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Detecting depinning and nonequilibrium transitions with unsupervised machine learning
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Using numerical simulations of a model disk system, we demonstrate that a machine learning generated order-
parameter-like measure can detect depinning transitions and different dynamic flow phases in systems driven far
from equilibrium. We specifically consider monodisperse passive disks with short range interactions undergoing
a depinning phase transition when driven over quenched disorder. The machine learning derived order-parameter-
like measure identifies the depinning transition as well as different dynamical regimes, such as the transition from
a flowing liquid to a phase separated liquid-solid state that is not readily distinguished with traditional measures
such as velocity-force curves or Voronoi tessellation. The order-parameter-like measure also shows markedly
distinct behavior in the limit of high density where jamming effects occur. Our results should be general to the
broad class of particle-based systems that exhibit depinning transitions and nonequilibrium phase transitions.
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I. INTRODUCTION

Principal component analysis (PCA) is a linear algebra
algorithm that is widely used for identifying patterns in data
sets [1]. PCA determines the axes along which a data set
has the largest variance by expressing the set as a linear
sum of basis vectors. The principal components (PCs) are
the eigenvectors of the data matrix eigenvalue, and the first
principal eigenvector has the largest possible eigenvalue. PCA
is closely related to single vector decomposition, as detailed in
Ref. [2], a primer on the mathematics of PCA. Applications of
PCA include whitening data and reducing the dimensionality
of the system. Often researchers with large data sets use
PCA as a tool to reveal a hidden underlying relationship
among variables by changing the basis in which the data
are expressed and computing the principal components. In
reducible data sets, the sum of basis vectors can be truncated
while maintaining a reasonable approximation of the original
data.

PCA in conjunction with machine learning is used in a
broad range of fields where large data sets are common and
the underlying relationship between the variables may not be
apparent, such as in biology [3,4] and pattern recognition [5].
Use of PCA requires the construction of a feature matrix,
where a feature is a general name for a measurement of a
system. Typically, the feature matrix contains data trials along
its rows, which are often called samples in machine learning,
and different features along its columns. For example, in
facial recognition applications, the pixel values of a digitized
photo are used as features, and each photo is considered a
sample. The PCA algorithm fits the data and outputs the
principal components written as linear combinations of the
original features. The algorithm synthesizes information using
minimization techniques that maximize the variance along the
principal components, which may result from an underlying
fundamental physical model.

In condensed matter physics, PCA has successfully been
applied to detect phase transitions in the Ising and XY models
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based on matrices of raw spin configurations [6-9]. In a
detailed study of various spin models, Hu ef al. [8] confirmed
that PCA is well suited for recognizing order and symmetry
breaking, and showed that the distribution of principal compo-
nents can be used to separate strong first order transitions from
second order transitions as well as to distinguish phase transi-
tions from pattern changes. Equilibrium phase transitions in a
variety of soft matter systems not confined to a lattice can be
detected with PCA, such as a density-driven liquid to hexatic
phase transition in passive disks [10,11], where PCA was
able to reproduce the qualitative shape of the traditional order
parameters. In Ref. [11] the method was extended to nonequi-
librium phase transitions such as random organization [12].
In these studies, the features are constructed intuitively using
measures similar to the pair correlation function g(r), which
is known to be an excellent indicator of both short and long
range order in tightly packed particle systems. Intriguingly,
the transformed principal components found by PCA can be
related to the packing structures in the disk systems, and by
modifying the sampling of the number of probe particles and
neighbor particles, it is possible to develop physical insights
regarding the shape and magnitude of an order-parameter-like
quantity [11].

Since PCA methods have proven successful at characteriz-
ing certain nonequilibrium systems, it is natural to apply these
methods in systems that exhibit depinning transitions when
individual particles, groups of particles, or elastically coupled
elements are driven over quenched disorder [12,13]. Such
behavior arises for the depinning of magnetic vortex lines in
type-1I superconductors [14—18], magnetic domain walls [19],
contact lines [20], electron crystals [21-23], stripe and bubble
phases, [24-27], sliding quantum crystals [28], skyrmions
[29-34], sliding charge density waves [35-37], colloids
[38—43], jammed systems with quenched disorder [44,45],
sliding friction [46—48], geological systems [49], dislocation
dynamics [50,51], pattern forming systems [52], and active
matter [53,54]. In addition to the depinning transition, these
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systems can exhibit a wealth of distinct dynamical flow phases
along with transitions between these phases, such as depin-
ning into a disordered liquid [15,17,18,23,25,33,38-40] fol-
lowed by a transition into a moving crystal [14-16,31,34,35],
moving smectic [18,19,25,26,41,42,55-57], or other moving
pattern [25,26,51,52,54] at higher drives. Traditional meth-
ods to characterize these systems include the velocity-force
curves, differential conductivity, structure factor, and Voronoi
tessellations [13]; however, there are many cases in which the
system exhibits dynamics that appear different to the eye but
are not distinct according to these standard measures, Thus,
the nature of the appropriate order parameter is often not
clear. There have been some studies using machine learning
algorithms to detect depinning transitions on ferroelectric
relaxors using the k-means algorithm [58]. It is, however, an
open question whether a PCA generated order-parameter-like
measure can characterize transient and steady state nonequi-
librium flow phases, as well as nonequilibrium phase transi-
tions, such as those observed in particle based systems.

