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Statistics of occupation times and connection to local properties of nonhomogeneous random walks
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We consider the statistics of occupation times, the number of visits at the origin, and the survival probability for
a wide class of stochastic processes, which can be classified as renewal processes. We show that the distribution
of these observables can be characterized by a single exponent, that is connected to a local property of the
probability density function of the process, viz., the probability of occupying the origin at time t , P(t ). We test our
results for two different models of lattice random walks with spatially inhomogeneous transition probabilities,
one of which of non-Markovian nature, and find good agreement with theory. We also show that the distributions
depend only on the occupation probability of the origin by comparing them for the two systems: When P(t )
shows the same long-time behavior, each observable follows indeed the same distribution.
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I. INTRODUCTION

Survival and persistence problems for stochastic processes
are often considered in the study of critical phenomena in
equilibrium and nonequilibrium systems, for instance, spin
systems in one or higher dimensions [1], phase-ordering ki-
netics [2–4], and twisted nematic liquid crystals exhibiting
planar Ising model dynamics [5]. Such problems are char-
acterized by the persistence exponent [6], which gives the
scaling of the probability that the order parameter x(t ) (for
example, the magnetization of a ferromagnet) of a system
quenched from the disordered phase to its critical point has not
changed sign in a time interval t following the quench [7,8].
In this context the time evolution of the order parameter is
treated as a stochastic process and other questions regarding
the statistics of x(t ) naturally arise: For instance, one can
ask what is the fraction t+ of time in which the process has
assumed positive values [9–11], which is associated, e.g., with
the mean magnetization. For many physical systems [12–14]
the distribution of the mean magnetization displays a U-
shaped curve, reflecting the fact that, contrary to intuition, the
order parameter is more likely to preserve its sign during the
observation time. Interestingly, it is found that the exponent
of the singularities at the outer values is closely related to
the persistent exponent. This connection can be proved [9] by
considering x(t ) as generated by a renewal process: starting
from the initial state x(t0), during the time evolution the
process resets itself to the initial condition at random times
ti, i = 1, 2, . . . , such that the intervals �ti = ti − ti−1 are in-
dependent and identically distributed random variables. In this
setting it is also worth asking what is the number of renewals
observed up to time t , which is found to follow a Mittag-
Leffler distribution of an adequate parameter. The value of the
parameter and therefore the shape of the distribution depend
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on the scaling exponent of the probability density function
of waiting times between renewals: For a distribution which
decays asymptotically as F (�t ) ∼ �t−1−θ , with 0 � θ < 1,
one obtains a Mittag-Leffler of parameter θ [15–18].

The advantage of renewal theory is that it applies to a
broad range of stochastic processes, including, for exam-
ple, random walks with spatially inhomogeneous transition
probabilities and correlations between steps. Note that non-
homogeneous diffusion has attracted recently attention in a
variety of different contexts; see, for example, Refs. [19–22].
The major difficulty in applying renewal theory to general
diffusion processes is that one has to determine the waiting-
time distribution, which is often a difficult task to perform,
especially when translational symmetry is broken or for walks
of non-Markovian nature. In the language of random walks,
for example, this corresponds to computing the probabilities
of first return to the starting position, which can be analytically
done only in few cases. In this paper we will show that it is
possible to obtain the fraction of time spent in the positive
axis, the number of renewals, and the persistence exponent
just by considering the probability P(t ) that at time t the
process is returned to the initial state:

P(t ) = Pr {x(t ) = x(t0)}. (1)

The paper is organized as follows: In the next section we
introduce the class of processes to which our results apply;
then we present the known results regarding the occupation
time of the positive axis (Sec. III), the number of returns at
the origin (Sec. IV) and the survival probability (Sec. V),
and discuss how to establish a connection between the three,
starting from the probability of occupying the initial state;
in Sec. VI we describe the stochastic processes we have
considered in our simulations and show the numerical results;
finally in Sec. VII we draw our conclusions.
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II. THE CLASS OF PROCESSES CONSIDERED
IN THE PAPER

The class of stochastic processes for which the results of
this paper apply is similar to that considered in a classic
paper by Lamperti [23]. This class consists of processes (not
necessarily Markovian) whose time evolution is described
by a discrete parameter n, with the property that the states
are divided into two sets, say A and B, which communicate
through the occurrence of a recurrent state x0, assumed as
the initial state. More precisely, denoting with xn the state at
time n of the stochastic process, starting from x0, we consider
processes such that if xn−1 ∈ A and xn+1 ∈ B or vice versa,
then xn = x0; moreover, the occupation of x0 is a persistent
recurrent event [24], by which we mean that calling Fn the
probability that the process returns to x0 for the first time after
n steps, having started from x0, then

∞∑
n=1

Fn = 1, (2)

i.e., the return to x0 is certain. We will furthermore assume
that the return to x0 defines a renewal event, so that xn can be
treated as a renewal process.

In practice, in this paper we will consider one-dimensional
random walks on the integer lattice, starting from x0 = 0, with
nearest-neighbor jumps (without specifying the rules followed
by the jumps). We will call A(B) the set of positive(negative)
integers, and will assume that the occupation of state x0, i.e.,
the return to the origin, is a persistent recurrent event.

III. OCCUPATION TIME OF THE POSITIVE AXIS

For the class of processes we are considering in this paper,
the result stated in [23] provides the distribution, as the num-
ber of steps tends to infinity, of the fraction of time spent in the
positive axis, which we call the Lamperti distribution Gη,ρ (ξ ).
Such a distribution is defined through two parameters. The
first parameter is

η = lim
n→∞E

(
kn

n

)
, (3)

where kn denotes the occupation time of set A up to step
n, using the convention that the occupation of the origin
is counted or not according to whether the last other state
occupied was in A [25]. Clearly η is equal to 1/2 if the process
is symmetric with respect to A and B. The second parameter
is defined as the limit,

ρ = lim
z→1

(1 − z)F ′(z)

1 − F (z)
, (4)

where F (z) denotes the generating function of the recurrence
times of x0, i.e., the first return probabilities Fn:

F (z) =
∞∑

n=1

Fnzn. (5)

