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Reply to “Comment on ‘Shallow-water soliton dynamics beyond the Korteweg–de Vries equation’ ”
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We agree with the objection raised by Burde that the wave equation in our previous paper [Phys. Rev. E 90,
012907 (2014)] was not derived in a consistent way. However, our paper contains an important result on the
existence of soliton solutions to the extended Korteweg–de Vries equation.
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First, we agree that the derivation of Eq. (18) in our
previous paper [1] for the case α = O(β ), δ = O(β ) was not
consistent. This was the result of an unfortunate oversight.

We emphasize an unexpected and important result obtained
in Ref. [1], however. We found an analytic single-soliton
solution to the extended Korteweg–de Vries (KdV2) equation
derived by Marchant and Smyth [2], despite nonintegrability
of KdV2. This result is correct and very important. The
KdV2 solitons have the same form as the Korteweg-de Vries
(KdV) solitons but with slightly different coefficients. In con-
sequence, this discovery inspired us to hypothesize that KdV2
may possess other analytic solutions of the same form as
KdV solutions but with different coefficients. This hypothesis
has been positively verified for periodic (cnoidal) solutions in
Ref. [3] and for periodic “superposition” solutions in Ref. [4].
There is, however, a significant difference between analytic
solutions to KdV and KdV2. For instance, both KdV and
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KdV2 solitons have the same form, η(x, t ) = A Sech2[B(x −
vt )]. However, KdV imposes two linearly independent con-
ditions on the coefficients A, B, v, whereas KdV2 imposes
three such conditions. For KdV, there is one parameter family
of freedom. Consequently, solutions of different velocities
(and amplitudes) can occur and multisoliton solutions exist.
In the case of KdV2, for the given equation (given values
of α, β), there exists only one KdV2 soliton, fixed by equa-
tion parameters. Therefore, multisoliton for KdV2 cannot
exist [5].

The criticism raised in the early version of the Comment
[6] inspired us to rethink the problem. It resulted in the con-
sistent derivation of three KdV-type nonlinear wave equations
for the uneven bottom. These equations generalize the KdV,
the fifth-order KdV (KdV5), and the Gardner equations. In
all these cases, the Boussinesq equations become compatible
and can be reduced to a single wave equation only when the
bottom function is piecewise linear. The details of the theory,
as well as several examples of numerical simulations, are
already published in Ref. [7].
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