In this paper, we apply PCA to driven monodisperse disk
systems with quenched disorder. Despite the apparent simplic-
ity of this system, it exhibits not only depinning transitions but
also a variety of distinct dynamical phases, including laning,
clustering, crystalline, and jammed phases [59]. Often the
transitions between these phases only produce weak signa-
tures in the standard measures. We demonstrate that PCA
can automatically detect the different dynamic behaviors as
a function of drive. The features we employ are constructed
from intuitive measures similar to the pair correlation function
g(r) used in Jadrich et al. [10,11]. We show that the machine
learning derived order-parameter-like measure is superior to
the standard measures, indicating that combining the pairwise
distance information into principal components using PCA
can successfully synthesize the fundamental information of
the emergent behavior. This method could be applied to a wide
variety of other particle-based systems that exhibit depinning.

The paper is organized as follows. In Sec. II we outline
the principal component analysis technique for the depinning
system. The simulation details of the disk system, along with
the standard measures such as the velocity-force curve and
Voronoi tessellation are described in Sec. III. We show in
Sec. IV that the principal component analysis of the disk
system at different densities can identify distinct changes
which correlate with changes in the dynamics and structure
of the system, and in Sec. V we summarize our results.

II. PRINCIPAL COMPONENT ANALYSIS OF DISK
SYSTEMS

PCA is designed to discover and maximize correlations in
data sets contained in matrices [8]. The features range from
pixel values of the digitized photo in facial recognition ap-
plications to the matrix of spin values in spin-based systems.
In off-lattice systems, the raw position data do not naturally
lend themselves to description by an m by n matrix. Thus to
apply PCA to disks, it is useful to apply traditional measures
of structural information. Here we use a “particle centered”
measure in PCA to perform dimensionality reduction on the
geometrical environment of the particles themselves, rather
than attempting to classify the manner in which particles

fit into the container. We consider a two-dimensional (2D)
system of disks of radius r interacting with a random array
of pinning sites, as described in [59]; additional simulation
details appear in Sec. III.

We characterize the structural information of the disks
using the relative positional data, r;; = |r;;|, where r;; =
r; —r; is the center-to-center distance between disks i and
J. For a certain subset of probe particles m = Nprope = 1000,
we measure the distance from the probe particle to n of its
neighbor particles. We sort the resulting distances and place
the values into a feature vector for each probe particle i,

<oy Finl- 1)

such that rp <r;; <--- <rjp. In a procedure typical for
PCA, we center the feature vectors by computing the average
of each neighbor distance,
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in order to create a vector containing a series of averages:
(r\p = [{ro)p, (r1)ps ..., {rj)p, - .., (ra)D]. 3)

We subtract (7’) p from each feature vector f, .
We assemble the centered feature vectors into a feature
matrix:

Fz[ﬁ)7ﬁvﬁ""vﬁ1]T- (4)

To remove the correlations introduced in the sorting process,
we perform the essential step of whitening the data, as in
Refs. [10,11]. This is necessary to avoid having the PCA algo-
rithm identify only the sorting-induced correlations instead of
the intended structural transitions. The whitening transforma-
tion is performed by applying the PCA algorithm to a feature
matrix of an ideal gas composed of noninteracting disks at
density ¢ using the same number of probe Npone and neighbor
n disks as in our actual system. The PCA analysis of the ideal
gas system generates a transformation matrix, Wo(¢), that
transforms the ideal gas system with density ¢ into a Gaussian
distribution with mean zero and variance one. We can then use
W, to transform feature matrices from nonideal gas systems
with density ¢ into a coordinate space in which naive sorting
correlations have been removed, preserving only the features
that contain correlations due to the particle interactions and
external forces. It is necessary to compute a separate W, for
each density ¢.

