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Transfer entropy is an important index for investigating the causal relationship between random variables. It is
known that a phase transition can be detected by transfer entropy. In this work, I propose a method for obtaining
the transfer entropy by applying the variational approximation method to a dynamic Ising model. Our method
is also effective for dynamics that do not satisfy the detailed balance condition. Our method finds the transfer
entropy by solving a transcendental equation. When compared with the transfer entropy obtained by Monte
Carlo sampling, it was found that they qualitatively matched near the transition point; moreover, the match was
obtained with good accuracy in the region deviated from the transition point.
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I. INTRODUCTION

The problem of finding hidden patterns in datasets is fun-
damental in natural science and has a long history. Recently,
as the performance of computers has improved, large datasets
are easily obtained. Machine learning can automatically find
regularity in a dataset through a calculation algorithm and
classify the dataset into different categories using the regu-
larity [1,2]. In actual application, to make effective use of
the obtained dataset, the original dataset is converted into a
new variable by preprocessing to make the problem easy to
handle. This preprocessing stage is called feature extraction.
In machine learning, features are extracted from dataset, and
a machine is learned from the features. This machine learning
method has been applied to various fields of natural science,
and the physics field is no exception. In particular, the anal-
ysis of phase-transition phenomena using a machine learning
method has been actively performed [3–15].

The correlation coefficient is a standard method of exam-
ining the relationship between two variables of a measured
dataset such as {(x(1), y(1) ), (x(2), y(2) ), . . . , (x(M ), y(M ) )}. In
addition, as an information-theoretical method, the relation-
ship can also be examined by mutual information analysis.
In these cases, x and y are treated as random variables be-
cause the dataset includes stochastic properties, such as noise,
during measurement. Although the dependency between vari-
ables can be known from the correlation coefficient or the
mutual information, the dependency is symmetric and does
not consider the direction from one variable to the other. To
examine the causal relationship between the dataset variables,
i.e., “event X has occurred because of event Y ,” it is nec-
essary to know the temporal context. Therefore, instead of
looking at the interdependence between dataset variables in an
equilibrium state, like the correlation coefficient and mutual
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information do, it is necessary to examine the dependence of
variables on the temporal change of their observed values.

Transfer entropy is known as an information-theoretic
quantification of the causal effect from Y to X [16,17].
Assuming a time-series dataset {(x(t ), y(t )), (x(t − 1), y(t −
1)), . . . , (x(0), y(0))} (t is the current time), if the observation
x(t + 1) at the subsequent time t + 1 depends on the history
of X so far, the probability distribution of obtaining x(t + 1)
is P(x(t + 1)|x(t ), . . . , x(0)). Considering the dependence
of Y on X , the above conditional probability distribution
becomes P(x(t + 1)|x(t ), . . . , x(0), y(t ), . . . , y(0)). If
x(t + 1) has no effect by Y and is determined solely
by X ’s own past observations, then the condition
P(x(t + 1)|x(t ), . . . , x(0), y(t ), . . . , y(0)) = P(x(t + 1)|x(t ),
. . . , x(0)) is satisfied. Conversely, if Y has some effect
on X (Y has a causal relationship to X ), then x(t + 1) is
determined depending on the value of Y observed in the past.
The above condition regarding the probability distribution is
not satisfied. Transfer entropy is a quantity used to evaluate
whether these probability distributions are equal or unequal
in terms of the Kullback-Leibler divergence. It is known
that the distribution of the number of states (number of
probabilistic events) must be obtained from an actual dataset
by sampling, and a sufficiently long time-series dataset is
necessary to obtain a reliable conclusion. Thus, for transfer
entropy, whether or not there is a sufficient amount of
datasets to construct a probability distribution is a criterion
for determining whether or not the transfer entropy can be
appropriately applied.

The Ising model is a prototype that investigates the phase-
transition phenomenon of magnetic materials and has been
studied in various ways. Unique phenomena occur at the
phase-transition point, such as divergence of the magnetic
susceptibility or the correlation length. It has been known,
from the information-theoretical standpoint, that mutual infor-
mation shows the maximum value at the phase-transition point
[18]. Similarly, transfer entropy shows a maximum value at
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the transition point [19,20]. Thus, attempts to understand the
phase transition in terms of the information theory are pro-
gressing. However, these studies have been conducted on the
equilibrium state or in the process of reaching the equilibrium
state and do not purely reveal the causal relationship of time-
series data. The equilibrium state is reached by repeating a
transition in the case of a dynamic process that satisfies the
detailed balance condition. In this study, we do not necessarily
assume the detailed balance condition but aim to obtain the
transfer entropy for general dynamic processes. In general,
the dynamic equation cannot be solved analytically, so we
treat the dynamic equation approximately using the recently
developed variational approximation [21–23]. By using our
method, we can estimate the transfer entropy by solving the
transcendental equations without sampling the dataset.

II. MODEL AND METHOD

A. Dynamic model

We consider a graph composed of N vertices and edges
connecting some pairs of vertices. A set of edges is denoted by
E . A discrete random variable si is assigned to the ith vertex.
The discrete random variable si is defined by the set of values
it can take, X . For simplicity, we restrict X = {+1,−1}. A set
of discrete random variables is defined as s = {s1, s2, . . . , sN }.
By interacting with adjacent vertices, each si changes with
time. To demonstrate si depending on time, we explicitly
express si(t ) and similarly s(t ) = {s1(t ), s2(t ), . . . , sN (t )}. We
represent the probability distribution of s(t ) as P[s(t )] and the
joint probability distribution of s(t + �) and s(t ) as P(s(t +
�), s(t )), respectively. Although we use the same symbol, P,
for all probability distributions, the probability distributions
which have different arguments as random variables are dif-
ferent from each other. The quantity � is an increment of time
and the value of it depends on update rules. The relationship
between P(s(t + �), s(t )) and P[s(t )] is given by

P(s(t + �), s(t )) = W (s(t + �)|s(t ))P[s(t )], (1)

where W (s(t + �)|s(t )) is a transition probability. Time is
measured in units of the update timescale. The formula of
W (s(t + �)|s(t )) depends on the model dynamics. Marginal-
izing s(t ) in Eq. (1), we obtain the following formula;

P[s(t + �)] =
∑

s(t )∈X N

P(s(t + �), s(t ))

=
∑

s(t )∈X N

W (s(t + �)|s(t ))P[s(t )]. (2)

