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Wang-Landau algorithm as stochastic optimization and its acceleration

Chenguang Dai* and Jun S. Liu†

Department of Statistics, Harvard University, Cambridge, Massachusetts, USA

(Received 29 July 2019; accepted 31 January 2020; published 6 March 2020)

We show that the Wang-Landau algorithm can be formulated as a stochastic gradient descent algorithm
minimizing a smooth and convex objective function, of which the gradient is estimated using Markov chain
Monte Carlo iterations. The optimization formulation provides us another way to establish the convergence rate
of the Wang-Landau algorithm, by exploiting the fact that almost surely the density estimates (on the logarithmic
scale) remain in a compact set, upon which the objective function is strongly convex. The optimization
viewpoint motivates us to improve the efficiency of the Wang-Landau algorithm using popular tools including
the momentum method and the adaptive learning rate method. We demonstrate the accelerated Wang-Landau
algorithm on a two-dimensional Ising model and a two-dimensional ten-state Potts model.

DOI: 10.1103/PhysRevE.101.033301

I. INTRODUCTION

The Wang-Landau (WL) algorithm [1–3] has been proven
useful in solving a wide range of computational problems
in statistical physics, including spin-glass models [4–15],
fluid phase equilibria [16,17], polymers [18,19], lattice gauge
theory [20], protein folding [21–23], free energy profile [24],
and numerical integration [25,26]. Its successful applications
in statistics have also been documented [27–29]. The WL
algorithm directly targets the density of states (the number of
all possible configurations for an energy level of a system),
thus allowing us to calculate thermodynamic quantities over
an arbitrary range of temperature within a single run of the
algorithm.

Much effort has been made to understand the dynamics
of the WL algorithm, along with numerous proposed im-
provements, of which we highlight three here: (i) Optimizing
the modification factor (flatness criterion) [30–33]. Belar-
dinelli and Pereyra [30] proposed that instead of reducing the
modification factor exponentially, the log modification factor
should be scaled down at the rate of 1/t in order to avoid
the saturation in the error. (ii) Employing a parallelization
scheme. Wang and Landau [1] suggested that multiple random
walkers working simultaneously on the same density of states
can accelerate the convergence of the WL algorithm. The ef-
ficiency of the parallelization scheme can be further enhanced
using the replica-exchange framework [34]. (iii) Incorporating
efficient Monte Carlo trial moves [35–37].

In this paper, we consider the WL algorithm from an opti-
mization perspective and formulate it as a first-order method.
We derive the corresponding smooth and convex objective
function, of which the gradient involves the unknown den-
sity of states. Wang and Landau [1] used a random-walk
based METROPOLIS algorithm [38] to estimate the gradient.
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In general, any suitable Markov chain Monte Carlo (MCMC)
strategies [39] can be employed for this purpose. Therefore,
the WL algorithm is essentially a stochastic gradient descent
algorithm.

The optimization viewpoint enables us to establish the
convergence rate of the WL algorithm. Following Ref. [40]
and using the standard stochastic approximation theory [41],
we first show that the density estimates (on the logarithmic
scale) almost surely stay in a compact set. Based on this,
we exploit the strong convexity of the objective function,
restricted on this compact set, to prove the convergence rate.
We note that the gradient estimator output from the MCMC
iterations is generally biased, thus a critical step is to show
that the bias vanishes properly as t → ∞.

The optimization framework also provides us with a new
direction for improving the WL algorithm. We explore one
possible improvement, by combining the momentum method
[42] and the adaptive learning rate method [43,44]. The gen-
eral goal is to accelerate the transient phase [45] of the WL
algorithm before it enters the fine local convergence regime.
The effectiveness of the acceleration method is demonstrated
on a two-dimensional Ising model and a two-dimensional
ten-state Potts model, in which the learning in the transient
phase is considerably demanding.

The rest of the paper is organized as follows. Section II
discusses the optimization formulation of the WL algo-
rithm and establishes the convergence rate from an optimiza-
tion perspective. Section III introduces possible strategies
to accelerate the WL algorithm using optimization tools.
Section IV demonstrates the accelerated WL algorithm on two
benchmark examples. Finally, Sec. V concludes with a few
remarks.