To implement PCA, we use the incremental PCA library
available through Scikit-Learn [60] in order to process many
feature vectors without holding the entire feature matrix in
memory. After analyzing the whole data set, the PCA al-
gorithm returns a transformation matrix, W(¢), that can be
applied to new data. Here, we generate W at fixed density ¢
values for all values of Fpp. Thus the algorithm simultaneously
“sees” systems above and below the depinning transition in
the variety of different phases that are described and plotted
in a phase diagram in Ref. [59].

In order to apply the PCA algorithm, we run the disk
simulation until the system reaches a steady state. Then we
sample snapshots of the system, using 10-50 frames spaced
by At = 1000-10* simulation time steps. In each frame we
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randomly select m = 1000 probe particles, and for each parti-
cle we calculate the distance to its n nearest neighbors. Here
we take n = N;y(¢) — 1, where N, (¢) is the total number of
disks in the sample at density ¢, meaning that we calculate
the distance from the probe particle to all other particles in the
system. For each simulation frame we generate the centered
feature vector f, This must be prewhitened to obtain fiw =
Wo(e) f, . To generate a PCA transformation matrix W (¢) valid
for disk density ¢, we analyze all feature data from all frames
(obtained at all possible values of Fp) for the given disk den-
sity ¢ by feeding ten m x n matrices of prewhitened feature
vectors into the incremental PCA algorithm in sequence. The
algorithm returns the transformed data f/, eigenvalues Ay,
and the transformation matrix W. This matrix may be used to
transform new prewhitened feature vectors from subsequent
snapshots of data obtained at the same value of ¢, or it can
be applied to the already processed feature vectors in order
to generate a visualization of the vectors in the new basis
space.

Jadrich and co-workers [10,11] showed that the principal
components contain structural information of the system, and
thus can be used as an order-parameter-like measure (OP)
of the system. To construct such an OP, we transform a
prewhitened feature vector f‘iw obtained at fixed Fp and ¢ with
the trained PCA model to obtain

pi=Wre. (5)

The order-parameter-like measure P; is defined to be the
extent to which the first principal component captures the
information content in the system,

Py = (Ip1), (6)

where p; is the first element in p. We analyze the eigenvalue
spectrum using a scree plot to determine how well the matrix
can be expressed in the new PC basis. We also plot the magni-
tude of the first principal component, the total transformation
matrix Q = WWO that is remarkably similar to g(r), and the
machine learning (ML) derived OP P, = (|py]).

III. SIMULATION AND SYSTEM

We analyze the data from our previous publication [59], in
which we performed 2D molecular dynamics simulations of
passive disk systems. The system contains N, disks of radius
R, within a simulation box of S, = S, = 60.0, in dimension-
less simulation length units, with periodic boundary condi-
tions. The area density is given by ¢ = Ny R?/(S.S,). In the
absence of quenched disorder, the disks form a polycrystalline
state near ¢ ~ 0.85 and a triangular solid at ¢ = 0.9.

The disk dynamics are governed by the following over-
damped equation of motion:

d r;
n— =Fqq +F, +Fp. (7N

dt
Here n is the damping constant and r; is the location of
disk i. The disk-disk interaction force is Fyy = >, oy kQ2R; —
[r;;DOQRy — |r;;Ei;, where r;; =r1; —r;, B =13/,
the disk radius R; = 0.5, and the spring constant k = 50.
Distances are measured in simulation units /y and forces are

measured in simulation units fy so that k is in units of fy/ly
and the unit of simulation time is T = nly/ fo.

We introduce quenched disorder by placing pinning sites
throughout the sample. The pinning force F, is modeled as
arising from N, randomly placed parabolic attractive wells
with a pinning radius of r, = 0.5, such that only a single disk
can be trapped in a given pinning site at any given time. We fix
the pinning density to ¢, = N,/(S,S)) = 0.314. The driving
force Fp = FpX is applied uniformly to all particles and is
incremented in steps of AFp = 0.05 after every At =1 x
10% simulation time steps. We initialize the disks in random
nonoverlapping positions and allow the system to reach a
steady state at each drive by waiting 10% simulation time steps
before obtaining data.

At each drive increment, we measure the average disk
velocity (V) = Nd_1 Zf\gl v; - X, where v; is the instantaneous
velocity of disk i. The system is completely athermal but the
disks experience fluctuations due to the combination of the
driving force, the pinning sites, and neighboring disks.

A useful measure for characterizing interacting particles
driven over disorder is the fraction Ps of sixfold-coordinated
particles. Here Py = NJI Zf’” 8(z; — 6), where z; is the coor-
dination number of disk i obtained from a Voronoi tessella-
tion. Previously [59], we correlated local maxima in Ps with
changes in the dynamic phases, and demonstrated that Ps did
not have a feature at all of the dynamical phase transitions.
This behavior for the disks with short range interactions
differs from what is observed for particles that have longer
range interactions, where the dynamic phase changes are
more readily detected using information from the Voronoi
tessellation.

