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Breaking of symmetry of interacting dissipative solitons can lead to partial annihilation
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We show that for a large range of approach velocities and over a large interval of stabilizing cubic cross-
coupling between counterpropagating waves, a collision of stationary pulses leads to a partial annihilation of
pulses via a spontaneous breaking of symmetry. This result arises for coupled cubic-quintic complex Ginzburg-
Landau equations for traveling waves for sufficiently large values of the stabilizing cubic cross-coupling
and for large enough approach velocities of the pulses. Briefly, we show in addition that the collision of
counterpropagating pulses in a system of two coupled cubic Ginzburg-Landau equations with nonlinear gradients
(Raman effect) might also lead to partial annihilation, indicating that this breaking of symmetry is generic.
Systems of experimental interest include surface reactions, convective onset, biosolitons, and nonlinear optics.
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The field of pattern formation analyzing the influence of
spatial degrees of freedom on the spatiotemporal behavior
of macroscopic nonequilibrium systems [1] has led to a
bridge from physics to chemical reactions and biological
systems. Solitonic behavior almost free of dissipation is a
well-established feature of macroscopic systems in fields such
as fluid dynamics, plasma physics, and nonlinear optics [2].
In contrast, the study of dissipative solitons [3], localized
structures stabilized by a balance between nonlinearity and
dispersion as well as gain and loss of energy and/or mat-
ter, is currently under intense experimental and theoretical
investigations.

Experimental dissipative systems for which solitonlike be-
havior has been observed in driven nonequilibrium systems
include biological phenomena [4] and chemical reactions [5].
In other experiments collisions between pulses were found to
give rise to bound states of pulses, and to partial annihilation
for which only one pulse survives the collision. These systems
include surface reactions [6], and binary fluid convection
near convective onset [7,8]. In the field of nonlinear optics,
pulse generation has been described [9], while in an excitable
system, namely, the electro-oxidation of CO on Pt, soliton-
like behavior and backfiring was experimentally observed.
This pulse dynamics was reproduced with a three-component
reaction-diffusion model [10].

To model dissipative solitons frequently the approaches
of envelope equations valid near the onset of an instabil-
ity [11,12,13] or order parameter equations containing the
most important terms of the appropriate symmetry are used
[1,14,15]. Using envelope equations describing the electric
field inside a laser with a saturable absorber dissipative soli-
tons in nonlinear optics were predicted [16] and observed
[17].
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To obtain bound states, interpenetration and complete an-
nihilation of dissipative solitons (DSs), coupled cubic-quintic
complex Ginzburg-Landau equations, which have stable dis-
sipative soliton solutions [18], have been used [19,20].

As a complement to experiments and modeling with partial
differential equations we mention that particle-based simula-
tions have been carried out to show the solitonlike behavior
of traveling bands of interacting deformable self-propelled
particles [21].

The phenomenon of partial annihilation of colliding pulses
experimentally observed in Refs. [6–8] turns out to be more
challenging. In Ref. [22] it has been modeled using reaction-
diffusion equations with a defect zone. Using one pulse for
collisions, which is not yet fully in its asymptotic shape, it
has been shown that partial annihilation is also possible [23]
(compare also Ref. [6]). The first more general approach to the
question of partial annihilation has been given in Ref. [24],
where it was shown that a small amount of additive noise
applied near the boundaries between different outcomes of
collisions, such as interpenetration and annihilation, leads to
partial annihilation. This effect has been further elucidated in
Ref. [24] for FitzHugh-Nagumo-type equations as they are
used to model nerve pulse propagation and chemical reactions
[25,26]. In addition, we showed in Ref. [24] that the interval
over which one can get partial annihilation can be increased
by adding noise. In the present Rapid Communication, we
demonstrate that for noise intrinsic to the method (of fixed
amplitude ∼10−16) one can obtain partial annihilation for
a large region of parameter space in approach velocity and
cross-coupling between the counterpropagating waves. This is
due to a spontaneous breaking of symmetry for a sufficiently
large approach velocity and cross-coupling strength of the
counterpropagating dissipative solitons. Noise only serves to
induce the left or right direction. We are thus in a rather dif-
ferent part of the phase diagram and the phenomena described
in Fig. 2 of the present Rapid Communication are for fixed
intrinsic noise.
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FIG. 1. Sketch of the “phase diagram” as a function of approach
velocity v in the region of interest in this Rapid Communication
for fixed value cr . The region of partial annihilation arises between
stationary bound states and complete annihilation. BS denotes sta-
tionary bound states, A annihilation, and PA partial annihilation.
The characteristic outcomes of collisions have been illustrated by x-t
plots where time is plotted on the ordinate and the spatial coordinate
on the abscissa.

