 0.5) case, the relaxation function
is depicted in Fig. 5(a) and the spectral density in Fig. 5(b).
By comparing the spectral lines, the exchange narrowing
is observed as the interchain couplings change. The Kubo-
Tomita (KT) line-shape theory explains this phenomenon
satisfactorily for three-dimensional systems [80]. The KT
approach, however, presents some limitations when applied to
low-dimensional systems due to the presence of spin diffusion
at the long-time regime [81]. In the present model, although
in low dimension, the interchain couplings seem to dominate
the regulation of the linewidth spectra, leading the spin corre-
lations to decay in a similar behavior as of three-dimensional
systems [82]. Furthermore, this investigation is carried out in
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FIG. 7. (a) Correlation functions Cz(t ) for J1 = J2 = B1 = B2 =
1.0 and some values of I and Jr , using 100 recurrants �ν . (b) Corre-
sponding spectral densities.

the infinite-temperature limit, at which the validity of the KT
theory is well established [81,82].

Figure 8(a) compares the autocorrelation functions for all
cases described in this section, for several values of I and Jr .
By inspecting the effects of the two- and four-spin interactions
separately, say for instance (I = 0.5, Jr = 0), blue line, and
(I = 0, Jr = 0.5), green line, one can see that the plaquette
interaction leads to a slower decay of the correlation function
for times t � 1.3. For longer t , however, the model with
nonzero plaquette exchange decays faster. A similar change
in the behavior of the correlation function can be noted if
one compares (I = 1.0, Jr = 0), in purple, to (I = 1.0, Jr =
1.0), in pink, at t ≈ 1.9. It seems that the combination of
interactions changes the behavior of the correlation function
at longer times.

Figure 8(b) shows the spectral densities corresponding to
the correlation functions plotted in Fig. 8(a). For all Sz(ω)
curves, the dynamics is dominated by the central mode. By
confronting the effects of the exchange interactions, for higher
intensities one observes that the sharpening of the curve is
more pronounced for (I = 1.0, Jr = 1.0), in pink, followed
by (I = 0, Jr = 1.0), in black, and then by (I = 1.0, Jr = 0),
in purple. Nevertheless, for lower intensities, the sequence
of enhancements is (I = 0.5, Jr = 0.5), red line, (I = 0.5,
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FIG. 8. (a) Time-dependent correlation functions for particular
cases and the general model. We used the first four (general model)
and five (cases Jr = 0 and I = 0) exact recurrants besides the extrap-
olated ones up to ν = 100. (b) Corresponding spectral densities.

Jr = 0) in blue, and (I = 0, Jr = 0.5) in green. Therefore, the
combination of two- and four-spin interactions always fosters
the central mode behavior, but the intensity of the interactions
plays a pivotal role when only the plaquette or the interchain
coupling is present.

V. CONCLUDING REMARKS

In this paper, the dynamics of the spin-1/2 Ising two-leg
ladder with plaquette interaction and transverse field at the

infinite-temperature limit is investigated. By means of the
RRM, the first four recurrants are computed for the general
model (1); for the standard Ising two-leg ladder (I �= 0, Jr =
0) and the ladder with plaquette interaction (I = 0, Jr �= 0),
five exact recurrants are calculated. These exact recurrants
provide reliable results in the short-time domain. Addition-
ally, higher-order recurrants, obtained from an extrapolation
scheme, allow the computation of long-time relaxation func-
tions and their associated spectral densities. The time evo-
lution of σ z

k,1(t ) is analyzed for several combinations of the
two-spin coupling and the plaquette interaction intensities.
In all cases, the dynamical variable takes a longer time for
relaxing toward an equilibrium state in comparison with the
1D TIM. In the same footing, an increase in the intensity of
the interactions I and Jr leads to the exchange narrowing phe-
nomenon, according to which the central body of the spectral
density Sz(ω) becomes more and more Lorentzian, indicating
the central mode dominance in the dynamics. Meanwhile,
the wings of Sz(ω) maintain their Gaussian shape. There are,
however, intriguing peculiarities in the dynamics of some
cases, depending upon the intensity level of the interactions.
By confronting the effects of the interchain interactions, one
would expect the sharpening of Sz(ω) to be more pronounced
for a given value of Jr than for the same value of I , since
the plaquette interaction involves four spins. In fact, it is
verified that it is true for higher values of Jr . From Fig. 8(b),
the observed exchange narrowing phenomenon is higher for
(I = 0, Jr = 1.0), black curve, than for (I = 1.0, Jr = 0),
purple line. Conversely, for the intensity 0.5, the two-spin
interaction I is more effective than the four-spin coupling Jr ,
as remarked by a comparison between the blue and green
curves [Fig. 8(b)]. Exchange narrowing of the combination
of I and Jr , both nonzero, is more pronounced in all analyzed
cases. These behaviors point out the richness of the dynamics
of the spin-1/2 Ising two-leg ladder model with plaquettes in
a transverse magnetic field at the infinite-temperature limit.
We believe that such results can be useful in the characteriza-
tion of electron paramagnetic resonance spectroscopy of low-
dimensional systems. In a forthcoming work, the effects of
randomness in the external transverse field shall be addressed.
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