We have the following [23].
Theorem 1. Let xn be the process described above. Then

lim
n→∞ Pr{kn/n � u} ≡ Gη,ρ (u) (6)

exists if and only if both limits 0 � η � 1, Eq. (3), and 0 �
ρ � 1, Eq. (4), exist. In this case Gη,ρ (u) is the distribution on
[0, 1] which, provided both η and ρ �= 0, 1, has the density,

G ′
η,ρ (u) = N uρ (1 − u)ρ−1 + uρ−1(1 − u)ρ

a2u2ρ + 2auρ (1 − u)ρ cos(πρ) + (1 − u)2ρ
,

(7)
where

a = 1 − η

η
, (8)

N = a sin(πρ)

π
. (9)

For η = 0, 1, and 0 < u < 1, the distribution is

Gη,ρ (u) =
{

1 for η = 0
0 for η = 1; (10)

for ρ = 1 we have

Gη,1(u) =
{

0 for u < η

1 for u � η,
(11)

while for ρ = 0, 0 � u < 1,

Gη,0(u) = 1 − η. (12)

An important observation is that the existence of the
limit (4) is equivalent to a condition on the form the generating
function F (z) must assume, namely (see ref. [23]),

F (z) = 1 − (1 − z)ρL

(
1

1 − z

)
, (13)

where L(x) is a slowly varying function, by which we mean a
continuous function, positive for large enough x, that for any
y > 0 satisfies

lim
x→∞

L(yx)

L(x)
= 1. (14)

Equation (13) suggests that the distribution of the occu-
pation time can be determined by evaluating the analytical
expression of F (z). As we have already observed, however,
in general the computation of the first return probabilities
is hard to perform. Nevertheless, since we are taking as x0

the site j = 0, one can use a well-known formula, valid for
any renewal process, relating F (z) to the generating function
P(z) of the probabilities of occupying the origin at time n, Pn,
which reads [26]

F (z) = 1 − 1

P(z)
, (15)

to recast condition (13) as

P(z) = 1

(1 − z)ρ
H

(
1

1 − z

)
, (16)

where H (x) = 1/L(x) is a slowly varying function. In par-
ticular, Eq. (16) shows that the parameter ρ of the Lamperti
distribution appears as an exponent in the generating function
P(z).

A first consequence is that the parameter ρ can be com-
puted by evaluating Pn. In order to show this, we make use of
the following Tauberian theorem [27].
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Theorem 2. Let gn � 0 and suppose that

∞∑
n=0

gnzn = G(z) (17)

converges for 0 � z < 1. Then

G(z) ∼ 1

(1 − z)γ
H

(
1

1 − z

)
, z → 1− ⇐⇒

g0 + · · · + gn ∼ 1

	(γ + 1)
nγH(n), n → ∞, (18)

where H(x) is a slowly varying function and γ � 0.
Furthermore, if the sequence {gn} is ultimately monotonic

and γ > 0, it also holds

G(z) ∼ 1

(1 − z)γ
H

(
1

1 − z

)
, z → 1− ⇐⇒

gn ∼ 1

	(γ )
nγ−1H(n), n → ∞. (19)

By using Eq. (16) and applying the theorem, one has that,
for 0 < ρ � 1, Pn decays as

Pn ∼ 1

	(ρ)

H (n)

n1−ρ
, (20)

meaning that ρ is related to the exponent appearing in the
long-time limit of the occupation probability of the origin.

We remark that this result connects the behavior of the pro-
cess regarding the occupation time of the sets A and B, which
is a nonlocal property, to a local property. For instance, for
a simple symmetric random walk it is known that Pn decays
with the power law Pn ∼ n−1/2, which corresponds to ρ = 1

2 .
In this case the distribution of the occupation time follows the
first arcsin law [28], which is recovered by Theorem 1 in the
case ρ = η = 1

2 . For 0 < ρ < 1 the probability of being at the
origin has the asymptotic decay Pn ∼ n−(1−ρ), up to a factor
given by the slowly varying function, and the distribution of
the occupation time is represented by U-shaped curves. From
formula (7) we see that the divergence of these curves at
u = 0 and u = 1 is given exactly by the exponent 1 − ρ. The
situation is different for ρ = 1: We have Pn ∼ H (n), hence
Pn does not decay as a power law. Instead it must behave for
large n as a (ultimately) decreasing slowly varying function,
converging to a constant. In this case the occupation time
is split among the two sets, in such a way that the process
spends a fraction η of time in A and the remaining in B. The
distribution of the fraction of time in A is therefore a Dirac
delta function centered around u = η and we will refer to this
as the ergodic case [23]. In the opposite case, ρ = 0, regarding
Pn we can only conclude that

n∑
m=0

Pm ∼ H (n), (21)

where this time H (n) must be (ultimately) increasing. Since
by using Eqs. (2) and (15), one can show that a necessary
and sufficient condition for recurrence is the divergence of
P(z) [26], we can say that H (n) must diverge, but we expect
the divergence to be slow. In this sense, the case ρ = 0
corresponds to a crossover for the occupation of x0 between

being or not a persistent recurrent event. This can be better
understood by observing that the distribution of the occupa-
tion time has masses mA = η on u = 1 and mB = 1 − η on
u = 0, meaning that the process spends all the time either in
A, with probability η, or in B, with probability 1 − η.

IV. NUMBER OF VISITS AT THE ORIGIN

The number of renewals for a random walk is closely
related to the number of visits at the origin. Indeed, if the
return defines a renewal event, N visits at the starting site
for a walker correspond to N − 1 renewals. The distribution
of the occupation time of the origin can be obtained from a
classic result by Darling and Kac [29], where they showed
that the limiting distribution of the occupation time of a set
of finite measure for a Markov process is the Mittag-Leffler
distribution:

Mν (ξ ) = 1

νξ 1+ 1
ν

Lν

(
1

ξ
1
ν

)
, (22)

where Lν (x) denotes the Lévy one-sided density of parameter
ν, defined through the inverse Laplace transform from p to
x: Lν (x) = L−1[exp (−pν )]; the parameter ν depends on the
process itself. For the sake of clarity, here we briefly state the
result, limiting ourselves to the case of random walks on a
lattice—we point out, however, that the result holds in a more
general setting.