Here, we demonstrate for the collisions of stationary dis-
sipative solitons in the framework of two coupled subcritical
cubic-quintic Ginzburg-Landau equations that partial annihi-
lation arises over a large parameter regime between stationary
bound states and complete annihilation due to spontaneously
broken left-right symmetry for moderate values of the ap-
proach velocity and over a large range of stabilizing cubic
cross-coupling between counterpropagating waves.

Briefly, at the end of this Rapid Communication, we show
that the collision of counterpropagating pulses in a system of
two coupled cubic Ginzburg-Landau equations with nonlinear
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FIG. 2. Phase diagram for interacting stationary DS for μ =
−0.5 in the plane approach velocity vs negative (stabilizing) cubic
cross-coupling between counterpropagating waves in the presence
of a round-off error equivalent to a noise strength of 10−16. Pa-
rameters are μ = −0.50, βr = 1, βi = 0.8, γr = −0.1, γi = −0.6,
Dr = 0.125, Di = 0.5, and ci = 0. Open black circles (◦) denote
stationary bound states, open blue triangles (�) interpenetration,
solid red circles (•) partial annihilation, and solid green squares (�)
annihilation.

gradients (Raman effect in nonlinear optics) can also lead to
partial annihilation, indicating that this behavior is generic.

We study two coupled complex subcritical cubic-quintic
Ginzburg-Landau equation for counterpropagating waves,

∂t A − v∂xA = μA + (βr + iβi )|A|2A + (γr + iγi )|A|4A

+ (cr + ici )|B|2A + (Dr + iDi )∂xxA, (1)

∂t B + v∂xB = μB + (βr + iβi )|B|2B + (γr + iγi)|B|4B

+ (cr + ici )|A|2B + (Dr + iDi )∂xxB, (2)

where A(x, t ) and B(x, t ) are complex fields and where we
have discarded quintic cross-coupling terms for simplicity.
A and B are slowly varying envelopes, βr is positive, and
γr is negative in order to guarantee that the bifurcation is
subcritical, but saturates to quintic order.

We have carried out our numerical studies for the follow-
ing values of the parameters, which we kept fixed for the
present purposes: μ = −0.50, βr = 1, βi = 0.8, γr = −0.1,
γi = −0.6, Dr = 0.125, Di = 0.5, and ci = 0. Positive values
of Di correspond to the regime of anomalous linear dispersion
in nonlinear optics. The time step dt used was typically dt =
0.005 and as a grid spacing we took dx = 0.08 and N = 1250
leading to a box size of L = 100. Integration of Eqs. (1)
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FIG. 3. The process of partial annihilation: The max(|A|, |B|) is
plotted in (a) for the initial approach of the pulses, and (b) during the
interaction. cr = −0.7 and v = 0.8. Parameters are as in Fig. 2.
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FIG. 4. The process of partial annihilation: (a) and (b) show x-t
plots of the partial annihilation process with an interaction time Tint =
80. cr = −0.7 and v = 0.8, when the surviving pulse is moving to
the right and to the left, respectively. Parameters are as in Fig. 2.

and (2) was performed using fourth-order Runge-Kutta finite
differencing.

In Fig. 1 we sketch the “phase diagram” as a function of
approach velocity v in the region of interest in this Rapid
Communication for a fixed value cr . The region of partial
annihilation (PA) arises between stationary bound states (BS)
and complete annihilation (A). The characteristic outcomes
of collisions have been illustrated by x-t plots where time
is plotted on the ordinate and the spatial coordinate on the
abscissa.

In Fig. 2 we present the phase diagram for interacting
stationary DS for μ = −0.5 in the plane approach velocity
versus negative (stabilizing) cubic cross-coupling between
counterpropagating waves cr , which demonstrates the four
results of collisions discussed here. As we will show below,
the amplitude of intrinsic noise due to the numerical method
used entering the picture here is about 10−16 compared to
a pulse amplitude of order 1. As characteristic outcomes of
the collisions we find interpenetration for small stabilizing
values of the cubic cross-coupling and large enough approach
velocity. This result is entirely intuitive: If the two pulses
hardly interact with a short interaction time, they easily in-
terpenetrate. For small values of the approach velocity and
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FIG. 5. The inverse of the interaction time in the presence of a
round-off error equivalent to a noise strength of 10−16 is plotted as a
function of approach velocity v for fixed cr = −0.7. The two critical
velocities mark the critical velocity for the transition to stationary
bound states vc1 and the transition to complete annihilation vc2.
Parameters are as in Fig. 2.

