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The authors of the paper “Shallow-water soliton dynamics beyond the Korteweg—de Vries equation” [1]
write that they derived a new nonlinear equation describing shallow water gravity waves for an uneven bottom
in the form of the higher (fifth)-order Korteweg—de Vries equation for surface elevation. The equation has
been obtained by applying a perturbation method [2] for specific relations between the orders of the three small
parameters of the problem α = O(β ) and δ = O(β ) up to the second order in β. In this comment, it is shown that
the derivation presented in [1] is inconsistent because of an oversight concerning the orders of terms in equations
of the Boussinesq system. Therefore the results, in particular, the new evolution equation and the dynamics that
it describes, bear no relation to the problem under consideration. A consistent derivation is presented, and also
results of applying the perturbation procedure with some other orderings between the small parameters are given
to provide a broader view of the problem. Several new nonlinear evolution equations governing small amplitude
shallow water waves for an uneven bottom have been derived.
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I. OUTLINE OF THE PROCEDURE

In order to demonstrate the inconsistency of the analysis
of [1] and to provide a consistent derivation of the evolu-
tion equations describing shallow water waves for a nonflat
bottom, we need to outline application of the perturbation
method [2] to the nonflat bottom problem. To make the results
more generally applicable, the case of nonzero surface tension
(gravity-capillary waves) is considered, although the analysis
of [1] is restricted to the pure gravity waves.

The standard system of equations and boundary conditions
describing the two-dimensional irrotational wave motion of an
inviscid incompressible fluid in a channel with the free surface
and rigid bottom under the influence of gravity as well as
surface tension, after an appropriate choice of nondimensional
variables, can be reduced to the following:

βφxx + φzz = 0, 0 � z � 1 + αη (1)

φz = βδ hxφx, z = δ h(x) (2)

ηt + αφxηx − 1

β
φz = 0, z = 1 + αη (3)

φt + 1

2
αφ2

x + 1

2

α

β
φ2

z + η − τβ
ηxx(

1 + α2βη2
x

)3/2

= 0, z = 1 + αη, (4)

where t is time, x, z are respectively horizontal and vertical
coordinates, with z = δ h(x) being the bottom, φ(x, z, t ) is the
velocity potential, η(x, t ) is the surface elevation, and h(x) is
the bottom variation function. The subscripts denote partial
derivatives with respect to the corresponding variables, i.e.,
φxx = φ2x = ∂2φ

∂x2 and so on. Equations (1)–(4) contain four

*georg@bgu.ac.il

nondimensional parameters: the amplitude parameter α = a
H

and the wavelength parameter β = H2

L2 , where H is the mean
depth of the undisturbed stream far upstream, where the bot-
tom is flat, and a and L are typical values of the amplitude and
of the wavelength of the waves, the Bond number τ = T

ρgH2 ,
where T is the surface tension coefficient, ρ is the density of
water and g is the acceleration due to gravity, and the variable
bottom parameter δ = ah

H , where ah is the amplitude of bottom
variation.

The parameters α, β, and δ are assumed to be small. In
order to apply a perturbation method, the relations between
orders of the parameters are to be specified. In [1], the
following relations are accepted (although the authors do not
state it explicitly): α = O(β ) and δ = O(β ). It is convenient to
deal with one small parameter β by introducing the relations

α = Aβ, δ = qβ, (5)

where the constants A and q are trace parameters (one of them
can be removed from all the relations by scaling).

To satisfy Eqs. (1) and (2) a substitution is made, as
follows:

φ =
∞∑

m=0

(−1)mβm

(2m)!

∂2m f (x, t )

∂x2m
z2m

+
∞∑

m=0

(−1)mβm+1

(2m + 1)!