We consider two types of dynamics of the system, syn-
chronous and asynchronous updates [24–29]. In the asyn-
chronous update, one vertex is chosen and the random variable
on the vertex is changed by a prescribed probability. In
the synchronous update, the discrete random variables are
changed simultaneously following a prescribed probability. In

the asynchronous update, the transition probability is given by

w(a)(si(t + γ δt )|si(t ), s∂i(t ))

= (1 − γ δt )δsi (t+γ δt ),si (t )

+ γ δt
exp

[
si(t + γ δt )

∑
j∈∂i Ji js j (t )

]
2 cosh

[ ∑
j∈∂i Ji js j (t )

] , (3)

where δt is the discretized time step size, γ is a constant with
dimension of inverse time, δx,y is the Kronecker delta, and
Ji j is a coupling parameter between the ith and jth vertices
[30]. The sign ∂i stands for a set of vertices neighboring the
ith vertex, i.e., ∂i = { j|Ji j �= 0}. In the case of Ji j = 0, no
edge exists between the ith vertex and jth one. In the case
of a directed graph, the coupling parameter is not symmetric,
i.e., Ji j �= Jji. The superscript (a) stands for the asynchronous
update. The quantity γ δt corresponds to �. When δt → 0,
we obtain a differential equation for the expectation of si(t ).
The expected change with time is obtained by solving the
differential equation. However, we will proceed analysis in
a different way. We set γ δt = 1/N . Substituting Eq. (3) for
Eq. (1), we obtain

P

(
s
(

t + 1

N

)
, s(t )

)

=
N∏

i=1

w(a)

(
si

(
t + 1

N

)∣∣∣∣si(t ), s∂i(t )

)
P[s(t )], (4)

and substituting Eq. (3) for Eq. (2), we similarly obtain

P

[
s
(

t + 1

N

)]

=
∑

s(t )∈X N

N∏
i=1

w(a)

(
si

(
t + 1

N

)∣∣∣∣si(t ), s∂i(t )

)
P[s(t )]. (5)

In Appendix A, we prove that Eq. (5) coincides with the asyn-
chronous update of the Glauber dynamics [31]. Marginalizing
s(t + 1

N ) and s(t ) except si(t + 1
N ), si(t ), and s∂i(t ) in Eq. (4),

we obtain

P

(
si

(
t + 1

N

)
, si(t ), s∂i(t )

)

= w(a)

(
si

(
t + 1

N

)∣∣∣∣si(t ), s∂i(t )

)
P(si(t ), s∂i(t )), (6)

where we use the following condition;∑
si (t+ 1

N )∈X
w(a)

(
si

(
t + 1

N

)∣∣∣∣si(t ), s∂i(t )

)
= 1. (7)

Compared with the asynchronous update, the synchronous
update is much easier to handle. In the case of the synchronous
update, the transition probability is given by

w(s)(si(t + 1)|s∂i(t )) = exp
[
si(t + 1)

∑
j∈∂i Ji js j (t )

]
2 cosh

[ ∑
j∈∂i Ji js j (t )

] . (8)

The superscript (s) stands for the synchronous update. The dif-
ference between the asynchronous and synchronous updates is
that the transition probability depends on si(t ) or not. The time
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to update all vertices simultaneously is taken as the unit time.
Substituting (8) for (1), we obtain the following formula:

P(s(t + 1), s(t )) =
N∏

i=1

w(s)(si(t + 1)|s∂i(t ))P[s(t )]. (9)

Marginalizing s(t + 1) and s(t ) except si(t + 1) and s∂i(t ), the
following formula:

P(si(t + 1), s∂i(t )) = w(s)(si(t + 1)|s∂i(t ))P[s∂i(t )], (10)

is derived by quoting the following condition:∑
si (t+1)∈X

w(s)(si(t + 1)|s∂i(t )) = 1. (11)

As shown later, whether or not the joint probability distribu-
tion depends on si(t ) greatly affects the transfer entropy.

We mention probability distributions after performing the
updates infinitely. The detailed balance condition is met only
when the coupling parameter is symmetric, i.e., Ji j = Jji, and
the update is asynchronous. In the case of an update which
satisfies the condition of the detailed balance, the probability
distribution converges to the Boltzmann distribution. In other
cases, it is not known exactly what the probability distribution
converges to. However, our method is also effective for dy-
namics in which the probability distribution does not converge
to the Boltzmann distribution.

B. Transfer entropy

The mutual information in the information theory exam-
ines interdependencies between random variables that do not
change with time. The mutual information between Ising
spins, which are random variables of the Ising model in the
equilibrium state, shows that it behaves singularly at the crit-
ical point. This is similar in behavior to the magnetic suscep-
tibility. Transfer entropy examines the dependence between
random variables indicated by the time-varying observations.
Usually, transfer entropy is used to examine causality, such
as event X occurring as a result of event Y . In this study,
the transfer entropy is applied to the dynamic Ising model to
investigate the anomaly of the system. However, in this study,
it is not assumed that the system approaches an equilibrium
state by updating the system due to dynamics. Following
Ref. [19], we define the transfer entropy as

T ≡ 1

|E |
∑

(i, j)∈E
Ts j→si , (12)

where the sum is performed for all edges and Ts j→si is defined
by

Ts j→si =
∑

si (t+�)∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P(si(t + �), si(t ), s j (t ))

× ln

{
P(si(t + �)|si(t ), s j (t ))

P(si(t + �)|si(t ))

}
. (13)

Here transfer entropy is defined so as to find the causal rela-
tionship that s j (t ), where j is adjacent to i, has to si(t + �).
To estimate Eq. (13), we have to evaluate the joint probability
distributions by sampling. Because Eq. (13) is a quantity of
order O( 1

N ) in the case of the asynchronous update, it is
difficult to estimate it by sampling. In Ref. [19], the sampling
is performed after Eq. (13) has been transformed. As a result,
the sampling is performed in the equilibrium state.

C. Approximate method

To estimate the transfer entropy (12) with Eq. (13), we
have to evaluate the joint probability distributions and the
conditional probability distribution. Because the conditions
are different between update rules, the case of asynchronous
update and the case of synchronous update will be explained
separately.