IV. RESULTS

In Fig. 1 we plot the traditional dynamical measurements
as a function of Fp/F, for a sample with fixed pinning
density at different disk densities ¢ ranging from ¢ = 0.25
to ¢ = 0.85. The velocity-force curves (V) versus Fp/F, in
Fig. 1(a) have the same features that are generically found
in systems that undergo depinning. At low drive, there is a
pinned regime with (V) = 0. This is followed at higher drive
by a nonlinear regime above depinning, and at the highest
drives, there is a regime in which the velocity increases
linearly with increasing Fp. As the disk density increases,
the depinning transition shifts to lower Fp and the region of
nonlinear velocity response becomes narrower. In Fig. 1(b),
the fraction Ps of sixfold coordinated disks versus Fp/F), is
nearly flat for ¢ = 0.25 and 0.3, while for higher ¢ there is
some tendency for P to increase with increasing Fp. Overall,
the results in Fig. 1 indicate that it is difficult to identify
distinct dynamic phases using these measures, and that it is
even difficult to precisely pinpoint the depinning transition.

A. Low disk density

We first focus on the low density limit with ¢ = 0.25
and ¢ = 0.3, where Fs is almost featureless. In Fig. 2 we
illustrate the disk configurations in a sample with ¢ = 0.3 at
different values of Fp/F,. In the pinned phase at Fp/F, =
0.25, Fig. 2(a) shows that small disordered clusters appear
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FIG. 1. (a) The average disk velocity (V,) vs driving force Fp/F,
in samples with total disk density ¢ of ¢ = 0.85 (down triangles),
0.71 (pentagons), 0.61 (right triangles), 0.55 (stars), 0.43 (squares),
0.30 (up triangles), and 0.25 (circles). (b) The corresponding Ps vs
Fp/Fp.

since some of the particles have formed clogged clusters
instead of being directly trapped by the pinning sites. Above
depinning at Fp/F, = 0.95 in Fig. 2(b), there is a combination
of smaller pinned clusters with a phase separated region of
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FIG. 2. Images obtained at a disk density of ¢ = 0.30 for the sys-
tem in Fig. 1 at Fp = 0.25 (pinned), (b) Fp, = 0.95 (phase separated),
(c) Fp = 1.5 (smectic flow), and (d) Fp = 2.5 (smectic flow).
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FIG. 3. (a) The machine learning derived order-parameter-like
measure P; vs Fp/F, for the system in Fig. 1 at disk density
¢ = 0.30 with 50 realizations. Three phases are clearly apparent:
the pinned state at 0 < Fp/F, < 0.65, the phase separated state at
0.65 < Fp/F, < 1.3, and the smectic or laned state at Fp > 1.3.
(b) d(V)/dFp vs Fp/F, for the same system.

higher density in which the disks move in a band. In Fig. 2(c)
at Fp/F, = 1.5, all the disks are moving in one-dimensional
(1D) chains, while in Fig. 2(d) at Fp = 2.5, the moving
chains have become somewhat more rarefied. These results
indicate that different dynamical regimes are present which
are generally not detectable with the standard measures. We
note that other measures such as the structure factor S(k)
and diffusion similarly show only weak or no changes at the
transitions among these dynamical regimes.

In Fig. 3 we plot the machine learning derived OP P;
versus Fp/F, for the system in Fig. 1. We find P ~ 0.25
for 0 < Fp/F, < 0.65, which is the pinned state illustrated in
Fig. 2(a). This is followed by an increase in P, at Fp/F, =
0.65, corresponding to the depinning transition. P; remains
elevated over the range 0.65 < Fp/F, < 1.05 in the phase
separated state shown in Fig. 2(b). For 1.05 < Fp/F, < 1.4,
Py decreases when the system crosses over into the smectic
or laned state. A small local maximum in P; occurs around
Fp/F, = 1.50 where the laned particles form the widest hor-
izontal bands, such as the band appearing between 35 <y <
55 in Fig. 2(c). There is a gradual decrease in P; from P} =~ 1.0
to Py ~ 0.5 over the range 1.6 < Fp/F, < 3.0 as the smectic
lanes become increasingly well defined, as shown in Figs. 2(c)
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FIG. 4. The scaled eigenvalues (relative scores) Ay of the PCA

algorithm vs the relative ranking N for disk densities of ¢ = 0.85

(down triangles), 0.71 (pentagons), 0.61 (right triangles), 0.55 (stars),

0.43 (squares), 0.30 (up triangles), and 0.25 (circles). N = 1 corre-
sponds to the first principal component.