∂2m+1F (x, t )

∂x2m+1
z2m+1, (6)

where the part with odd powers of z is introduced in order
to have the possibility to satisfy the boundary condition (2).
Substituting (6) into (2) yields

G − βq(h fx )x − 1
2β3q2(h2Gx )x + 1

6β4q3(h3 f3x )x

+ 1
24β6q4(h4G3x )x

− 1
120β7q5(h5 f5x )x + · · · = 0, G = Fx. (7)
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Equation (7) defines the relation between the functions F (x, t )
and f (x, t ) which is to be used in the expansion (6). To
explicitly define that relation, G(x, t ) is to be represented as
series in β as follows:

G(x, t ) = βG(1)(x, t ) + β2G(2)(x, t ) + β3G(3)(x, t )

+ β4G(4)(x, t ) + · · · . (8)

Substituting (8) into (7) and collecting terms with equal
powers of β yields

b2[G(1) − q(h fx )x] + b3G(2) + b4G(3) + b5(G(4) + · · · ) + · · ·
= 0, (9)

and then from the first three terms of (9) we obtain

G(1) = q(h fx )x, G(2) = 0, G(3) = 0. (10)

The corresponding expression for the potential is obtained by
substituting (8), with G(1), G(2), and G(3) defined by (10), into
(6) which yields

φ = f − β
1

2
z2 fxx + β2

(
zG(1) + 1

24
z4 f4x

)

+β3

(
−1

6
z3G(1)

2x − 1

720
z6 f6x

)

+β4

(
1

120
z5G(1)

4x + 1

40320
z8 f8x

)

+β5(zG(4) + · · · ), G(1) = (h fx )x. (11)

It is seen that both in Eq. (9) obtained from the bottom
condition (2) and in the expression (11) for the potential, the
correction G(4) does not appear in the terms up to the order of
β4. Thus, the expression for G in the form

G = βq(h fx )x (12)

can be used in calculations up to that order.
To compare equations of the present comment with those

of Ref. [1], one has to take into account that a counterpart
of the substitution (6) for φ is written in [1] in the form
φ = ∑∞

m=0 zmφ(m). Therefore, when comparing the equations
of [1] with those of the present paper, one has to take

φ(0) = f , φ(1) = βG. (13)

Then the expression for φ given in [1] by Eq. (7)KRI (in what
follows, to avoid confusion, numbers of equations from [1]
are supplied by the subscript) would be identical to (11) with
the terms up to the third order retained (except for a misprint,
the sign of the term − 1

720β3z6 f6x in Eq. (7)KRI is wrong). For
convenience of discussion below, we will write out the relation
(12) in the notation of [1] [Eq. (6)KRI]:

φ(1) = βδ
(
hφ(0)

x

)
x
. (14)

Next, the expressions (6) are to be substituted into the
surface conditions (3) and (4) which, upon differentiating (4)
with respect to x, yields a system of two equations for the
surface elevation η(x, t ) and the quantity w(x, t ) = fx in the
form of an infinite series with respect to β. Then, retaining
the terms up to O(βn), we arrive at the nth-order Boussinesq
system. In the zero order, the Boussinesq system reads ηt +
wx = 0, wt + ηx = 0 so both w and η satisfy the linear wave

equation ζtt − ζxx = 0, which describes waves traveling in
two directions. A wave moving to the right corresponds in this
order of approximation to w = η and ηt + ηx = 0. To derive
equations describing right-moving waves in higher orders in
β, one can, applying the procedure developed in [2], reduce
the system of equations for w and η to an asymptotically
equivalent set of equations consisting of a relationship be-
tween the horizontal velocity w and the surface elevation η

and an evolution equation for the elevation. To do this, it is set

w =
Nw∑
i=0

Riβ
i, ηt =

Nη∑
i=0

Siβ
i, (15)

where Ri and Si depend on η and its x derivatives, and possibly
some nonlocal variables, with R0 = η and S0 = −ηx. The
functions Ri and Si are determined from the requirement of
consistency of (15) with the Boussinesq system (Nw and Nη

denote the number of terms needed for achieving this). An
iterative procedure starting from the zero order of approxima-
tion and continuing to the higher orders is applied. In each
order, the t derivatives of η are replaced by their expressions
from the lower order equations.