Let xn be a random walk on the integer lattice. Consider the
generating function of the probabilities Pn( j| j0) of arriving at
site j in n steps, having started from j0:

Pz( j| j0) =
∞∑

n=0

Pn( j| j0)zn. (23)

Let V ( j) be an integrable, non-negative function and suppose
there exists a function π (z), π (z) → ∞ as z → 1−, and a
positive constant c, such that

lim
z→1−

1

π (z)

∑
j

Pz( j| j0)V ( j) = c, (24)

the convergence being uniform in E = { j0|V ( j0) > 0}. Then
the following result holds [29].

Theorem 3. For some normalizing sequence {un} the limit-
ing distribution of

1

un

n∑
m=0

V (xm) (25)

exists and it is nonsingular if and only if, for some 0 � ν < 1,

π (z) = 1

(1 − z)ν
H

(
1

1 − z

)
, (26)

where H(x) is a slowly varying function. Moreover, if (26)
is satisfied, un can be taken to be cπ (1 − 1

n ) and the limiting
distribution is the Mittag-Leffler distribution Mν (ξ ).

We will use this result to find the distribution of the
occupation time of the origin. In order to do so, we take
V ( j) = δ j,0 so that∑

j

Pz( j| j0)V ( j) =
∑

j

Pz( j| j0)δ j,0 = Pz(0| j0). (27)
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Now, since δ j,0 > 0 only for j = 0, we have to prove the
existence of π (z) of the desired form, Eq. (26), such that

lim
z→1−

Pz(0|0)

π (z)
= c. (28)

Now, by definition,

Pz(0|0) ≡ P(z), (29)

and we know from the discussion made in Sec. III [see
Eq. (16)] that

P(z) = 1

(1 − z)ρ
H

(
1

1 − z

)
, (30)

where H (x) is slowly varying. Then, for any positive constant
c, we can take

π (z) = 1

c(1 − z)ρ
H

(
1

1 − z

)
, (31)

and have

lim
z→1−

P(z)

π (z)
= c. (32)

Hence, for the theorem stated above, the limiting distribution
of the random variable,

Tn ≡ 1

H (n)nρ

n∑
m=0

δxm,0, (33)

describing the occupation time of the origin, is the Mittag-
Leffler distribution of parameter ρ, for 0 � ρ < 1.

We point out that when ρ = 0 the Mittag-Leffler distribu-
tion becomes the exponential distribution, while for ρ = 1

2 we
have a half-Gaussian: M1/2(ξ ) = π−1/2 exp (−ξ 2/4), which
is the limiting distribution for the simple symmetric random
walk [28]. For ρ = 1 one has a degenerate case, with the
convergence,

1

H (n)n

n∑
m=0

δxm,0 → 1, (34)

in probability, which is a kind of weak ergodic theorem [29],
as the long-time limit of H (n) gives in this case the probability
of occupying the origin, which decays to a constant (see
discussion in Sec. III). This means that the process possesses
a stationary distribution and the value of such a distribution at
j = 0 corresponds to the ensemble average of V ( j). Therefore
we have the convergence of the time average of V ( j) over a
single trajectory to its ensemble average, so that the density of
Tn converges to a Dirac delta function centered around ξ0 = 1.

In Appendix A we show that in the long-time limit Tn is
proportional to the number of visits at the origin up to step n,
which we denote as Mn, rescaled for its mean value,

Tn ∼ 1

	(1 + ρ)

Mn

〈Mn〉 . (35)

We may therefore conclude that the result states that the
random variable,

ξ = lim
n→∞

1

	(1 + ρ)

Mn

〈Mn〉 , (36)

follows a Mittag-Leffler distribution of parameter ρ, for 0 �
ρ < 1, and a degenerate Mittag-Leffler distribution for ρ = 1,
whose density is

P(ξ ) = δ(ξ − 1). (37)

We remark that the result also holds if xn is not a Markov
process, provided that the return to x0 defines a renewal
event, so that the transition can be characterized by a waiting-
time distribution between renewals, i.e., by the distribution
of the first return times. This happens, for example, if xn is
symmetric with respect to the starting point. Indeed, we could
obtain the same from renewal theory (see refs. [15–18] and
references therein). It is worth observing that the parameter
characterizing the distribution of the occupation time of the
origin must be the same parameter of the Lamperti distribu-
tion, which in our setting describes the occupation time of
the positive(negative) axis for a symmetric process. We also
point out that a similar connection was proved in [9] by using
scaling arguments, and also in the context of infinite ergodic
theory for deterministic systems [30].

V. DECAY OF THE SURVIVAL PROBABILITY

As we have seen, the Lamperti and the Mittag-Leffler
distribution are closely related, all due to the particular form
that the generating functions P(z) and F (z) must assume. We
will show that this is also related to the asymptotic decay
of the survival probability in the set A(B). We define the
survival probability in a set for a random walk on the integers
with nearest-neighbor jumps as the probability Qn of never
leaving the setup to step n. If A is the set of positive integers,
then, following the convention in [23] on how to count the
occupation time, we have

Qn = Pr{x1 � 0, x2 � 0, . . . , xn � 0|x0 = 0}, (38)

with Q0 = 1. Such a quantity can be computed exactly for
random walks with i.i.d. jumps drawn from a continuous
distribution, by using a well-known combinatorial identity
known as the Sparre-Andersen theorem [31]:

Q(z) =
∞∑

n=0

Qnzn = exp

[ ∞∑
n=1

zn

n
Pr{xn � 0}

]
. (39)

For any symmetric jump distribution, one obtains the behavior
Qn ∼ n−1/2 for large n, independently of the distribution
itself. It can be shown that such a decay also holds for
walks with nearest-neighbor jumps, i.e., a particular case
of noncontinuous jump distribution, provided that the jumps
are symmetric, independent, and identically distributed [32].
Therefore, in the paradigmatic case of the simple symmetric
random walk on the integers, one finds that the value 1

2
describes the power-law decay of the survival probability and
gives the correct parameter describing both the Lamperti and
the Mittag-Leffler distributions. However, no results for the
survival probability are available if jumps are correlated or
not identically distributed.

In our setting, we can obtain a relation between the survival
probability Qn and the persistence probability [9], namely the
probability Un of not observing any return up to time n, which
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can be computed as

Un = 1 −
n∑

m=0

Fm. (40)

In Appendix B we show that the generating functions Q(z)
and U (z) satisfy the relation,

Q(z) = 1 + U (z)

1 + (1 − z)U (z)
, (41)

and that this implies Q(z) ∼ U (z) as z → 1, for 0 � ρ < 1.
This means that the survival and the persistence probabilities
have the same behavior for large n.