1. Asynchronous update

Transfer entropy (13) is transformed into

T (a)
s j→si

=
∑

si (t+ 1
N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)

× ln

{
P
(
si
(
t + 1

N

)
, si(t ), s j (t )

)
P(si(t ), s j (t ))

P[si(t )]

P
(
si
(
t + 1

N

)
, si(t )

)
}
,

(14)

where we set � to 1
N . The joint probability distributions which

constitute the transfer entropy are evaluated by marginalizing
the probability distribution, Eq. (6). However, because it is
impossible to estimate the joint probability distribution, we
adopt the cluster variational method as an approximation. In
the cluster variational method, the simplest approximation is
called a star approximation in Ref. [21]. In the star approxi-
mation, the joint probability distribution of right-hand side on
Eq. (6) is factorized by a single-vertex probability distribution
as follows:

P

(
si

(
t + 1

N

)
, si(t ), s∂i(t )

)
= w(a)

(
si

(
t + 1

N

)
|si(t ), s∂i(t )

)
P[si(t )]

∏
j∈∂i

P[s j (t )]. (15)

Summing over si(t + 1
N ) in Eq. (15), we obtain

P(si(t ), s∂i(t )) =
∑

si (t+ 1
N )∈X

P

(
si

(
t + 1

N

)
, si(t ), s∂i(t )

)
= P[si(t )]

∏
j∈∂i

P[s j (t )], (16)

where Eq. (7) is utilized. The formula shows that the probability distribution of random variables at the same time is decomposed
into probability distributions of individual variables. As shown in Eq. (14), we have to estimate the probability distributions,
P[si(t )], P(si(t + 1

N ), si(t )), and P(si(t + 1
N ), si(t ), s j (t )). In the star approximation, the probability distribution P(si(t ), s j (t )) is
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factorized as P[si(t )]P[s j (t )], because si(t ) and s j (t ) are on the same time. Considering that si(t ) is binary, the above probability
distributions can be expressed as follows:

P[si(t )] = 1
2 [1 + si(t )mi(t )], (17)

P

(
si

(
t + 1

N

)
, si(t )

)
=1

4

[
1 + si

(
t + 1

N

)
mi

(
t + 1

N

)
+ si(t )mi(t ) + si

(
t + 1

N

)
si(t )ci

(
t + 1

N
, t

)]
, (18)

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= 1

8

[
1 + si

(
t + 1

N

)
mi

(
t + 1

N

)
+ si(t )mi(t ) + s j (t )mj (t ) + si

(
t + 1

N

)
si(t )ci

(
t + 1

N
, t

)

+ si

(
t + 1

N

)
s j (t )c′

i j

(
t + 1

N
, t

)
+ si(t )s j (t )mi(t )mj (t ) + si

(
t + 1

N

)
si(t )s j (t )ti j

(
t + 1

N
, t

)]
,

(19)

where mi(t ), ci(t + 1
N , t ), c′

i j (t + 1
N , t ), and ti j (t + 1

N , t ) are defined as

mi(t ) =
∑

si (t )∈X
si(t )P[si(t )], (20)

ci

(
t + 1

N
, t

)
=

∑
si (t+ 1

N )∈X ,

∑
si (t )∈X

si

(
t + 1

N

)
si(t )P

(
si

(
t + 1

N

)
, si(t )

)
, (21)

c′
i j

(
t + 1

N
, t

)
=

∑
si (t+ 1

N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

si

(
t + 1

N

)
s j (t )P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
, (22)

ti j

(
t + 1

N
, t

)
=

∑
si (t+ 1

N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

si

(
t + 1

N

)
si(t )s j (t )P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
, (23)

respectively. The derivation of Eqs. (18) and (19) appears in Appendix B. The probability distributions must satisfy the following
marginalization constrains:

P[si(t )] =
∑

si (t+ 1
N )∈X

P

(
si

(
t + 1

N

)
, si(t )

)
, (24)

P

(
si

(
t + 1

N

)
, si(t )

)
=

∑
s j (t )∈X

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
. (25)

We can recognize that the probability distributions, Eqs. (17), (18), and (19), satisfy the marginalization constrains, Eqs. (24)
and (25).

To obtain the renewal rule of mi(t ), we multiply Eq. (15) by si(t + 1
N ) and sum over all the random variables, and then we

obtain

mi

(
t + 1

N

)
=

(
1 − 1

N

)
mi(t ) + 1

N

∑
s∂i (t )∈X |∂i|

tanh

[∑
k∈∂i

Jiksk (t )

] ∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (26)

In a similar way, multiplying Eq. (15) by si(t + 1
N ) and si(t ) and summing over all the random variables, we obtain

ci

(
t + 1

N
, t

)
=

(
1 − 1

N

)
+ 1

N
mi(t )

∑
s∂i (t )∈X |∂i|

tanh

[∑
k∈∂i

Jiksk (t )

] ∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (27)

Similarly, we obtain

c′
i j

(
t + 1

N
, t

)
=

(
1 − 1

N

)
mi(t )mj (t ) + 1

N

∑
s∂i (t )∈X |∂i|

tanh

[∑
k∈∂i

Jiksk (t )

]
s j (t )

∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
, (28)

ti j

(
t + 1

N
, t

)
=

(
1 − 1

N

)
mj (t ) + 1

N
mi(t )

∑
s∂i (t )∈X |∂i|

tanh

[∑
k∈∂i

Jiksk (t )

]
s j (t )

∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (29)
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Substituting Eqs. (26), (27), (28), and (29) for the probability distributions, Eqs. (18) and (19), we recognize the probability
distributions divide into O(1) order terms and O( 1

N ) order terms. To save space, the following symbols are introduced to represent
the formula:

� =
∑

s∂i (t )∈X |∂i|
tanh

[∑
k∈∂i

Jiksk (t )

] ∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
, (30)

� j =
∑

s∂i (t )∈X |∂i|
tanh

[∑
k∈∂i

Jiksk (t )

]
s j (t )

∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (31)

Using these symbols, Eq. (18) becomes

P

(
si

(
t + 1

N

)
, si(t )

)
= 1

4

{
1 + si

(
t + 1

N

)
mi(t ) + si(t )mi(t ) + si

(
t + 1

N

)
si(t )

}

+ 1

N

1

4

{
si

(
t + 1

N

)
[−mi(t ) + �] + si

(
t + 1

N

)
si(t )[−1 + mi(t )�]

}
, (32)

and Eq. (19) becomes

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= 1

8

{
1 + si

(
t + 1

N

)
mi(t ) + si(t )mi(t ) + s j (t )mj (t ) + si

(
t + 1

N

)
si(t )

+ si

(
t + 1

N

)
s j (t )mi(t )mj (t ) + si(t )s j (t )mi(t )mj (t ) + si

(
t + 1

N

)
si(t )s j (t )mj (t )

}

+ 1

N

1

8

{
si

(
t + 1

N

)
[−mi(t ) + �] + si

(
t + 1

N

)
si(t )[−1 + mi(t )�]

+ si

(
t + 1

N

)
s j (t )[−mi(t )mj (t ) + � j] + si

(
t + 1

N

)
si(t )s j (t )[−mj (t ) + mi(t )� j]

}
. (33)

Equations (17), (32), and (33) are substituted for Eq. (14), and then O(1) order terms and O( 1
N ) order terms are separated.