and 2(d) at Fp/F, = 1.5 and Fp/Fp = 2.5. The results in
Fig. 3 indicate that P; clearly detects and distinguishes the
three phases, pinned, phase separated, and smectic, along
with the transitions between these states. For ¢p = 0.25 (not
shown), we find similar phases and a similar response of P;.
In Fig. 3(b) we show the derivative d(Vy)/dFp vs Fp/F, of
the quantity (V,) plotted in Fig. 1(a) for ¢ = 0.3. Distinct
features in d (V) /d Fp are associated with the phase transitions
described above. Starting from a value of zero at low Fp/F,
where the system is pinned, d(V,)/d Fp becomes nonzero near
Fp/F, =0.65 at the depinning transition, peaks sharply at
Fp/F, = 1.0, and flattens at high driving forces.

B. Eigenvalue distribution

In Fig. 4 we show a scree plot of the eigenvalues Ay for
the samples in Fig. 1 with disk densities of ¢ = 0.25to ¢ =
0.85. Here the eigenvalues are sorted from largest (N = 1) to
smallest and plotted versus eigenvalue ranking N. The scree
plot gives an indication of how successfully the PCA has
reduced the dimensionality of the information present in the
system. When the eigenvalue spectrum is dominated by one or
a few large values of low rank, followed by many small values,
it indicates that the first few eigenvectors can be used to de-
scribe the primary characteristics of the system, since a linear
combination of the first few principal components captures
most of the information. At ¢ = 0.25 and ¢ = 0.3, the first
eigenvalue A is somewhat larger in size and the remainder

of the eigenvalues are nearly flat. For ¢ = 0.3, we find that
Ay 18 40% smaller than A;. At intermediate disk densities
of ¢ =0.43 to ¢ = 0.71, Ay is substantially larger than the
remaining eigenvalues, indicating that the PCA analysis has

captured the features of the system well. We find a significant
jump up in all the eigenvalues at the high density of ¢ = 0.85,

which corresponds to the onset of jamming behavior.
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FIG. 5. P, vs Fp/F, for the system in Fig. 1 at intermediate disk

densities using 50 realizations. (a) At ¢ = 0.43, there are multiple
peaks. (b) At ¢ = 0.61, the peak structure is more compressed.
(c) d{V,)/Fp vs Fp/F, for the same systems at ¢ = 0.43 (blue

squares) and ¢ = 0.61 (orange triangles).

C. Intermediate disk densities

We next consider the intermediate disk density regime. In
Figs. 5(a) and 5(b) we plot P versus Fp/F, for the samples
from Fig. 1 with ¢ =0.43 and ¢ = 0.61, respectively. At
both densities, in Fig. 1 (V,) versus Fp/F), is fairly smooth
and Py has a gradual increase, but it is difficult to distinguish
different phases from these measures. In Fig. 5(c) we plot
d(V)/Fp versus Fp/F, for ¢ =0.43 and ¢ = 0.61. Each
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FIG. 6. Images obtained at a disk density of ¢ = 0.43 for the
system in Fig. 5(a) at (a) Fp/F, = 0.05 (disordered pinned state),
(b) Fp/F, = 0.55 (clustering clogged state), (c) Fp/F, = 0.75 (mov-
ing liquid), (d) Fp/F, = 0.95 (phase separated state with amorphous
order), (e) Fp/F, = 1.5 (phase separated state with crystalline order),
and (f) Fp/F, = 2.5 (moving smectic).

curve smoothly increases over the range 0 < Fp/F, < 0.5
and has a small local maximum near the depinning point. A
spike in d(V,)/Fp appears at Fp/F, = 1.0, while at higher
drives where the force-velocity curve in Fig. 1 is linear,
d(V,)/Fp is flat. In contrast, P, in Fig. 5(a) has two clear
peaks at Fp/F, =0.55 and Fp/F, = 1.0, a plateau region
over the range 1.5 < Fp < 2.0, and drops to a low value for
Fp > 2.0. For ¢ = 0.43, as shown in Fig. 4 we find that X,
is 70% smaller than X;, which is the largest difference we
observe between A; and A,. In Fig. 6(a) we illustrate the disk
configuration at Fp /F,, = 0.05 within the pinned phase, where
Py in Fig. 5(a) is small. Here the disks form small clusters
in the pinned state. At Fp/F, = 0.55 in Fig. 6(b), just below
the depinning transition, the disks form a locally clustered
or clogged state, and at depinning these clusters partially
break apart, producing the dip in P; found in Fig. 5(a).
A local minimum in P; appears near Fp/F, = 0.75, where
the structure is a moving liquid as shown in Fig. 6(c). The
amorphous phase separated state at Fp/F, = 0.95 is illus-
trated in Fig. 6(d). At Fp/F, = 1.5, the system is still phase
separated but the amount of crystalline ordering has increased.