By using Eq. (40) and the condition U0 = 1, we can
compute the generating function,

U (z) = 1 − F (z)

1 − z
, (42)

and hence, by using Eq. (13), we find that U (z) must be of the
form,

U (z) = 1

(1 − z)1−ρ
L

(
1

1 − z

)
, (43)

where L(x) = 1/H (x) is a slowly varying function, and H (x)
is the same appearing in Eq. (16). Since, as we already stated,
for z → 1 we have Q(z) ∼ U (z), the use of the Tauberian
theorem implies that the survival probability Qn decays as

Qn ∼ 1

	(1 − ρ)

n−ρ

H (n)
. (44)

Once again, the quantity of interest is characterized by the
Lamperti parameter. We remark that this result holds for the
class of processes we are considering, therefore not only for
walks with i.i.d. jumps. For ρ = 1 the Tauberian theorem only
assures that as n → ∞,

n∑
m=0

Qm ∼ 1

H (n)
, (45)

where H (n) is a (ultimately) decreasing slowly varying func-
tion, hence the asymptotic relation (44) is not valid in this
regime. We recall that in this case Pn does not decay as a power
law (see Sec. III).

VI. NUMERICAL RESULTS

In this section we present numerical results for two dif-
ferent classes of walks. The first class is the Gillis random
walk [33], which is a random walk on the integer lattice,
starting from x0 = 0, with nontrivial jump probabilities; de-
pending on the position of the walker, the probabilities of
jumping from site j to site j′ are given by the following rules:

p( j′, j) = 1

2

(
1 − ε

j

)
δ j′, j+1 + 1

2

(
1 + ε

j

)
δ j′, j−1, (46)

for j �= 0, and

p( j′, 0) = 1
2δ j′,1 + 1

2δ j′,−1 (47)

for j = 0, where −1 < ε < 1 is a real parameter. For ε > 0
there is a bias towards the origin, while for ε < 0 there is
a bias away from it, which in both cases decreases with the

distance from the origin. It can be shown that the random walk
is recurrent only for ε � − 1

2 [26,33], so we will consider this
range only. We point out that this is one of the few examples
of nonhomogeneous random walks for which exact analytical
results are given. Indeed, Gillis proved that the generating
function P(z) reads

P(z) = 2F1
(

1
2ε + 1, 1

2ε + 1
2 ; 1; z2

)
2F1

(
1
2ε, 1

2ε + 1
2 ; 1; z2

) , (48)

where 2F1(a, b; c; z) is the Gaussian hypergeometric func-
tion [34].

The second class of random walks we want to consider is
the averaged Lévy-Lorentz gas (ALL), which was presented
in [35] and [36] in two different versions. This model is
closely related to the well-known Lévy-Lorentz gas, quite
extensively studied in the literature [37–42]. The ALL con-
sists in a generalization of the correlated random walk [43]:
A particle starts from x0 = 0 choosing with equal probability
the initial direction of motion and performing only nearest-
neighbor jumps. After each jump the walker can reverse the
direction of motion with probability r, which, depending on
the value of a real parameter α, can assume a nontrivial
position-dependent behavior: In the first version r decays as
a power law with the distance from the origin:

r( j) ∼ | j|−(1−α), 0 < α < 1. (49)

In the second version, instead, it is the transmission probabil-
ity t = 1 − r, i.e, the probability of preserving the direction of
motion, that decays with the same power law. In both cases
at j = 0 the reflection probability is r(0) = 1

2 . It is possible
to derive the long-time properties of the model by using
appropriate continuum limits, which lead to the following
diffusion equation for the evolution of the PDF of the process:

∂P(x, t )

∂t
= ∂

∂x

[
Dα (x)

∂P(x, t )

∂x

]
. (50)

Here Dα (x) is a position-dependent diffusion coefficient,
whose behavior is related to the form of the reflection prob-
ability. Equation (50) corresponds to a Langevin equation
interpreted following Hänggi-Klimontovich (isothermal inter-
pretation). For a discussion on how different interpretations
(Itô, Stratonovich, or Hänggi-Klimontovich) affect the statis-
tical properties of the system (see ref. [18]). Here we only
point out that one can compute the solution [18,44] to get
the asymptotic growth of the mean square displacement for
both versions of the model: In the first case, 〈x2

t 〉 ∼ t
2

1+α , hence
transport is superdiffusive and we will refer to this as the su-
perdiffusive version; in the second case, 〈x2

t 〉 ∼ t
2

3−α , transport
is subdiffusive, and we will name this the subdiffusive version.
We can obtain in both cases the asymptotic behavior of the
probability density function at x = 0, which reads

P(0, t ) ∼
{

t−1/(1+α) superdiffusive
t−1/(3−α) subdiffusive.

(51)

From the results in Eqs. (48) and (51) we are able to
compute the parameter ρ for both models, yielding the
shape of the Lamperti distribution, the form of the Mittag-
Leffler distribution, and the asymptotic decay of the survival
probability.
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A. Evaluation of the Lamperti parameter

In order to obtain the analytical predictions to compare
with the simulation results, all we need to do is to evaluate
the Lamperti parameter ρ.

For the Gillis random walk we use the analytical result
regarding the generating function [Eq. (48)]. By using the
properties of the hypergeometric function [34], we can rewrite
P(z) in the form given in Eq. (16), obtaining (see Appendix C)

ρ =

⎧⎪⎨
⎪⎩

0 for ε = − 1
2

1
2 + ε for − 1

2 < ε < 1
2

1 for 1
2 � ε < 1.

(52)

For the averaged Lévy-Lorentz gas we evaluate ρ by using
the long time asymptotics of the probability of occupying the
origin, which can be computed performing a continuum limit.
As we reported in Eq. (51), it can be shown that the probability
Pn decays as [35,36]

Pn ∼
{

n−1/(1+α) superdiffusive
n−1/(3−α) subdiffusive,

(53)

where 0 < α < 1. Since the exponent is connected to ρ [see
Eq. (20)], we immediately get

ρ =
{

1 − 1
1+α

superdiffusive

1 − 1
3−α

subdiffusive.
(54)

B. Occupation time of the positive axis

Here we provide the results of simulations regarding the
occupation time of the set A for the Gillis random walk and
both versions of the averaged Lévy-Lorentz gas.