Before substitution, we transform Eq. (14) into the following formula

T (a)
s j→si

=
∑

si (t+ 1
N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
ln

{
P
(
si
(
t + 1

N

)
, si(t ), s j (t )

)
P[s j (t )] P

(
si
(
t + 1

N

)
, si(t )

)}

=
∑

si (t+ 1
N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

[
δsi (t+ 1

N ),si (t ) + δsi (t+ 1
N ),−si (t )

]
P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
ln

{
P
(
si
(
t + 1

N

)
, si(t ), s j (t )

)
P[s j (t )] P

(
si
(
t + 1

N

)
, si(t )

)}

=
∑

si (t )∈X ,

∑
s j (t )∈X

P(si(t ), si(t ), s j (t )) ln

{
P(si(t ), si(t ), s j (t ))

P[s j (t )] P(si(t ), si(t ))

}

+
∑

si (t )∈X ,

∑
s j (t )∈X

P( − si(t ), si(t ), s j (t )) ln

{
P( − si(t ), si(t ), s j (t ))

P[s j (t )] P( − si(t ), si(t ))

}
, (34)

where the formula P(si(t ), s j (t )) = P[si(t )]P[s j (t )] is utilized in the derivation of the right-hand side of the first line. In the case
of si(t + 1

N ) = si(t ), Eqs. (32) and (33) become

P(si(t ), si(t )) = 1

2
{1 + si(t )mi(t )} + 1

N

1

4
{si(t )[−mi(t ) + �] − 1 + mi(t )�}, (35)

P(si(t ), si(t ), s j (t )) = 1

4
{1 + si(t )mi(t ) + s j (t )mj (t ) + si(t )s j (t )mi(t )mj (t )}

+ 1

N

1

8
{si(t )[−mi(t ) + �] − 1 + mi(t )� + si(t )s j (t )[−mi(t )mj (t ) + � j] + s j (t )[−mj (t ) + mi(t )� j]},

(36)
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respectively. On the other hand, when si(t + 1
N ) = −si(t ), Eqs. (32) and (33) become

P( − si(t ), si(t )) = 1

N

1

4
{si(t )[mi(t ) − �] + 1 − mi(t )�}, (37)

P( − si(t ), si(t ), s j (t )) = 1

N

1

8
{si(t )[mi(t ) − �] + 1 − mi(t )� + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]}, (38)

respectively. Note that Eqs. (37) and (38) are composed of only O( 1
N ) order terms. Substituting Eqs. (35), (36), (37), and (38) to

the last two lines of Eq. (34), we expand it with respect to 1
N . If the tedious intermediate derivation process is omitted and the

transfer entropy after the order of O( 1
N ) is written out, Eq. (34) becomes

T (a)
s j→si

= 1

N

∑
si (t )∈X ,

∑
s j (t )∈X

1

8
{si(t )s j (t )[−mj (t )� + � j] + s jmi(t )[−mj (t )� + � j]}

+ 1

N

∑
si (t )∈X ,

∑
s j (t )∈X

1

8
{si(t )[mi(t ) − �] + 1 − mi(t )� + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]}

× ln

{
si(t )[mi(t ) − �] + 1 − mi(t )� + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]

{si(t )[mi(t ) − �] + 1 − mi(t )�}{1 + s j (t )mj (t )}
}

+ O

(
1

N2

)
. (39)

The first term originates from the term of si(t + 1
N ) = si(t ) in Eq. (34) and the second term from that of si(t + 1

N ) = −si(t ).
Summing over si(t ) and s j (t ), the first term becomes zero due to symmetry, and only the second term contributes to the transfer
entropy. As a result, the transfer entropy is derived as

T (a)
s j→si

= 1

N

∑
si (t )∈X ,

∑
s j (t )∈X

1

8
{si(t )[mi(t ) − �] + 1 − mi(t )� + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]}

× ln

{
si(t )[mi(t ) − �] + 1 − mi(t )� + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]

{si(t )[mi(t ) − �] + 1 − mi(t )�}{1 + s j (t )mj (t )}
}
. (40)

By substituting mi(t ) to Eq. (40), we can evaluate it. When the system is in a steady state, the condition mi(t + 1
N ) = mi(t ) is

satisfied. Substituting mi(t + 1
N ) = mi(t ) to Eq. (26), we obtain

mi(t ) =
∑

s∂i (t )∈X |∂i|
tanh

[∑
k∈∂i

Jiksk (t )

] ∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (41)

Equation (41) determines mi(t ), and can be resolved by an iteration method. Using Eq. (41), i.e., mi(t ) = �, we simplify Eq. (40)
as follows;

T (a)
s j→si

= 1

N

∑
si (t )∈X ,

∑
s j (t )∈X

1

8
{1 − mi(t )mi(t ) + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]}

× ln

{
1 − mi(t )mi(t ) + si(t )s j (t )[mi(t )mj (t ) − � j] + s j (t )[mj (t ) − mi(t )� j]

{1 − mi(t )mi(t )}{1 + s j (t )mj (t )}
}
. (42)

2. Synchronous update

The derivation of the transfer entropy in the synchronous update is much easier than that in the asynchronous update. In the
star approximation, Eq. (10) becomes

P(si(t + 1), s∂i(t )) = w(s)(si(t + 1)|s∂i(t ))
∏
j∈∂i

P[s j (t )]. (43)

The difference from the case of the asynchronous update is that Eq. (43) does not depend on si(t ), i.e., P(si(t + 1), si(t ), s∂i(t )) =
P(si(t + 1), s∂i(t ))P[si(t )]. The proof of it appears in Appendix C. This property greatly simplifies the problem. Taking account
of this property, the transfer entropy becomes

T (s)
s j→si

=
∑

si (t+1)∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P(si(t + 1), si(t ), s j (t )) ln

{
P(si(t + 1), si(t ), s j (t ))

P(si(t ), s j (t ))
P[si(t )]

P(si(t + 1), si(t ))

}

=
∑

si (t+1)∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P(si(t + 1), s j (t ))P[si(t )] ln

{
P(si(t + 1), s j (t ))P[si(t )]

P[si(t )]P[s j (t )]

P[si(t )]

P[si(t + 1)]P[si(t )]