The second-order Boussinesq system obtained using (11)
in (3) and (4) takes the form

ηt + wx + β
(
A(wη)x − 1

6w3x − q(wh)x
)

+β2
(− 1

2 A(ηw2x )x + 1
120w5x + 1

2 q(wh)3x
) = 0, (16)

wt + ηx + β
(
Awwx − 1

2w2xt − τη3x
)

+β2
(−A(ηwxt )x + 1

2 Awxw2x − 1
2 Aww3x

+ 1
24w4xt + q(hwt )2x

) = 0. (17)

Here the terms with the coefficient q are those originated from
the nonflatness of the bottom. [The second-order Boussinesq
system in [1], given by Eqs. (8)KRI and (9)KRI, after setting
α = Aβ, δ = qβ, and τ = 0, coincides with the system (16),
(17).] In the lowest (zero) order, the system (16), (17) and
the asymptotically equivalent system (15) describing a right-
moving wave are reduced to

ηt + wx = 0, wt + ηx = 0; w = η, ηt + ηx = 0.

(18)

In the next order iteration, we look for a solution for w

corrected to first order as

w = η + βQ(1), (19)

where Q(1) is a function of η and its x derivatives, and possibly
nonlocal variables. Substituting (19) into Eqs. (16) and (17),
with the terms of order higher than O(β ) dropped, upon
expressing the t derivatives of η in terms of its x derivatives
using the zero-order equation ηt + ηx = 0 yields

ηt + ηx + β
(

2Aηηx − 1
6η3x − q(hη)x + Q(1)

x

)
= 0, (20)

ηt + ηx + β
(

Aηηx + 1
2 (1 − 2τ )η3x + Q(1)

t

)
= 0. (21)

The function Q(1) is sought such that the two equations (20)
and (21) agree (up to the first order in β), and here we arrive at
the point where the authors of [1] introduce an inconsistency
in order to obtain the desired result.
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II. THE INCONSISTENT DERIVATION OF REF. [1]

The point is that the term −βq(hη)x in Eq. (20) makes
Eqs. (20) and (21) incompatible if Q(1) is sought as a function
of η and its x derivatives. If that term in Eq. (20) were absent,
Eqs. (20) and (21) would be compatible and, with a proper
choice of Q(1), both reduced to the standard Korteweg—de
Vries (KdV) equation. Therefore the authors of [1], in order to
have that desired situation, change the form of the Boussinesq
system (16), (17) assuming the first-order term −βq(wh)x,
which is a source of the term −βq(hη)x in Eq. (20), to
be of the second order. As a result, the term −βq(hη)x,
destroying the integrability of the first-order system (20) and
(21), is moved to the second order. Note that in [1], it is
not clear that with the first-order equation (16) including the
term −βq(wh)x one can neither proceed to the second order
nor have the KdV equation in the leading order. Instead, the
following reasoning is provided (in the citation from [1], in
order not to complicate matters, numbers of equations from
[1] are replaced by numbers of the corresponding equations
of the present comment; note also that it is set δ = qβ in the
present comment):

“In Eq. (16) there are two terms depending on the variable
bottom, the first-order term δ(hw)x and the second-order term
1
2βδ(hw)3x, whereas Eq. (17) contains only the second-order
term βδ(hwt )2x. However, the bottom boundary condition
Eq. (14), which is the source of these terms, is already second
order in βδ. Therefore, we will treat all these terms on the
same footing, as second-order ones, i.e., replacing δ(hw)x by
βδ(hw)x/b, b �= 0, during derivations and substituting b = β

in the final formulas.”
However, it is not justified to introduce changes into

equations of the Boussinesq system. The Boussinesq system
(16), (17) has been obtained as the result of applying the
algorithmic perturbation method to the original equations
(1)–(4) of the problem, and so Eqs. (16) and (17) have the
form that adheres to the problem formulation. In particular,
if the first-order term is present in one of the equations and
absent in the second equation, it is a feature specific for the
present problem formulation. Therefore any change made in
equations of the Boussinesq system leads to the results not
matching the original problem.

The form of the bottom boundary condition (14) can in no
way be considered as justification for changing the equations
of the Boussinesq system. The bottom boundary condition in
that form has been used for obtaining the expression (8) for the
potential and that expression has been used in the derivation
of the Boussinesq system (16), (17) so that the condition (14)
is the source of all the terms originating from the nonflatness
of the bottom. If the condition were incorrect and should be
changed in some way it would influence all those terms, not
only one of them. Moreover, even the statement, that “... the
bottom boundary condition Eq. (14)... is already second order
in βδ,” is incorrect. Such an impression may arise only if
one treats φ(1) and φ(0) as the quantities of the same order of
magnitude. But they are not of the same order: φ(1) = O(β )
and φ(0) = O(1) [see (13)] and so the condition (14) is first
order in β as it is explicitly seen from the form (12) that it
takes in the variables f and G.