For the Gillis random walk we can recognize two different
behaviors. When ε < 0 there is a bias away from the origin,
and the distribution of the occupation time is represented by a
U-shaped curve, meaning that the particle most likely spends
all the time in one of the two sets. When ε > 0 there is a bias
towards the origin, so we expect a higher contribution from
walks which spend an equal amount of time in the two sets.
This is confirmed by the plots in Fig. 1, where we consider the
cases ε = −0.2 and ε = 0.2.

When the bias towards the origin becomes sufficiently
strong, i.e., for ε � 1

2 , the outer values of the distribution cease
to be the most probable. The process enters in an ergodic
regime where the fraction of time spent in a set converges to
its expected value, which in our case is η = 1

2 . In other words,
the distribution is a Dirac delta function centered around η.
Figure 2 shows the behavior of the distribution as the number
of steps grows, for ε = 0.8, confirming the convergence to a
Dirac delta distribution.

For the averaged Lévy-Lorentz gas, the behavior of the
distribution depends on which version of the model we are
considering. In the superdiffusive case the reflection prob-
ability decays as a power law with the distance from the
origin, r( j) ∼ | j|−(1−α), therefore a particle tends to preserve
its direction of motion as the distance from the starting point
increases. As α varies in (0, 1), the Lamperti parameter varies
in (0, 1

2 ) [see Eq. (53)]. In the subdiffusive case instead the
reflection probability converges to 1 as the distance from the
origin increases, with the transmission coefficient decaying

FIG. 1. Distribution of the fraction of time spent in the positive
axis for the Gillis random walk, in semilogarithmic scale. To enhance
readability of the outer values, it has been performed the transforma-
tion x → arccos(2x − 1) on the x axis. The (light blue) dots represent
the simulation results, the (red) line the theoretical prediction. (a) The
case ε = −0.2; (b) ε = 0.2. In both cases the results are obtained
simulating 106 walks of 104 steps.

as a power law. The Lamperti parameter is in the range 1
2 <

ρ < 2
3 . The behavior of both models is presented in Fig. 3,

for α = 0.7 in the superdiffusive case and α = 0.3 in the
subdiffusive one. We point out that for both versions of the
model we never enter the ergodic regime, as ρ �= 1 for any
value of α.

C. Occupation time of the origin

As we have already shown, the distribution of the occupa-
tion time of the origin follows a Mittag-Leffler distribution of
the same parameter characterizing the Lamperti distribution.
We consider the random variable,

ξ = lim
n→∞

1

	(1 + ρ)

Mn

〈Mn〉 . (55)
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FIG. 2. Distribution of the fraction of time spent in the positive
axis for the Gillis random walk, ergodic case, with ε = 0.8. Data
are obtained simulating 106 walks of different numbers of steps. As
the maximum number of steps grows, the distribution converges to a
Dirac delta, centered around kn/n = 1/2.

Once again the Gillis random walk is the model displaying
the richest behavior. As shown in Fig. 4, for ε < 0 the dis-
tribution of ξ is monotonically decreasing, reflecting the fact
that the particle is biased away from the origin. Indeed, the
walks that do not return to the starting point have the highest
probability. For ε > 0, instead, the bias is towards the origin,
therefore the probability of returning increases. The shape of
the distribution is quite different, and we have a pronounced
peak close to ξ0 = 1. For values ε � 1

2 we enter in the ergodic
regime and the distribution converges to a Dirac delta function
centered around ξ0 = 1 (Fig. 5).

We can recognize a similar behavior for the averaged Lévy-
Lorentz gas, as shown in Fig. 6. Here the shape of the distribu-
tion depends on which version of the model is considered: For
the superdiffusive case we have a monotonically decreasing
curve, while for the subdiffusive one the distribution presents
a peak close to ξ0 = 1. The values of α chosen for the two
systems are α = 0.7 for the superdiffusive version and α =
0.3 for the subdiffusive one.

D. Decay of the survival and persistence probabilities

For both models we also provide simulations regarding the
asymptotic decay of the survival and persistence probabilities.
As we have seen, we expect both quantities to decay as n−ρ ,
where ρ depends on a parameter characterizing the model (ε
for Gillis, α for Lévy-Lorentz). We confirm our prediction
by plotting the exponent of the asymptotic decay of Qn

and Un, obtained from simulations, versus the characteristic
parameter.

For the Gillis random walk we have good agreement be-
tween the two computed exponents and the theoretical values
(Fig. 7). We point out that ε is taken in the range (− 1

2 , 1
2 ),

so that 0 < ρ < 1. We observe that the agreement gets worse
when ε gets closer to the boundaries of the considered

FIG. 3. Distribution of the fraction of time spent in the positive
axis for the averaged Lévy-Lorentz gas, in semilogarithmic scale. To
enhance readability of the outer values, it has been performed the
transformation x → arccos(2x − 1) on the x axis. The (light blue)
dots represent the simulation results, the (red) line the theoretical pre-
diction. (a) The superdiffusive case, with α = 0.7. Data are obtained
simulating 106 walks of 104 steps. (b) The subdiffusive version, with
α = 0.3. In this case data are obtained simulating 107 walks of 105

steps.

interval: We can explain this fact by considering that as ε →
− 1

2 convergence to the theoretical values becomes slower,
while in the opposite case, ε → 1

2 , the system is getting closer
to the regime ρ = 1, where Qn and Un are not guaranteed to
decay in the same way.

For the superdiffusive averaged Lévy-Lorentz gas we have
good agreement when α � 0.4, while for lower values of the
parameter we observe a non-negligible difference between the
two computed exponents. However, we point out that this is
due to the fact that the continuum limit used to describe the
long time properties of the system becomes effective after a
preasymptotic regime, which depends on α, and the diffusive
asymptotic regime is not yet captured at the number of steps
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FIG. 4. Distribution of the random variable ξ representing the
rescaled number of steps in which the process occupies the origin.
The (light blue) dots represent the simulation results, the (red) line
the theoretical prediction. (a) The case ε = −0.2; (b) ε = 0.2. In
both cases the results are obtained simulating 106 walks of 104 steps.

of our simulations. Indeed, we observed in [35] the same
discrepancies, in the same range of α, in the evaluation of the
moments. For the subdiffusive version instead the difficulties
to capture the asymptotic regime may be traced back to the
fact that in order to observe cleanly the decay of the quantities
of interest we need a larger number of steps with respect
to the superdiffusive version. However, for both versions of
the model we have in general a good agreement with the
theoretical predictions (Fig. 8).