sufficiently negative values of the stabilizing cubic cross-
coupling, a bound state of stationary DSs emerges. If the
stabilizing cross-coupling is large enough and the approach
velocity sufficiently high, annihilation results. The reduction
of the pulse area during the collision is such that the critical
area for the reemergence of a DS is not reached from below.
The outcome, which is of central interest here, is the partial
annihilation arising over a large range of values for both the
approach velocity and the stabilizing cubic cross-coupling.
We will argue in the following that this region is reflecting
a spontaneous left-right symmetry breaking. This observation
is corroborated by the fact that the ratio of pulses surviving
going to the left and to the right approaches unity in the limit
of a large number of collisions.

In Fig. 3 we have plotted two snapshots elucidating the
process of partial annihilation. We have plotted the maximum
of |A| and |B| for a moderate approach velocity v = 0.8
and for cr = −0.7. The initial state has been prepared such
that both pulses are in their asymptotic shape in time before
the interaction. Figure 3(a) shows the initial approach while
Fig. 3(b) is taken during the interaction. Just inspecting the
snapshots visually, one does not notice during the interaction
whether the pulse traveling to the left or to the right will
survive the interaction.

In Fig. 4 we show the x-t plot corresponding to the process
of partial annihilation for the same parameters used to to gen-
erate Fig. 3. From these x-t plots a “deterministic interaction
time” Tint (in the presence of a round-off error equivalent to
a noise strength of 10−16) with the value Tint = 80 can be
extracted.

This interaction time turns out to be rather sensitive to the
approach velocity. In Fig. 5 we have plotted the inverse of
the deterministic interaction time Tint for the whole range of
existence of partial annihilation for cr = −0.7. As one can
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FIG. 6. The interaction time Tint is plotted as a function of
additive noise η. This plot is obtained for cr = −0.7 and v = 0.8.
Parameters are as in Fig. 2.

see, the interaction time decreases monotonically by more
than two orders of magnitude as the approach velocity is in-
creased. It reaches a value of more than 2000 as the transition
to stationary bound states is approached.

To study the influence of noise on the interaction time Tint,
we have incorporated into Eqs. (1) and (2) additive noise of
strength η, δ correlated in space and time. We have chosen a
location in the phase diagram close to the boundary between
stationary bound states and partial annihilation: cr = −0.7
and v = 0.8. In Fig. 6 we show the interaction time as a
function of the strength of additive noise over 14 orders
of magnitude. Inspecting Fig. 6, one can read off a linear
decay in a linear-logarithmic plot over at least 12 orders
of magnitude. This behavior indicates an activation energy
dominated process in the spirit of Kramers escape over a
barrier. We note that the data point for η = 10−16 has also
been obtained without additional noise indicating the intrinsic
noise level of our numerical method.

One feature characterizing the transition from bound states
to annihilation is the magnitude of the interaction time before
the partial annihilation occurs, as is plotted in Fig. 5. An
additional way to study the regime where partial annihilation
arises is by means of the area of the interacting pulses as
a function of time; we define IA(t ) = ∫ |A(x, t )|dx, IB(t ) =∫ |B(x, t )|dx. In Fig. 7 we show the time evolution of IA(t ) and
IB(t ) for two different values of the velocity field, one closer
to the boundary to bound states (v = 0.8) and one close to
complete annihilation (v = 1.22). As one can see, there are
substantial temporal oscillations of both amplitudes for the
larger value of v. In Fig. 7(b) we have indicated by � the
amplitude of the oscillations of IA(t ) and IB(t ) before partial
annihilation arises. � is plotted as a function of v-vc1 in Fig. 8.
We conclude that the maximum � increases by more than two
orders of magnitude monotonically as vc1 is approached. In
Fig. 9 we have plotted the amount of additive noise needed
to induce the transition from stationary bound states to partial
annihilation as a function of the velocity for T = 2000. As vc1

is approached, the amount of additive noise required decreases
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FIG. 7. The time evolution of both pulses is plotted for (a)
cr = −0.7, v = 0.8 and (b) cr = −0.7, v = 1.22. The maximum
amplitude of the oscillation of IA(t ) and IB(t ), �, is indicated.
Parameters are as in Fig. 2.

linearly and only in the immediate vicinity a deviation from
this linearity emerges.