To conclude, the derivation of [1], based on the incorrect
Boussinesq system without the term −βq(wh)x in the first

order and with an additional term included into the second or-
der, is inconsistent. Correspondingly, the results, in particular
the new evolution equation and the dynamics that it describes,
bear no relation to the considered problem.

III. THE CONSISTENT DERIVATION

A condition for Eqs. (20) and (21) to be compatible is that
an equation for Q(1) obtained by subtracting Eq. (20) from
Eq. (21) as follows,

Q(1)
t − Q(1)

x − Aηηx +
(

2

3
− τ

)
η3x + q(hη)x = 0, (22)

is satisfied. The analysis reveals that Eq. (22) cannot be
satisfied if Q(1) is assumed to be a function of η, its x deriva-
tives, and the bottom function h(x), but it can be satisfied if
Q(1) depends also on the nonlocal variable p = ∫

η(x, t )dx.
(Limits of integration are not indicated, but here and in what
follows, the integration from some x0, where the elevation is
zero, to a current value of x is implied.) Then substituting Q(1)

into Eq. (22) eventually results in the relation which can be
valid only if h2x(x) = 0 or h = kx. In the second order in β,
the expression for w is corrected by β2Q(2), and it is found that
with Q(2) dependent on η, its x derivatives, and the nonlocal
variable p, the two equations obtained from the Boussinesq
system are incompatible.

The above results are related to derivation of an evolution
equation for the surface elevation which does not include
nonlocalities. If the analysis is not restricted to equations
not containing nonlocal terms, an evolution equation for the
surface elevation in the first order in β can be derived for
arbitrary bottom function h(x). To represent the results in a
more concise form let us make a change of variables:

η(x, t ) = R(x, φ), w(x, t ) = U (x, φ);

Q(a)(x, t ) = Q(c)(x, φ); φ = x + t . (23)

Then integrating equation (22) expressed in the variables (23)
yields

Q(1) = − 1

4
AR(x, φ)2 + 1

24
(2 − 3τ )R2x (x, φ)

+ 1

2
qh(x)R(x, φ) + 1

2
q

∫
R(x, φ)h′(x)dx. (24)

It is readily verified that with Q(1) defined by (24), Eqs. (20)
and (21) of the Boussinesq system, transformed to the vari-
ables (23), become identical and upon integrating by parts take
the form

2Rφ + Rx + β

[
3

4
ARRx + 1

48
(1 − 3τ )R3x

−1

4
q

(
(hR)x −

∫
h′′(x)R(x, φ)dx

)]
= 0. (25)

It is evident from (25) that a necessary condition for derivation
of an evolution equation not including nonlocal terms is
h′′(x) = 0 or h(x) = kx. In this case, making a change of
variables inverse to Eq. (23) in Eq. (25) yields an evolution
equation without nonlocalities. Equation (25) is a general
evolution equation for the surface elevation governing shallow
water waves on an uneven bottom in the first order in β de-
rived under the assumption that α = O(β ) and δ = O(β ) for

036201-3



COMMENTS PHYSICAL REVIEW E 101, 036201 (2020)

an arbitrary bottom relief h(x). The presence of the nonlocal
term does not prevent obtaining solutions for a specific bottom
function h(x) using numerical methods. Without restriction to
evolution equations not containing nonlocalities, no obstacles
exist to extend the procedure to the next orders, but a structure
of nonlocal terms becomes more complicated.