E. Comparison of different systems with the same Lamperti
parameter

From the discussion made so far it should be clear that
the Lamperti parameter ρ, characterizing the distributions
of the observables we have considered in this paper, only
depends on a local property of the PDF of the process, namely
the probability Pn of occupying the origin at time n. It can

FIG. 5. Distribution of the random variable ξ representing the
rescaled number of steps in which the process occupies the origin,
ergodic case, with ε = 0.8. Data are obtained simulating 106 walks of
different numbers of steps. As the maximum number of steps grows,
the distribution converges to a Dirac delta, centered around ξ0 = 1.

happen that two stochastic processes are described by two
different sets of evolution laws, but share the same asymptotic
power-law decay for the distribution of the occupation time
of the origin, i.e., the Pn decay with the same exponent. As a
consequence, the distributions of the occupation time of the
positive axis and the number of returns to the origin will be
the same.

In order to show this, we compare the two distributions
for the Gillis random walk and both versions of the averaged
Lévy-Lorentz gas. For the latter system we consider the values
of α already chosen in the previous sections, viz. α = 0.7 for
the superdiffusive version and α = 0.3 for the subdiffusive
one. The two corresponding values of the Lamperti param-
eter are ρ = 7

17 (superdiffusive) and ρ = 17
27 (subdiffusive),

which are obtained in the case of the Gillis random walk for
ε = −0.0882 and ε = 0.1296, respectively. The results are
presented in Figs. 9 and 10. In both cases the simulations agree
with the theoretical predictions.

VII. CONCLUSIONS AND DISCUSSION

We have shown that for a general class of stochastic
processes there is a deep connection between the statistics of
the occupation times, the number of visits at the origin, and the
survival probability. The distributions of these observables can
be characterized by the same exponent, which is related to the
asymptotic power-law decay of the probability of occupying
the origin. However, we remark that this connection holds
true for infinite systems, and may be no longer valid when
the dynamics is confined on a finite domain, e.g., by the
presence of reflecting walls or a force field. In such cases
we expect the process to reach an equilibrium distribution,
so that the probability of occupying any point in the domain
is time independent. Nevertheless, studies on the statistics of
occupation times have shown that the exponent characterizing
the Lamperti law is not related to the steady state. Examples
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FIG. 6. Distribution of the random variable ξ representing the
rescaled number of steps in which the process occupies the origin.
The (light blue) dots represent the simulation results, the (red) line
the theoretical prediction. (a) The superdiffusive case, with α =
0.7. The results are obtained simulating 106 walks of 104 steps.
(b) Corresponds to the subdiffusive version, with α = 0.3. Data are
obtained simulating 107 walks of 105 steps.

can be found in the contexts of continuous-time random
walks [45], fractional diffusion [46], and in the quenched trap
model [47], to cite a few. All these cases show that the cor-
rect characterization of the Lamperti distribution is possible
by evaluating the first-passage exponent: In this sense, the
relation between the first-passage time distribution and the
Lamperti and Mittag-Leffler distributions is valid in a more
general setting.

For infinite systems, we point out that the results of this
paper are also associated with infinite ergodic theory. In
particular, let us consider the Darling-Kac theorem, that we
used in Sec. IV to obtain the statistics of the occupation time
of the origin, in its continuous-time version [29]. The theorem
first requires that, for a given non-negative and integrable

FIG. 7. Exponents of the asymptotic power-law decay of the
persistence and survival probabilities for the Gillis random walk.
Data are obtained simulating 107 walks of 105 steps. The (green)
squares represent the persistence probability, while the (light blue)
circles refer to the survival probability.

function V (x), one has

lim
s→0

1

π (s)

∫
Ps(x|x0)V (x)dx = c, (56)

where c is a positive constant, Ps(x|x0) is the Laplace trans-
form from t to s of the probability of arriving at x starting
from x0 in time t , and π (s) is a function such that π (s) → ∞
as s → 0. Now suppose that we have

lim
s→0

Ps(x|x0)

π (s)
= I∞(x), (57)

where I∞(x) is called, in the language of infinite ergodic
theory, the infinite density [18], since it is not normalizable.
Note that in this case, if V (x) is measurable with respect to
the infinite density, the condition given in Eq. (56) is satisfied.
Therefore, if π (s) = s−ρH (1/s), with H (u) slowly varying,
the Darling-Kac theorem states that the random variable,

ξ = lim
t→∞

1

cπ (1/t )

∫ t

0
V (x(τ ))dτ (58)

= lim
t→∞

1

ctρH (t )

∫ t

0
V (x(τ ))dτ, (59)

follows a Mittag-Leffler distribution of order ρ. Now we
observe that using Eq. (57) we can say

Ps(x|x0) ∼ π (s)I∞(x), (60)

and therefore for the ensemble average of V (x) we have

〈Vs〉 =
∫

Ps(x|x0)V (x)dx ∼ cπ (s). (61)

In the case π (s) = s−ρH (1/s), by using the Tauberian theo-
rem [28] we find that the ensemble average in the long-time
limit behaves as

〈Vt 〉 ∼ c

	(ρ)
tρ−1H (t ), (62)
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FIG. 8. Exponents of the asymptotic power-law decay of the
persistence and survival probabilities for the averaged Lévy-Lorentz
gas. (a) The superdiffusive version; (b) the subdiffusive one. In both
cases data are obtained simulating 107 walks of 105 steps. The
(green) squares represent the persistence probability, while the (light
blue) circles refer to the survival probability.

and therefore

ξ = lim
t→∞

1

	(ρ)