II. AN OPTIMIZATION FORMULATION

Let the space of all microscopic configurations be X. Sup-
pose there are totally N energy levels, E1 < · · · < EN , for the
underlying physical model. For a microscopic configuration
x ∈ X, we use E (x) to denote its energy. Let {g(En)}N

n=1 be the
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normalized density of states, i.e.,

g(En) ∝ no. {x ∈ X, E (x) = En},
N∑

n=1

g(En) = 1. (1)

After initializing g0(En) as 1/N , the WL algorithm iterates be-
tween the following two steps: (i) Propose a transition config-
uration and accept it with probability min{1, gt (Ei )/gt (Ej )},
where Ei and Ej refer to the energy levels before and after
this transition, respectively. This is essentially a step of the
METROPOLIS algorithm [38] with the corresponding stationary
distribution:

πt (x) ∝
N∑

n=1

1

gt (En)
1[E (x) = En]. (2)

(ii) Update the density of states. If E (xt+1) = En, multiply
gt (En) by a modification factor ft+1 > 1. That is, gt+1(En) ←
gt (En) × ft+1.

The modification factor ft should be properly scaled down
in order to guarantee the convergence of the algorithm. There
is a rich literature on how to adapt ft online, including the flat
or minimum histogram criterion, and the 1/t rule [30] with
its various extensions [46,47]. Under a proper scaling rule,
the magnitude of the modification factor ft is informative of
the estimation error [31]. Thus, a commonly used stopping
criteria for the WL algorithm is that ft is small enough [say,
below exp(10−8)].

In the following, we will work on the logarithmic scale
of the density of states. Denote u(t )

n = log[gt (En)] for n ∈
[N], and let u = (u1, . . . , uN ). The density update in the WL
algorithm can be rewritten as

u(t+1)
n ← u(t )

n + ηt+11[E (xt+1) = En], (3)

where ηt+1 = log ft+1, which will be referred to as the learn-
ing rate henceforth. The intermediate target distribution πt (x)
defined in Eq. (2) can also be formulated in terms of u(t ). We
define

πu(x) ∝
N∑

n=1

exp(−un)1[E (x) = En], (4)

and denote Pu as a general transition kernel invariant to πu(x).
For notational convenience, we use πt (x) to refer to πu(t ) (x),
and use Pt to refer to the transition kernel invariant to πt (x).
After each density update, we normalize u(t ) to sum to 0,
i.e., u(t )

n ← u(t )
n − ∑N

i=1 u(t )
i /N , so that u(t ) stays in a compact

set (see Proposition 1). The WL algorithm can be slightly
rephrased as in Algorithm 1.

Algorithm 1. The Wang-Landau algorithm.

1. Initialization. u(0)
n = 0 for n ∈ [N].

2. For t � 1, iterate between the following steps.
(a) Sample xt+1 from Pt (xt , ·).
(b) Update u(t+1) following Eq. (3).
(c) Normalize u(t+1) to sum to 0.
(d) Scale down the learning rate ηt properly.

3. Stop when the learning rate ηt is smaller than a prescribed
threshold.

Let us consider the following optimization problem:

min
u∈RN

h(u) = log

[
N∑

n=1

exp(u�
n − un)

]
,

subject to
N∑

n=1

un = 0, (5)

in which u�
n = log[g(En)] − 1

N

∑N
i=1 log[g(Ei )]. We write

u� = (u�
1, . . . , u�

N ). It is not difficult to see that this is a convex
optimization problem because the objective function h(u) is
a log-sum-exp function and the constraint is linear. It has
a unique solution at un = u�

n for n ∈ [N], in which exp(u�
n)

equals to the density of states g(En) up to a multiplicative
constant.