}
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= −
∑

si (t+1)∈X
P[si(t + 1)] ln P[si(t + 1)] −

∑
s j (t )∈X

P[s j (t )] ln P[s j (t )]

+
∑

si (t+1)∈X ,

∑
s j (t )∈X

P(si(t + 1), s j (t )) ln P(si(t + 1), s j (t )). (44)

Note that, compared to the mutual information, P(si(t ), s j (t )) is replaced with P(si(t + 1), s j (t )). To evaluate the transfer
entropy, the probability distributions, P[si(t + 1)], P[s j (t )], and P(si(t + 1), s j (t )) are required. In the same way as the
asynchronous update, the probability distributions are expressed as

P[si(t )] = 1
2 [1 + si(t )mi(t )], (45)

P(si(t + 1), s j (t )) = 1
4 [1 + si(t + 1)mi(t + 1) + s j (t )mj (t ) + si(t + 1)s j (t )c′

i j (t + 1, t )], (46)

where mi(t ) is defined as (20), and c′
i j (t + 1, t ) is defined as

c′
i j (t + 1, t ) =

∑
si (t+1)∈X ,

∑
s j (t )∈X

si(t + 1)s j (t )P(si(t + 1), s j (t )). (47)

The renewal rule of mi(t ) is given as

mi(t + 1) =
∑

s∂i (t )∈X |∂i|
tanh

[∑
k∈∂i

Jiksk (t )

] ∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (48)

The formula c′
i j (t + 1, t ) is derived as

c′
i j (t + 1, t ) =

∑
s∂i (t )∈X |∂i|

tanh

[∑
k∈∂i

Jiksk (t )

]
s j (t )

∏
k′∈∂i

1 + sk′ (t )mk′ (t )

2
. (49)

Using Eqs. (45) and (46), the transfer entropy is given as

T (s)
s j→si

= −
∑

si (t+1)∈X

1 + si(t + 1)�

2
ln

[
1 + si(t + 1)�

2

]
−

∑
s j (t )∈X

1 + s j (t )mj (t )

2
ln

[
1 + s j (t )mj (t )

2

]

+
∑

si (t+1)∈X ,

∑
s j (t )∈X

1 + si(t +1)�+s j (t )mj (t )+si(t + 1)s j (t )� j

4
ln

[
1+si(t +1)� + s j (t )mj (t ) + si(t + 1)s j (t )� j

4

]
,

(50)

where we use the symbols defined in Eqs. (30) and (31). In the case of a system in steady state, the relation mi(t + 1) = mi(t ) is
satisfied, and then the transfer entropy is described by a simpler formula.

III. NUMERICAL SIMULATION RESULTS

To verify the effectiveness of our method, we compare our
results with the transfer entropy obtained by the Monte Carlo
simulation. We adopt Ising models on the square and cubic
lattices as examples. We assume that the system is uniform so
that Ji j = J . Because of the uniformity of space, mi(t ) does
not depend on i, i.e., mi(t ) = m(t ) for all i. In the case of the
asynchronous update, the probability distribution converges
to the Boltzmann distribution after iterating the asynchronous
update infinitely. In the steady state, m(t ) does not depend on
time, and we set m(t ) = m. The transfer entropy becomes

T (a) = 1

N

∑
σ∈X ,

∑
σ ′∈X

1

8
{1−m2 + σσ ′(m2−�) + σ ′m(1−�)}

× ln

{
1 − m2 + σσ ′(m2 − �) + σ ′m(1 − �)

(1 − m2)(1 + σ ′m)

}
,

(51)

where m is evaluated from

m =
∑

σ1∈X ,

· · ·
∑

σD∈X
tanh

[
J

D∑
k=1

σk

]
D∏

k′=1

1 + σk′m

2
. (52)

Equation (52) is equivalent to m in the hard-spin mean-field
theory [32–39]. The symbol � is defined as

� =
∑

σ1∈X ,

· · ·
∑

σD∈X
tanh

[
J

D∑
k=1

σk

]
σ1

D∏
k′=1

1 + σk′m

2
, (53)

where m obtained from Eq. (52) is substituted in. The quantity
D is the number of neighboring vertices, and the value of D is
4 or 6 for the square lattice or cubic lattice, respectively. In the
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case of the synchronous update, the transfer entropy becomes

T (s) = −
∑
σ∈X

(1 + σm) ln

(
1 + σm

2

)

+
∑
σ∈X ,

∑
σ ′∈X

1 + (σ + σ ′)m + σσ ′�
4

× ln

[
1 + (σ + σ ′)m + σσ ′�

4

]
, (54)

where m is evaluated from (52), and � is defined as Eq. (53).
Note that m is common to both the asynchronous and the
synchronous updates in the star approximation.

Using dataset sampled by the Monte Carlo method, the
transfer entropy is evaluated. In the case of asynchronous
update and Ising model on a square lattice, the formula giving
the transfer entropy is obtained in Ref. [19]. The formula
uses both exact solution results, i.e., the exact energy and
magnetization, and the Monte Carlo sampling. In the case
of Ising model on a cubic lattice, the transfer entropy is
estimated by dataset sampled by the Monte Carlo method.
The equation for calculating transfer entropy on a cubic
lattice by Monte Carlo sampling is present in Appendix D.
In the case of synchronous update, there is no formula as in the
asynchronous case for obtaining the transfer entropy, hence
the transfer entropy is evaluated only by sampling. In that
case, the frequency distribution substitutes for the probability
distribution in the calculation of the transfer entropy. The
Monte Carlo simulation is performed on a square lattice
composed of 512 × 512 vertices and a cubic lattice composed
of 64 × 64 × 64 vertices. Periodic boundary conditions are
imposed on both lattices. Samples taken until the system
relaxes to a steady state are discarded. The number of datasets
is 104, and even if the number of datasets increases further,
there is no difference in the results. Additionally, even if the
size of the system is further increased, the result does not
change.