A second system showing a breaking of symmetry leading
to partial annihilation consists of two coupled complex cubic
Ginzburg-Landau equations with nonlinear gradient terms for
counterpropagating waves,

∂t A − v∂xA = μA + (βr + iβi )|A|2A − iR(|A|2)xA

+(cr + ici )|B|2A + (Dr + iDi)∂xxA, (3)

∂t B + v∂xB = μB + (βr + iβi )|B|2B + iR(|B|2)xB

+(cr + ici )|A|2B + (Dr + iDi)∂xxB, (4)

where A(x, t ) and B(x, t ) are complex fields. A and B are
slowly varying envelopes, βr is positive, and R corresponds
to the Raman term in nonlinear optics. Recently, it was
shown that a cubic Ginzburg-Landau equation with nonlinear
gradient terms has stable stationary dissipative solitons over a
fairly large range in parameter space [27].

We have simulated Eqs. (3) and (4) for the following values
of the parameters: μ = −0.012, βr = 0.3, βi = 1.0, R = 0.1,
ci = 0, Dr = 0.6, Di = 0.5. The time step dt used was dt =
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FIG. 8. The maximum amplitude of the oscillation of IA(t ) and
IB(t ), �, is plotted as a function of the distance from the critical
velocity vc1.

0.003, the grid spacing dx = 0.06, N = 1250, leading to a box
size of L = 75.

For these values one single pulse moves with a velocity
v0 = 1.863. By setting in Eqs. (3) and (4) the group velocity
v = v0 − v′, we show in Fig. 10 the x-t plots corresponding
to the process of partial annihilation for two coupled complex
Ginzburg-Landau equations with nonlinear gradients. During
the interaction we observed a meandering oscillatory bound
state.

In conclusion, we have shown in this Rapid Commu-
nication that partial annihilation of dissipative solitons can
arise over a large parameter region for the approach velocity
and a stabilizing interaction of the counterpropagating pulses
due to spontaneously broken left-right symmetry in driven
dissipative systems.

In Ref. [24] we have shown that the noise intrinsic
to the numerical method can lead at the boundaries be-
tween different outcomes of collisions to partial annihilation
(for example, between annihilation and interpenetration). In
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FIG. 9. The amount of additive noise η needed to induce the
transition form stationary bound states to partial annihilation is
plotted as a function of the velocity for cr = −0.7 and T = 2.000.
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FIG. 10. For cr = −0.2 and v′ = 0.93, the process of partial
annihilation for Eqs. (3) and (4). (a) x-t plot showing the surviving
pulse moving to the right. (b) x-t plot showing the surviving pulse
moving to the left.

addition, we showed in Ref. [24] that the interval over which
one can get partial annihilation can be increased by adding
noise.

In the present Rapid Communication we demonstrate that
for noise intrinsic to the method (of fixed amplitude ∼10−16),
one can obtain partial annihilation for a large region of param-
eter space in approach velocity and cross-coupling between
the counterpropagating waves. This is due to a spontaneous
breaking of symmetry for a sufficiently large approach ve-
locity and cross-coupling strength of the counterpropagating
dissipative solitons. Noise only serves to induce the left or
right direction. We are thus in a rather different part of
the phase diagram and the phenomena described in Fig. 2
of the present Rapid Communication are for fixed intrinsic
noise.

There is a large number of pattern-forming experimental
systems for which such a behavior can be expected. Experi-
mental areas of interest include surface reactions, convective
onset, biosolitons, and nonlinear optics.

A natural possibility to generalize the analysis presented
will be the application to time-dependent DSs oscillating with
one frequency, two frequencies, or chaotically [28]. While
interactions between such time-dependent DSs have been
studied [29,30], the parameter region in question has not been
covered so far. Even more promising appears to be the analysis
of colliding exploding DSs. Exploding DSs, which have been
found first in Ref. [31] and then also detected experimentally
in Ref. [32], are a rather special class of DSs. While they stay
spatially localized as a function of time, they show a complex
spatiotemporal dynamics. As a function of time they undergo
several changes: They start with an unstable pulse shedding
radiation or “phonons” [31,33,34], then, in one of the wings
of the unstable pulse perturbations grow to generate another
pulselike object. These two pulses—both unstable—interact
and form a rather broad, high, and highly unstable pulse. In a
last step, the latter collapses [31,33,34] to form the unstable
pulse reminiscent in shape of a stable fixed shaped pulse. The
overall behavior is characterized by a cycle time that fluctuates
around an average. While single exploding DSs have been
studied theoretically in some detail [35–39], more recently
there is also growing interest in their experimental properties
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in various nonlinear optical systems [40,41]. However, there
appears to be so far only one study dealing with the interaction
of exploding DSs [42], thus opening the door to another field
of investigations.
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