FIG. 7. Images obtained at a disk density of ¢ = 0.61 for
the system in Fig. 5(b) at (a) Fp/F, =0.25 (pinned clogged
state), (b) Fp/F, = 0.95, (phase separated with crystalline order),
(c) Fp/F, = 1.5 (moving state), and (d) Fp/F, = 2.5 (moving state).

In Fig. 6(f) the configuration at Fp/F, = 2.5 indicates that
the disks have formed a moving smectic state. In general, P;
shows a pronounced drop at the transition into the moving
smectic states, while the corresponding Ps curve for ¢ = 0.43
in Fig. 1 exhibits no feature near Fp/F, = 2.5. This indicates
that P; is much more sensitive to the changes in the disk
configurations than Pg or (V).

For ¢ = 0.61, in Fig. 5(b) P, versus Fp/F, has a trend
similar to that found for ¢ = 0.43. There are some differences,
however; the plateau region in P; is smaller for ¢ = 0.61 and
the drop in P; has shifted to a lower value of Fp/F, = 1.5.
Here A, is 60% smaller than A; in Fig. 4. In Fig. 7(a) we
illustrate the disk configuration for the ¢ = 0.61 system at
Fp/F, =0.25, where a pinned clogged state appears. This
is the same value of Fp/F, at which there is a local peak
in P;. Figure 7(b) shows the disk configuration at Fp/F, =
0.95, where the system forms a phase separated state with
local crystalline ordering. Here P; = 3.5, which is close to
the same value found for P; in the ¢ = 0.43 sample in the
phase separated moving crystal phase illustrated in Fig. 6(e) at
Fp/F, =1.5. Thus, at ¢ = 0.61, the moving phase separated
amorphous state found at lower ¢ is missing. In Fig. 7(c)
we show the disk configuration at Fp = 1.5, where the local
phase separation is reduced and the system begins to form a
moving state. This moving state becomes more pronounced in
Fig. 7(d) at Fp = 2.5.

D. High disk densities

For the lower and intermediate disk densities, there are
clear changes in the particle configurations as a function of
drive. At high densities of ¢ > 0.85, however, the system
becomes a uniform jammed solid and the depinning transition
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FIG. 8. P, vs Fp/F, for the system in Fig. 1 at ¢ = 0.85 using 50
realizations, where the disks exhibit jamming behavior and elastic
depinning.

changes in character from plastic, where there can be a
coexistence of pinned and moving particles, to elastic, where
all the particles keep the same neighbors as they move. There
is a distinct change in the eigenvalue distribution in Fig. 4 for
¢ = 0.85, with significant weight appearing at higher values
of N, indicating a change in the ability of the PC to capture
the information in the system. In Fig. 8 we plot P; versus
Fp/Fp for ¢ = 0.85, where A, is 60% smaller than A;. Instead
of peaks, we find a monotonic increase in P; with increasing
Fp/Fp. At this density, d(V,)/dFp vs Fp/F, (not shown) is
nearly flat, as indicated by the constant slope in Fig. 1(a). We
find significantly more noise in P, at ¢ = 0.85 than at lower
values of ¢ because the local disk density is uniform for all
values of Fp/Fp. As a result, there is less natural variance
in the system, making it difficult for PCA to discriminate
between the nearly identical feature vectors at different values
of Fp. In contrast, at lower ¢ the inhomogeneous disk density
produces characteristic gaps in the feature vectors, generating
relatively high variance in the measured neighbor distances. In
Fig. 9(a) we illustrate the disk configuration at Fp/Fp = 0.25,
where the system forms a mostly triangular solid with a small
number of vacancies. For Fp/F, = 2.5, shown in Fig. 9(b),
the structure is similar but the amount of triangular order is
larger. Here the lack of jumps in P is consistent with the fact

60

FIG. 9. Images obtained at a disk density of ¢ = 0.85 for the
system in Fig. 8, where the system forms a jammed solid with
increasing triangular ordering at higher drives. (a) Fp/F, = 0.25.
(b) Fp/F, =2.5.

that the depinning is elastic and the sample shows no large
scale changes in the particle configurations.