Figures 1(a) and 1(b) show m as a function of J and com-
pare m (filled circles) obtained by the Monte Carlo simulation
with m (open circles) obtained by Eq. (52). The black curve in
Fig. 1(a) shows the result of the exact solution and is in com-
plete agreement with the filled circles. Figures 1(c) and 1(d)
show the transfer entropy as a function of J when updating
asynchronously. Here, the transfer entropy is multiplied by N .
Figures 1(e) and 1(f) show the transfer entropy as a function of
J when updating synchronously. As can be seen from Eq. (51),
the transfer entropy of the asynchronous update, T (a), is a
quantity of O( 1

N ). As shown in Ref. [19] and Eq. (D1) in
Appendix D, the formula of the transfer entropy required for
the calculation by the Monte Carlo method is also in the
order of O( 1

N ). However, as indicated by Eq. (54), the transfer
entropy of the synchronous update, T (s), is a quantity of O(1).
The vertical axis of Figs. 1(c) and 1(d) represent N times the
amount of the transfer entropy for the asynchronous update. In
Figs. 1(c)–1(f), the filled circles show the result by the Monte
Carlo method, and the open circles show the result obtained
by our method. The left column shows the result of the Ising
model on the square lattice, and the right column shows the
result of the Ising model on the cubic lattice. The vertical lines

0 0.2 0.4 0.6

0

1

J

m

2D Ising
asynchronous
N=512×512

(a)

0 0.2 0.4 0.6

0
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0.04

J

N×T

2D Ising
asynchronous
N=512×512

(c)

0 0.2 0.4

0
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J

N×T

3D Ising
asynchronous
N=64×64×64

(d)

0 0.2 0.4 0.6

0

0.1

0.2

J

T

2D Ising
synchronous
N=512×512

(e)

0 0.2 0.4

0

0.02

0.04

J

T

3D Ising
synchronous
N=64×64×64

(f)

0 0.2 0.4

0

1

J

m

3D Ising
asynchronous
N=64×64×64

(b)

FIG. 1. Comparison of the results obtained using the proposed
method (open circles) and Monte Carlo simulation results (filled
circles). Figures in the first row represent the results obtained by
expressing m as a function of J . Figures in the second row represent
the N times transfer entropy expressed as a function of J in the case
of asynchronous update. Figures in the third row indicate the transfer
entropy by synchronous update, expressed as a function of J . Figures
in the left column represent results of Ising model on a square lattice.
Figures on the right column represent the results of Ising model on a
cubic lattice. Refer to text for explanation of vertical lines.

represent the critical points ranging from m = 0 to m > 0.
The vertical solid lines show the critical points obtained by
other methods, and the vertical broken lines show the critical
points obtained by Eq. (52). In the case of the square lattice,
the critical value of J is given by the exact solution, and in
the case of the cubic lattice, the critical value of J is estimated
by high-temperature expansions [40]. The critical values of J
are summarized in Table I. As shown in Figs. 1(a) and 1(b),
the behavior of m is the same except for the transition point in

TABLE I. Critical values of J .

Exact and expansion Eq. (52)

Square lattice 0.440686· · · 0.323643
Cubic lattice 0.221654 0.197109
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each case. The difference in the critical value J between other
methods and our approximation method is smaller in the cubic
lattice than in the square lattice. The behavior of m is identical
in both synchronous and asynchronous updates. The transfer
entropy computed by our method exhibits a peak at the critical
J evaluated by Eq. (52). In all calculated cases, the transfer
entropy derived by our method for small and large J is in good
agreement with the one derived by the Monte Carlo method.
However, in the vicinity of the transition point, the difference
in the transfer entropy calculated by these two methods is
large. In the case of the cubic lattice, the range in which the
two results match is greater than in the case of the square
lattice. The behavior of the transfer entropy is qualitatively
the same for synchronous and asynchronous updates.

IV. SUMMARY AND DISCUSSION

In this study, transfer entropy was investigated for the
asynchronous update and also for updates that do not reach
equilibrium, such as the synchronous update. The cluster vari-
ational method was adopted as a method to approximate the
dynamic Ising model. We have developed a method that ap-
proximates the transfer entropy for both the asynchronous and
synchronous updates. Only when the update is asynchronous
and the coupling parameters between vertices are symmetric
is the detailed balance condition satisfied, and the equilibrium
state is reached by repeating the update infinitely. Our method
is applicable not only to the equilibrium state but also to
the nonequilibrium state that does not satisfy the detailed
balance condition. Our method is in very good agreement
with the Monte Carlo simulation results in the J region
excluding the transition point. Even near the transition point,
the simulation results are well reproduced qualitatively. The
proposed approximate method can determine transfer entropy
by solving transcendental equations without the need for sam-
pling, as is case with Monte Carlo simulation. Moreover, even
after deviation from the transition point, the transfer entropy
can be determined by our method with considerable accuracy.
The proposed method is expected to find suitable applications
in models wherein the transition probabilities are known.

Equations (42) and (50) show that the transfer entropy for
asynchronous updates is in the order of O( 1

N ) and the transfer
entropy for synchronous updates is in the order of O(1).
Intuitively, the differences in the transfer entropy between
the two types of updates are as follows: In the asynchronous
update, we select one spin with a probability of 1/N per
unit time, and then the spin is flipped over according to the
transition probability. On the contrary, in the synchronous
update, it is simultaneously determined whether or not each
spin is flipped over according to the transition probability.
This difference manifests in the form of a difference in the
order of the transfer entropy.

In the case of the asynchronous update, by combining
Eqs. (2) and (3) we can obtain

1

γ

d

dt
m(t ) = −m(t ) +

∑
s∂i (t )∈X |∂i|

tanh

⎡
⎣∑

j∈∂i

Ji js j (t )

⎤
⎦P[s∂i(t )],

(55)

i

FIG. 2. Schematic diagram of a square lattice. The symbol • on
the center represents ith vertex. The symbols � represent vertices
adjacent to the ith vertex and correspond to ∂i. The symbols ©
represent vertices adjacent to � and correspond to ∂ (∂i).

which determines the time variation of m(t ). We have demon-
strated the relation between the above differential equation
and the Glauber dynamics. Taking into account terms up
to the order O( 1

N ), the differential equation and Glauber
dynamics coincide with each other. The transfer entropy for
the asynchronous update is evaluated up to the order O( 1

N ),
with no contradiction in terms of considering the order O( 1

N ),
while for the synchronous update, the transfer entropy is
evaluated up to the order of O(1). As the transfer entropy
in the asynchronous case is a quantity on the order of 1

N , it
is found that it is very difficult to directly obtain the transfer
entropy from the empirical distribution.

We discuss the physical consideration of the star approx-
imation and the method of further improving the approx-
imation accuracy. As shown in Appendix E, mi(t + 1) is
determined by the sum of the past states of s∂i(t ), and the
states of s∂i(t ) are also related to the past states of s∂ (∂i)(t − 1)
on the vertices adjacent to a set of ∂i. The more we incorporate
the effects of the past, the more distant the vertices will be.
The star approximation only considers the most recent past
states, i.e., only the states of vertices adjacent to the vertex of
interest. Because the star approximation does not incorporate
long-range correlation, the accuracy of the approximation
became poor near the transition point. It can be seen that to
improve the accuracy, it is better to incorporate information
from the past state, i.e., to incorporate the influence from
the farther vertex state. A similar argument holds for the
asynchronous case.