IV. OTHER ORDERINGS

A. The case of α = O(β) and δ = O(β2 )

The relations α = Aβ and δ = qβ2 are used in order to
deal with one small parameter β. It is evident that the same
substitution (6) for satisfying Eq. (1) can be used, but the

form of the relation (7), obtained upon substituting (6) into
the boundary condition (2), changes. Again, retaining the
two first terms in that relation is sufficient to provide a
required accuracy, and then applying the procedure outlined
in Sec. I yields the Boussinesq system. Further calculations
proceed in the same way as un Sec. III. To be as concise
as possible we will omit details. Note only that in the first
order in β, an evolution for η is a common KdV equation
with no traces of the bottom relief and that in the second
order in β, again the restriction h = kx arises. For arbitrary
bottom relief h(x), the Boussinesq system transformed to the
variables (23) is satisfied up to the second order in β by the
following:

U = R + β
1

24
[−6AR2 + (2 − 3τ )R2x] + β2

[
1

8
A2R3 − 1

64
A(5 − 19τ )R2

x + 1

4
AτRR2x

+
(

1

360
+ τ

192
− 3τ 2

128

)
R4x + q

1

2
(hR + S1)

]
,

S1(x, φ) =
∫

h′(x)R(x, φ)dx. (26)

2Rφ + Rx + β

(
3

4
ARRx + 1 − 3τ

48
R3x

)

+β2

(
−3

4
A2R2Rx − A

1 − 24τ

48
RxR2x − A

1 − 15τ

96
RR3x + 1 + 15τ − 45τ 2

2880
R5x + q

1

4
(−(hR)x + S2)

)
= 0,

S2(x, φ) =
∫

h′′(x)R(x, φ)dx. (27)

It is seen that h = kx is a necessary condition for deriving an evolution equation without nonlocalities. Substituting h(x) = kx
into (27), upon making a change of variables inverse to (23), yields an equation not containing nonlocal terms.

B. The case of α = O(β2 ), δ = O(β2 )

It is set α = Aβ2 and δ = qβ2, in what follows. Since the analysis proceeds along the lines of the two considered above, details
are omitted to keep the presentation concise. For arbitrary h(x), the relations solving the Boussinesq system in the variables (23)
up to the second order in β are

U = R + β
1

24
(2 − 3τ )R2x + β2

[
−1

4
AR2 +

(
1

360
+ τ

192
− 3τ 2

128

)
R4x + q

1

2
(hR + S1)

]
,

S1(x, φ) =
∫

h′(x)R(x, φ)dx, (28)

2Rφ + Rx + β
1

48
(1 − 3τ )R3x + β2

(
3

4
ARRx + 1 + 15τ − 45τ 2

2880
R5x + q

1

4
(−(hR)x + S2)

)
= 0,

S2(x, φ) =
∫

h′′(x)R(x, φ)dx. (29)

Again, the condition h′′ = 0 is a necessary condition for derivation of an evolution equation not containing nonlocalities.

V. CONCLUDING REMARKS

The main incentive for writing the present comment was
to stop referring to the equation derived in [1] as the equation
describing shallow water gravity waves for an uneven bottom.
Besides referring, extensions of the analysis of [1] appear
in the literature. Properties of solutions of that equation are

studied by the authors (e.g., [3]) and by other researchers. In
[4], the analysis of [1] is extended to the third order in β. As
the authors of [4] claim, “The main purpose of this article is to
go beyond the new fifth-order KdV equation derived by Kar-
czewska, Rozmej and Infeld.” Correspondingly, the authors of
[4] make in the lower orders the same inconsistent assumption
as that discussed in Sec. II of the present comment. There is no
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need to say that all the results of the aforementioned studies
bear no relation to the problem of shallow water waves with a
nonflat bottom.

The second purpose of the present analysis, evidently re-
lated to the first one, was to present a consistent analysis of the
problem of deriving evolution equations describing shallow
water waves for the case of a nonflat bottom with a small
amplitude of the bottom height variation. Since there are three
small parameters in the problem, imposing different relations
between the orders of small parameters, as a matter of fact,
results in different problems from the point of view of mathe-
matics. (Note that the issue of ordering of small parameters is
not mentioned in [1], and it is not indicated that all three pa-
rameters are assumed to be of the same order.) The results of

the present study can be summarized as follows: If the analysis
is restricted to constructing evolution equations not containing
nonlocalities, then for all considered orderings, a consistent
derivation is possible only for the bottom function of the
form h(x) = kx. The analysis not restricted by a requirement
of locality reveals that evolution equations governing small
amplitude shallow water waves for an uneven bottom, for an
arbitrary bottom relief, inevitably include a nonlocal term.
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