V t

〈Vt 〉 , (63)

where V t indicates the time average of V (x) over a single real-
ization. Such a ratio is a random variable distributed according
to a Mittag-Leffler of order ρ. This is the main difference
with standard ergodic theory, where instead time averages
converge to ensemble averages, and hence ξ is expected to
be distributed according to a Dirac delta function centered
around ξ0 = 1. Now the important point is that the scaling
function π (s), which determines the distribution of ξ , i.e., the
value of ρ, is a property of the propagator Ps(x|x0). In other
words, for any function which is measurable with respect
to the infinite density, the distribution of ξ only depends on
the long-time properties of the propagator. Therefore, it is

FIG. 9. Distributions of the occupation time (a) and the number
of returns (b) for the averaged Lévy-Lorentz gas, superdiffusive ver-
sion (green points), and the Gillis random walk (light blue squares),
compared to the theoretic result. The values of the corresponding
parameters are α = 0.7 and ε = −0.0882, which in both cases yield
ρ = 7/17. For both systems we considered 107 walks evolved for
104 steps.

possible to determine the distribution by just evaluating the
long-time behavior of P(x, t ) in a given set, as we have done
in the paper by considering the probability of occupying the
origin. However, we point out that if we focus on a point off
the origin, the evaluation of ρ is not sufficient to determine the
Lamperti distribution, since it is also necessary to determine
the asymmetry parameter η [Eq. (3)].
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FIG. 10. Distributions of the occupation time (a) and the number
of returns (b) for the averaged Lévy-Lorentz gas, subdiffusive version
(green points), and the Gillis random walk (light blue squares),
compared to the theoretic result. The values of the corresponding
parameters are α = 0.3 and ε = 0.1296, which in both cases yield
ρ = 17/27. For both systems we considered 107 walks evolved for
104 steps.

APPENDIX A: MEANING OF THE RANDOM VARIABLE Tn

We consider the random variable,

Tn ≡ 1

H (n)nρ

n∑
m=0

δxm,0. (A1)

The sum,

Mn =
n∑

m=0

δxm,0, (A2)

clearly represents the number of times the random walk has
visited the origin up to time n, while it is possible to show
that the denominator nρH (n) is connected to the asymptotics
of the mean occupation time. Indeed, for M � 1, let us call
ψn(M ) the probability that the Mth visit occurs at step n, and

Un the probability of observing no returns to the origin up to
step n, with the initial conditions ψ0(M ) = δM,1 and U0 = 1.
We have

Un = 1 −
n∑

m=0

Fm, (A3)

ψn(1) = δn,0, (A4)

while for M � 2 we can write the recurrence relation,

ψn(M ) =
n∑

m=0

Fmψn−m(M − 1). (A5)

From Eqs. (A3), (A4), and (A5) we can compute the generat-
ing functions,

U (z) = 1 − F (z)

1 − z
, (A6)

ψz(M ) = [F (z)]M−1. (A7)

Now, the probability φn(M ) of M visits in n steps is equal to
the probability that the Mth visit has occurred at step k � n,
and then no other visit occurs up to time n:

φn(M ) =
n∑

m=0

ψk (M )Un−m, (A8)

hence its generating function reads

φz(M ) = F M−1(z)
1 − F (z)

1 − z
. (A9)

The generating function of the mean number of visits is

〈M(z)〉 =
∞∑

M=1

Mφz(M ) = 1

1 − z

1

1 − F (z)
, (A10)

and since we know the relation between F (z) and P(z),
Eq. (15), and the form that P(z) must assume, Eq. (16), we
have

〈M(z)〉 = 1

(1 − z)1+ρ
H

(
1

1 − z

)
, (A11)

and the Tauberian theorem implies

〈Mn〉 ∼ 1

	(1 + ρ)
nρH (n), (A12)

which is valid for 0 � ρ � 1. We conclude that the random
variable Tn represents, up to a constant factor, the asymptotic
value of the occupation time of the origin rescaled for its mean
value:

Tn ∼ 1

	(1 + ρ)

Mn

〈Mn〉 . (A13)

APPENDIX B: THE RELATION BETWEEN THE SURVIVAL
AND PERSISTENCE PROBABILITIES AND THEIR

ASYMPTOTIC BEHAVIOR

We consider the survival probability in the set A. Define

Fn = Pr{x1 �= 0, x2 �= 0, . . . , xn = 0|x0 = 0}, (B1)

Qn = Pr{x1 � 0, x2 � 0, . . . , xn � 0|x0 = 0}, (B2)

Un = Pr{x1 �= 0, x2 �= 0, . . . , xn �= 0|x0 = 0}, (B3)
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with the initial conditions F0 = 0, Q0 = 1, and U0 = 1, and
the generating functions,

F (z) =
∞∑

n=1

Fnzn, (B4)

Q(z) =
∞∑

n=0

Qnzn, (B5)

U (z) =
∞∑

n=0

Unzn. (B6)

It is easy to see that if the process is symmetric with respect
to the two sets, the following relation holds:

2Qn = δn,0 + Un +
n∑

m=1

FmQn−m. (B7)

By passing to the generating function we get

2Q(z) = 1 + U (z) + F (z)Q(z), (B8)

and by using Eq. (A6) in Appendix A, after some algebra we
obtain

Q(z) = 1 + U (z)

1 + (1 − z)U (z)
. (B9)

To show that Q(z) and U (z) have the same z → 1 behavior,
we use a result by Karamata [48]: If L(x) is a slowly varying
function, then for any γ > 0,

lim
x→∞ x−γ L(x) = 0, (B10)

lim
x→∞ xγ L(x) = ∞. (B11)

We showed in the main text, Eq. (43), that U (z) is of the form,

U (z) = 1

(1 − z)1−ρ
L

(
1

1 − z

)
, (B12)

therefore, as z → 1, U (z) diverges and (1 − z)U (z) converges
to 0. For ρ = 0 we still have the divergence of U (z), but we
cannot use the previous result by Karamata for (1 − z)U (z),
because

(1 − z)U (z) = L

(
1

1 − z

)
. (B13)

However, since in this case,

F (z) = 1 − L

(
1

1 − z

)
, (B14)

and recurrence implies F (z) → 1, we still have (1 −
z)U (z) → 0. Hence, it follows from Eq. (B9) that Q(z) ∼
U (z) for any 0 � ρ < 1.