On comparing the two-dimensional results against the
three-dimensional results, it was found that using our method,
the accuracy of the three-dimensional results was relatively
higher. Moreover, the accuracy is expected to improve further
as the dimension increases. To illustrate this, let us consider
the case where the dimensions are sufficiently large. For
the sake of simplicity, let us assume an infinite-range model
where all possible pairs of vertices have been connected.
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Equation (52) becomes

m =
∑

σ1∈X ,

· · ·
∑

σN ∈X
tanh

(
J

N∑
k=1

σk

)
N∏

k′=1

1 + σk′m

2

=
∑

σ1∈X ,

· · ·
∑

σN ∈X
tanh(JNm)

N∏
k′=1

1 + σk′m

2

= tanh(JNm)
N∏

k=1

∑
σk∈X

1 + σkm

2
= tanh(JNm). (56)

By assuming that N is sufficiently large, the relation m =
1
N

∑
σk can be used to transform the first line to the second

line. By replacing JN with J0, Eq. (56) reproduces the mean-
field equation [41]. Given that mean-field theory can deter-
mine the exact solution for the infinite-range model; hence,
it can be seen that for the infinite dimension, Eq. (52) leads
to the exact solution. Considering that Eq. (52) gives an exact
solution of m in the infinite dimension, it is expected that using
our approximate method, exact values of transfer entropy can
be determined in the infinite dimension.

We have derived the formula for the transfer entropy by
using dataset under the condition that coupling parameters
Ji j are given. Recently, a method that infers the coupling
parameter Ji j via the transfer entropy has been developed
[42]. We expect that our method can be used effectively for
parameter estimation [43].

APPENDIX A: PROOF OF THE EQUIVALENCE BETWEEN EQ. (5) AND GLAUBER DYNAMICS

Because γ is arbitrary, set γ δt = 1
N . We transform Eq. (3) into

w(a)

(
si

(
t + 1

N

)
|si(t ), s∂i(t )

)
=

(
1 − 1

N

)
δsi (t+ 1

N ),si (t ) + [
δsi (t+ 1

N ),si (t ) + δsi (t+ 1
N ),−si (t )

] 1

N

exp
[
si
(
t + 1

N t
) ∑

j∈∂i Ji js j (t )
]

2 cosh
( ∑

j∈∂i Ji js j (t )
)

= δsi (t+ 1
N ),si (t )

{
1 − 1

N

1

1 + exp
[
2si(t )

∑
j∈∂i Ji js j (t )

]}

+ δsi (t+ 1
N ),−si (t )

{
1

N

1

1 + exp
[
2si(t )

∑
j∈∂i Ji js j (t )

]}

= δsi (t+ 1
N ),si (t )

{
1 − 1

N
Pi[s(t )]

}
+ δsi (t+ 1

N ),−si (t )
1

N
Pi[s(t )], (A1)

where Pi[s(t )] is defined as

Pi[s(t )] = 1

1 + exp
[
2si(t )

∑
j∈∂i Ji js j (t )

] . (A2)

We consider the transition probability

W

(
s
(

t + 1

N

)
|s(t )

)
=

N∏
i=1

w(a)

(
si

(
t + 1

N

)
|si(t ), s∂i(t )

)

=
N∏

i=1

(
δsi (t+ 1

N ),si (t )

{
1 − 1

N
Pi[s(t )]

}
︸ ︷︷ ︸

O(1)

+δsi (t+ 1
N ),−si (t )

1

N
Pi[s(t )]︸ ︷︷ ︸
O( 1

N )

)
. (A3)

Here, the terms in the parentheses are divided into a term of order O(1) and a term of order O( 1
N ). We expand Eq. (A3) up to

O( 1
N ), and then

W

(
s
(

t + 1

N

)
|s(t )

)
=

N∏
i=1

δsi (t+ 1
N ),si (t )

{
1 − 1

N
Pi[s(t )]

}
+

N∑
i=1

δsi (t+ 1
N ),−si (t )

1

N
Pi[s(t )]

N∏
j �=i

δs j (t+ 1
N ),s j (t )

[
1 − 1

N
Pj[s(t )]

]
+ · · ·

=
N∏

i=1

δsi (t+ 1
N ),si (t )

{
1 − 1

N

N∑
k=1

Pk[s(t )]

}
+

N∑
i=1

δsi (t+ 1
N ),−si (t )

N∏
j �=i

δs j (t+ 1
N ),s j (t )

1

N
Pi[s(t )] + O

(
1

N2

)
. (A4)

Equation (A4) agrees with the transition probability of the Glauber dynamics [31]. The first term corresponds to the case where
the state does not change, and the second term corresponds to the transition where one spin is turned over.
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APPENDIX B: DERIVATION OF EQS. (18) AND (19)

Given that si(t + 1
N ), si(t ), and s j (t ) take the value of +1 or −1, we can expand Eq. (19) as

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= 1

8

[
1 + si

(
t + 1

N

)
a + si(t )b + s j (t )c + si

(
t + 1

N

)
si(t )d + si

(
t + 1

N

)
s j (t )e

+ si(t )s j (t ) f + si

(
t + 1

N

)
si(t )s j (t )g

]
, (B1)

where a, b, c, d , e, f , and g are unknown constants. The coefficient 1/8 originates from the normalization condition,∑
si (t+ 1

N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= 1. (B2)

By multiplying both sides of Eq. (B1) by si(t + 1
N ) and adding si(t + 1

N ), si(t ), and s j (t ), we obtain∑
si (t+ 1

N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

si

(
t + 1

N

)
P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= a. (B3)

Using Eqs. (20), (24), and (25), we can demonstrate that a = mi(t + 1
N ). By multiplying both sides of Eq. (B1) by si(t +

1
N )si(t )s j (t ) and adding si(t + 1

N ), si(t ), and s j (t ), we obtain∑
si (t+ 1

N )∈X ,

∑
si (t )∈X ,

∑
s j (t )∈X

si

(
t + 1

N

)
si(t )s j (t )P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= g. (B4)

Using Eq. (23), we can demonstrate that g = ti j (t + 1
N , t ). The other unknown constants, except f , can be determined in a similar

manner. To determine f , we evaluate

P(si(t ), s j (t )) =
∑

si (t+ 1
N )∈X

P

(
si

(
t + 1

N

)
, si(t ), s j (t )

)
= 1

4
[1 + si(t )b + s j (t )c + si(t )s j (t ) f ], (B5)

where b and c are mi(t ) and mj (t ), respectively. In the star approximation, the probability distribution, Eq. (B5), is factorized
as P(si(t ), s j (t )) = P[si(t )]P[s j (t )]. Using Eq. (17), we can demonstrate that the assertion f = mi(t )mj (t ) holds. The equation
(18) is derived by substituting Eq. (19) in the right-hand side of Eq. (25).