E. Properties of the total transformation matrix

The total transformation matrix 0 = WW, provides a phys-
ical snapshot of the system not unlike that given by g(r)
[10,11]. When applied to a raw feature vector fi, Q first
prewhitens the vector through the W, matrix, and then trans-
forms the vector into the PC basis through the W matrix.
The first row of Q, termed [g;], is a convolution of the
prewhitening transformation and the basis transformation for
the first principal component, such that the expression p; =
[g1] ﬁ gives the mapping of the raw feature vector onto the first
principal component. The kth component of [g;] provides the
mapping of the kth component of ﬁ, and since the elements
of f; are ordered according to neighbor distance, with the
smallest values of k corresponding to the smallest neighbor
distances, it is possible to interpret k£ as a neighbor distance.
The prewhitening portion of [¢;], plotted as a function of &,
contains information similar to that found in g(r) of an ideal
gas at density ¢. The transforming portion of [g] indicates
which neighbor distances are most strongly weighted in the
first principal component basis. In Fig. 10 we plot [¢,] versus
k from a PCA analysis of the monodisperse passive disks
at disk densities of ¢ = 0.25, 0.43, 0.61, and 0.85. The
prewhitening component produces regular oscillations in [¢; ]
at spacings corresponding to the average distance between
successive rings of particles surrounding the probe particle. In
an ideal gas, these oscillations would diminish with increasing
k. The uneven weighting of the oscillations is an indication
of which distance scales are important at each density in the
first principal component. In Figs. 10(a)-10(c), samples with
low and intermediate densities of ¢ = 0.25, ¢ = 0.43, and
¢ = 0.61 have large peaks of [g;] at smaller k, indicating that
the structural ordering is relatively short ranged. In contrast,
the high density ¢ = 0.85 sample in Fig. 10(d) has strong
weightings at much larger k, indicating the long range nature
of the emerging crystalline ordering in the jammed state.

Since PCA can identify a structure in the feature vectors
that resembles g(r), it can find shells of nearest neighbor
distances. PCA differs from the standard structure factor
measurement since it associates a single number, P; with the
ability of a g(r)-like measure to describe the system. This
number can be compared as a scalar quantity across different
values of Fp regardless of which wave numbers are dominat-
ing the g(r)-like measure for any given drive. In contrast, with
a measure such as the structure factor, a scalar quantity can be
constructed using the weight at a particular wave number, but
if the underlying pattern shifts among different wave numbers
as a function of drive, this measurement may be quite noisy.
The P, produced by PCA provides a cleaner signature.

F. Finite size

To check for finite size effects, we analyzed the ¢ = 0.30
system for samples of size S, = S, = 20, 40, 60, and 80. We
plot P, versus Fp/F, for the different system sizes in Fig. 11,
while the (V,) versus Fp/F, curves for all values of S, are
identical to the curve shown in Fig. 1. In the smallest system
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FIG. 10. First vector [¢,] from the total transformation matrix Q obtained from 50 realizations versus k, which is related to a neighbor
distance, for the system in Fig. 1 at disk densities ¢ = (a) 0.25, (b) 0.43, (c) 0.61, and (d) 0.85.

with Sy = 20, the signal in P; is lost, but for all of the other
system sizes there is a clear signature of the different dynamic
phases. The S, = 40 sample is large enough to generate a
peak in P; near Fp/F, = 1, and this peak becomes sharper in
the S, = 60 sample. The peak height diminishes again in the
Sy = 80 sample due to the fact that we ran all of the systems
for 10° simulation time steps before measuring, and this was
long enough for the smaller samples to reach a full steady
state but not for the S, = 80 sample. As a result, the peak
height in P; is reduced in the S, = 80 sample. At the peak in
Py, a phase separated region forms, and the size of the phase

> Sx
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FIG. 11. Finite size analysis of density ¢ = 0.30 for system of
varying sizes. P, vs Fp /F, for S, = 20 (light blue circles), 40 (green
squares), 60 (dark blue triangles), and 80 (red diamonds).

separated cluster compared to the overall number of particles
varies with the system size for the same simulation time. All
of the curves are similar for 2 < Fp/F, < 3, where a laned
state appears. In the larger systems, we also tested the effect of
varying the number of probe particles as in Ref. [11], reducing
this number from the original m = 1000 to only m = 150.
We find that the qualitative shape of P; is unchanged even
when the number of probe particles is relatively small, which
is advantageous since the calculations can be performed more
quickly for small m.