APPENDIX C: EVALUATION OF THE LAMPERTI PARAMETER FOR THE GILLIS RANDOM WALK

The strategy is to put the generating function P(z), Eq. (48) in the main text, in the form,

P(z) = 1

(1 − z)ν
H

(
1

1 − z

)
, (C1)

where H (x) is a slowly varying function. We make use of the transformation formulas [34]:

2F1(a, b; c; z) = 	(c)	(c − a − b)

	(c − a)	(c − b)
2F1(a, b; a + b − c + 1; 1 − z)

+ (1 − z)c−a−b 	(c)	(a + b − c)

	(a)	(b)
2F1(c − a, c − b; c − a − b + 1; 1 − z), (C2)

valid for c − a − b noninteger, while for the integer case we use

2F1(a, b; a + b + m; z) = 	(m)	(a + b + m)

	(a + m)	(b + m)

m−1∑
n=0

(a)n(b)n

n!(1 − m)n
(1 − z)n − (z − 1)m 	(a + b + m)

	(a)	(b)

∞∑
n=0

(a + m)n(b + m)n

n!(n + m)!
(1 − z)n

× [log(1 − z) − ψ (n + 1) − ψ (n + m + 1) + ψ (a + n + m) + ψ (b + n + m)], (C3)

and

2F1(a, b; a + b − m; z) = (1 − z)−m 	(m)	(a + b − m)

	(a)	(b)

m−1∑
n=0

(a − m)n(b − m)n

n!(1 − m)n
(1 − z)n − (−1)m 	(a + b − m)

	(a − m)	(b − m)

×
∞∑

n=0

(a)n(b)n

n!(n + m)!
(1 − z)n[log(1 − z) − ψ (n + 1) − ψ (n + m + 1) + ψ (a + n) + ψ (b + n)], (C4)
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for m = 1, 2, . . . , or

2F1(a, b; a + b, z) = 	(a + b)

	(a)	(b)

∞∑
n=0

(a)n(b)n

(n!)2 (1 − z)n[2ψ (n + 1) − ψ (a + n) − ψ (b + n) − log(1 − z)], (C5)

where ψ (z) ≡ d
dz log 	(z) is the digamma function, and (z)n ≡ 	(z + n)/	(z) denotes the Pochhammer’s symbol [34].

Now, since the generating function P(z),

P(z) = 2F1
(

1
2ε + 1, 1

2ε + 1
2 ; 1; z2

)
2F1

(
1
2ε, 1

2ε + 1
2 ; 1; z2

) , (C6)

is a function of z2, for the sake of simplicity we consider

P(
√

z) ≡ �(z) =
∞∑

n=0

�nzn = 2F1
(

1
2ε + 1, 1

2ε + 1
2 ; 1; z

)
2F1

(
1
2ε, 1

2ε + 1
2 ; 1; z

) , (C7)

so that the nth coefficient �n corresponds to P2n. It is easy to show that if P(z) is of the form,

P(z) = 1

(1 − z)ρ
H

(
1

1 − z

)
, (C8)

then also �(z) can be written as

�(z) = 1

(1 − z)ρ
G

(
1

1 − z

)
, (C9)

where G(x) is slowly varying and related to H (x) by

G(x) = 1

xρ
(
1 −

√
1 − 1

x

)ρ
H

⎛
⎝ 1

1 −
√

1 − 1
x

⎞
⎠. (C10)

This means that the transformation does not change the exponent ρ. By using Eq. (C7) we obtain the following results.
(1) In the case ε = − 1

2 we get

�(z) = G

(
1

1 − z

)
, (C11)

where the slowly varying function is

G(x) =
∑∞

n=0
(3/4)n (1/4)n

(n!)2 (x)−n
[
2ψ (n + 1) − ψ

(
3
4 + n

) − ψ
(

1
4 + n

) + log(x)
]

4 + 1
4

∑∞
n=0

(3/4)n (5/4)n

n!(n+1)! (x)−n−1
[

log(x) + ψ (n + 1) + ψ (n + 2) − ψ
(

3
4 + n

) − ψ
(

5
4 + n

)] . (C12)

(2) In the range ε ∈ (− 1
2 , 1

2 ) the generating function has the form,

�(z) = 1

(1 − z)1/2+ε
G

(
1

1 − z

)
, (C13)

with

G(x) = a1
2F1

(− 1
2ε, 1

2 − 1
2ε; 1

2 − ε; 1
x

) + a2x−1/2−ε
2F1

(
1
2ε + 1, 1

2ε + 1
2 ; 3

2 + ε; 1
x

)
2F1

(
1
2ε, 1

2ε + 1
2 ; 1

2 + ε; 1
x

) + a3x−1/2+ε
2F1

(
1 − 1

2ε, 1
2 − 1

2ε; 3
2 − ε; 1

x

) , (C14)

where a1, a2, and a3 are numerical coefficients (depending on ε) which can be determined from formula (C2).
(3) For ε = 1

2 we have

�(z) = 1

1 − z
G

(
1

1 − z

)
, (C15)

where G(x) has the expression,

G(x) =
4 − 1

4

∑∞
n=0

(5/4)n (3/4)n

n!(n+1)! (x)−n−1
[
log(x) + ψ (n + 1) + ψ (n + 2) − ψ

(
5
4 + n

) − ψ
(

3
4 + n

)]
∑∞

n=0
(1/4)n (3/4)n

(n!)2 (x)−n
[
2ψ (n + 1) − ψ

(
1
4 + n

) − ψ
(

3
4 + n

) + log(x)
] . (C16)

(4) Finally when ε ∈ ( 1
2 , 1) the generating function has the same form as the previous case,

�(z) = 1

1 − z
G

(
1

1 − z

)
, (C17)
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but with

G(x) = b1
2F1

(− 1
2ε, 1

2 − 1
2ε; 1

2 − ε; 1
x

) + b2x−1/2−ε
2F1

(
1
2ε + 1, 1

2ε + 1
2 ; 3

2 + ε; 1
x

)
2F1

(
1 − 1

2ε, 1
2 − 1

2ε; 3
2 − ε; 1

x

) + b3x1/2−ε
2F1

(
1
2ε, 1

2ε + 1
2 ; 1

2 + ε; 1
x

) , (C18)

where once again b1, b2, and b3 can be determined from Eq. (C2).
We remark that if one wishes to go back to P(z), it is now sufficient to recover the expression of H (x) by using Eq. (C10).
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