APPENDIX C: PROOF OF P(si(t + 1), si(t ), s∂i(t )) = P(si(t + 1), s∂i(t ))P[si(t )] IN THE CASE OF SYNCHRONOUS UPDATE

In Eq. (9), we marginalize s(t + 1) and s(t ) except si(t + 1), si(t ), and s∂i(t ), the following formula

P(si(t + 1), si(t ), s∂i(t )) = w(s)(si(t + 1)|s∂i(t ))P(si(t ), s∂i(t )), (C1)

is derived. In the star approximation, Eq. (C1) becomes

P(si(t + 1), si(t ), s∂i(t )) = w(s)(si(t + 1)|s∂i(t ))P[si(t )]
∏
j∈∂i

P[si(t )]. (C2)

Because P(si(t + 1), s∂i(t )|si(t )) = P(si(t + 1), s∂i(t )), the proposition is proved.

APPENDIX D: TRANSFER ENTROPY ON A CUBIC LATTICE BY MONTE CARLO METHOD IN THE CASE OF
ASYNCHRONOUS UPDATE

We present determination of transfer entropy on a cubic lattice using Monte Carlo sampling in the case of the asynchronous
update. It is derived by referring to the derivation in Ref. [19]. The transfer entropy is given by

T (a) = 1

N

{
−

∑
σ∈X

q ln

[
q

1
2 (1 + σm)

]
+

∑
σ∈X ,

∑
σ ′∈X

qσ ′ ln

[
qσ ′

1
4 (1 + σm + σ ′m − 1

3σσ ′U )

]}
, (D1)

where m and U are the magnetization and internal energy, respectively. It should be noted that coefficient 1/3 is different from
the transfer entropy on a square lattice. In the case of Ising model on a square lattice, the exact solution can be used for m and
U . However, in the case of Ising model on a cubic lattice, m and U are evaluated by the Monte Carlo method. The quantities q
and qσ are defined by the following equations.

q = 1
2 〈Pi(s)〉, qσ = 1

4 {〈Pi(s)〉 + σ 〈s jPi(s)〉}, (D2)
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where Pi(s) is given by Eq. (A2), 〈· · · 〉 denotes an ensemble average on equilibrium, and j ∈ ∂i. The quantities 〈Pi(s)〉 and
〈s jPi(s)〉 are evaluated using the Monte Carlo method for both square and cubic lattices.

APPENDIX E: PHYSICAL CONSIDERATION OF THE STAR APPROXIMATION

We will discuss the star approximation from the physical point of view and the way in which the accuracy of the approximation
can be increased. For simplicity, we assume that the dynamics are provided by the synchronous update. Let us start with Eq. (10).
The magnetization of the ith vertex is obtained from Eq. (10) as

mi(t + 1) =
∑

si (t+1)∈X ,

∑
s∂i (t )∈X |∂i|

si(t + 1)P(si(t + 1), s∂i(t ))

=
∑

si (t+1)∈X ,

∑
s∂i (t )∈X |∂i|

si(t + 1)w(s)(si(t + 1)|s∂i(t )]P[s∂i(t )]

=
∑

s∂i (t )∈X |∂i|
tanh

⎡
⎣∑

j∈∂i

Ji js j (t )

⎤
⎦P[s∂i(t )]. (E1)

In the star approximation, the joint probability distribution P[s∂i(t )] is factorized by a single-vertex probability distribution.
Without the approximation, P[s∂i(t )] is obtained from Eq. (9) as

P[s∂i(t )] =
∑

s∂ (∂i) (t−1)∈X |∂ (∂i)|

∏
j∈∂i

w(s)(s j (t )|s∂ j (t − 1))P[s∂ (∂i)(t − 1)], (E2)

where ∂ (∂i) represents a set of vertices that are further adjacent to the vertices adjacent to the ith vertex. For a more concrete
explanation, let us represent them in the case of a square lattice in Fig. 2. The symbols � and © represent ∂i and ∂ (∂i),
respectively. Substituting Eq. (E2) into Eq. (E1), we obtain the following formula,

mi(t + 1) =
∑
s∂i (t ),

∑
s∂ (∂i) (t−1)

tanh

⎡
⎣∑

j∈∂i

Ji js j (t )

⎤
⎦ ∏

j∈∂i

w(s)(s j (t )|s∂ j (t − 1))P[s∂ (∂i)(t − 1)]

=
∑
s∂i (t ),

∑
s∂ (∂i) (t−1)

tanh

⎡
⎣∑

j∈∂i

Ji js j (t )

⎤
⎦ ∏

j∈∂i

exp
[
s j (t )

∑
k∈∂ j J jksk (t − 1)

]
2 cosh

[ ∑
k∈∂ j J jksk (t − 1)

] P[s∂ (∂i)(t − 1)]. (E3)

Equation (E1) shows that the sum is performed for s on the vertices • and � in Fig. 2. Equation (E3) shows that the sum is
performed for s on the vertices •, �, and ©. To find out how the accuracy of the approximation has changed, we approximate
P[s∂ (∂i)(t − 1)] as a product of single-vertex probability distributions. Equation (E3) then becomes

mi(t + 1) =
∑
s∂i (t ),

∑
s∂ (∂i) (t−1)

tanh

⎡
⎣∑

j∈∂i

Ji js j (t )

⎤
⎦ ∏

j∈∂i

exp
[
s j (t )

∑
k∈∂ j J jksk (t − 1)

]
2 cosh

[ ∑
k∈∂ j J jksk (t − 1)

] ∏
k∈∂ (∂i)

1 + sk (t − 1)mk (t − 1)

2
. (E4)

For comparison, we assume the system is in the steady state and the coupling parameter Ji j is uniform, i.e., Ji j = J . We can
then set mi(t + 1) = m and mk (t − 1) = m. The critical value of J , where the solution m of the transcendental equation changes
from a value of zero to a positive value, is determined as J = 0.334736. This value is an improvement from the case of the star
approximation and is closer to the exact value in Table I than the value calculated by the star approximation. It is expected that
the accuracy will improve if calculations are performed by incorporating older s in the past.
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