V. DISCUSSION

We have demonstrated that unsupervised machine learning
can detect depinning and the transitions between different
dynamical phases in driven systems with quenched disorder.
A similar approach could be adapted for systems with longer
range particle-particle interactions, such as superconducting
vortices [15,17,18], charged colloids, and Wigner crystals
[22,23], which can exhibit a pinned phase, plastic depinning,
disordered liquid flow, and a moving crystal or smectic flow
phase. In these systems it is often possible to use Pg to
detect the transitions; however, in some situations, additional
transitions could be present that produce no signal in Ps but
that could be detected using PCA. For example, at a transition
from a liquid to a strongly nematic or smectic state, the
density of defects in the lattice undergoes little change and
therefore the value of Pg is constant across the transition,
but the PCA could detect the structural change occurring
in the system. Additionally, the plastic flow state may be
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composed of distinct plastic flow phases that have not yet
been characterized but that may be detectable using the PCA
approach. Depinning of particles on periodic substrates would
also be interesting to study since in this system, different types
of soliton or incommensurate flow patterns arise. These flow
states can often be observed through features in the velocity-
force curves, but produce little change in the structure of the
particles [16,41-43]. Here, PCA could be applied to more
readily distinguish between the different types of commen-
surate and incommensurate flows.

At high drives, the fluctuations experienced by the disks as
they move over the quenched disorder can be described by a
shaking temperature Ty, of the type introduced in Ref. [15],
Ty, o< 1/Fp. In Ref. [59] we measured the transverse diffusion
of the driven disks, which can be regarded as an estimate of
T, and found a crossover from subdiffusive to superdiffusive
motion at key structural transitions such as the phase seg-
regated state with crystalline order shown in Fig. 7(b). The
peaks in P; appear at the same transition points.

The spatial Fourier transform of the velocity distribution
would be an interesting quantity to consider in future work on
a larger system to see whether it matches the behavior of the
PCA order-parameter-like measure. In addition, application of
PCA to the static phases of a high density system, including
some that are purely crystalline, and other systems containing
dislocations and/or vacancies, could give an indication of
whether PCA is capable of resolving structure at the individ-
ual dislocation level or whether it is instead primarily picking
up larger scale density heterogeneities. We have tested feature
vectors composed of various combinations of V,, Py, Ps, P,
Py, and the average cluster size, and find that for this system,
the nearest neighbor distances provide the most informative
feature vector.

PCA could also be applied to the class of systems that
exhibit elastic depinning, in which the particles maintain the
same neighbors as they begin to flow [13]. Our disk system at
a density of ¢ = 0.85 generally behaves elastically, keeping
the same structures at depinning as in the moving phase,
and we find that the PCA analysis gives distinctive results
for this elastic state compared to the plastic flow phases that
appear at lower densities. To probe the elastic system, it
may be necessary to include features beyond mere structural
measurements, such as the velocity of individual particles.
This would provide additional information to the PCA that
could allow it to discriminate different dynamic phases at the
cost of significantly increasing the size of the feature vectors.
Elastic depinning can occur for superconducting vortices or
skyrmions interacting with weak pinning, or in the depinning
of domain walls and elastic lines.

Another future direction is to apply PCA to other measures
beyond the particle configurations, such as velocity fluctua-
tions, the velocity-force curves, defect distributions, or local
stress. Our results suggest that unsupervised machine learning
can be a valuable method for identifying different nonequilib-

rium phases and the transitions between them. Since the data
we employed in our analysis included site locations, a similar
approach could be used for any type of particle-based system.

We note that in applying the PCA technique to off-lattice
particle-based systems, some caution is in order. First of all,
PCA will always return a result, but the result is not guaran-
teed to have a physical meaning. It is essential to scrutinize
any learned correlations that appear in the data in order to
compare with known physical symmetries before applying
the method to study previously uncharacterized systems. PCA
assumes that the physical features can be represented using
a linear combination of perpendicular basis vectors. Given
that many particle systems interact via nonlinear potentials,
nonlinear machine learning techniques such as supervised dis-
criminatory techniques that work well for facial identification
algorithms may also be well suited for phase identification.
For example, the relatively noisy P; signal observed for the
elastic depinning at ¢ = 0.85 may become better resolved by
using a nonlinear algorithm.

VI. SUMMARY

In summary, we have shown that PCA can be used to
identify the depinning transition and different nonequilibrium
flow phases in a driven system of disks with short-range
interactions moving over quenched disorder in the form of
randomly placed pinning sites. In this system, traditional
methods used to characterize depinning, such as the velocity-
force curve and the Voronoi tessellation, show only weak
signatures of the different dynamic states. In contrast, the
PCA produces pronounced signals at the transitions between
the pinned state, the moving phase separated state, and the
moving smectic state. Using PCA, we also find evidence
for more subtle phase transitions such as a clustered pinned
phase as well as a transition between an amorphous and a
crystalline phase separated state. The PCA can detect the
onset of the jammed state and exhibits different signatures
for plastic versus elastic depinning. The PCA method can be
used to search for additional features in previously studied
depinning systems such as superconducting vortices, Wigner
crystals, skyrmions, and charge density wave systems, as well
as to identify novel nonequilibrium phases in particle-based
systems.
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