The projected gradient descent algorithm is a standard
approach to solve the constrained optimization problem (5).
The gradient of the objective function h(u) is

∂h(u)

∂un
= − exp(u�

n − un)∑N
i=1 exp(u�

i − ui )
, n ∈ [N], (6)

which is not directly available because it involves the un-
known density of states. However, one can think of approx-
imating the gradient function defined in Eq. (6) by one-step or
multiple-step Monte Carlo simulations, leading to a stochastic
version of the projected gradient descent algorithm.

More precisely, a gradient descent step for minimizing h(u)
takes the following form:

u(t+1)
n ← u(t )

n + ηt+1 exp
(
u�

n − u(t )
n

)
∑N

i=1 exp
(
u�

i − u(t )
i

) . (7)

Denote the probability of the set {x ∈ X : E (x) = En} with
respect to πt (x) as πt (En). Since the probability πt (En) is
proportional to exp(u�

n − u(t )
n ), the density update in Eq. (7)

is essentially

u(t+1)
n ← u(t )

n + ηt+1πt (En). (8)

A crude approximation to πt (En) is the indicator function
1[E (xt+1) = Ei], given that after several steps of Monte Carlo
simulations according to the transition kernel Pt invariant
to πt (x), xt+1 is approximately a sample from πt (x). This
corresponds to the density update in Eq. (3).

We note that the projection step to the set � = {u ∈
RN ,

∑N
n=1 un = 0} is equivalent to the normalization step

[see Algorithm 1, step 2(c)]. Thus, we have shown that
the stochastic projected gradient descent algorithm solving
the constrained optimization problem (5), which estimates the
probability πt (En) by 1[E (xt+1) = En] using the output from
Monte Carlo simulations, is equivalent to the WL algorithm.

The above optimization formulation has the following
immediate implications. First, the parallel WL algorithm esti-
mates the negative gradient πt (En) by 1/m

∑m
k=1[1(E (x(k)

t ) =
En)], in which m denotes the total number of random walkers
and x(k)

t denotes the kth random walker. Therefore, it reduces
the variance of the gradient estimate by a factor m. Second,
instead of implementing a single transition step, the separation
strategy mentioned in Ref. [31] implements multiple transi-
tion steps within each iteration, so that the law of the random
walker gets closer to the intermediate target distribution πt (x)
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defined in Eq. (4). Therefore, it reduces the bias of the gradient
estimate.

The optimization formulation also points out another ap-
proach to establish the convergence rate of the WL algorithm.
We first state a required assumption, which assumes that the
transition kernels are (uniformly) geometrically ergodic over
the space �.

Assumption 1. There exists a constant ρ ∈ (0, 1) such that
for all u ∈ �, x ∈ X, k ∈ N, we have

sup
u∈�

sup
x∈X

∣∣∣∣Pk
u (x, ·) − πu

∣∣∣∣
TV � 2(1 − ρ)k, (9)

in which for a signed measure μ, the total variation norm is
defined as

||μ||TV = sup
|q|�1

∣∣∣∣
∫

X
q(x)μ(dx)

∣∣∣∣. (10)

We note that sufficient conditions for Assumption 1 exist in
the literature (e.g., condition A2 in Ref. [40]), and relaxation
of Assumption 1 is also possible [41]. We have the following
result.

Proposition 1. Under Assumption 1, if we scale down the
learning rate ηt in the order of O(1/t ), the following two
statements hold.

(1) Almost-sure convergence.
(a) There exists a compact set K ⊆ � such that for any

t � 0, u(t ) ∈ K almost surely.
(b) P(limt→∞ u(t ) = u�) = 1.

(2) Convergence rate. There exists a constant C > 0 such
that

E||u(t ) − u�||2 � C/t . (11)

The proof of Proposition 1 is given in the Supplemental
Material [48].

The first part of Proposition 1 follows similarly as
Ref. [40]. The main idea is to rewrite the WL update, includ-
ing the density update and the normalization step, as

u(t+1) ← u(t ) + ηt+1r(u(t ) ) + ηt+1[R(xt+1) − r(u(t ) )],

in which Rn(x) = 1[E (x) = En] − 1/N , and r(u) is the mean-
field function defined as

r(u) =
∫

X
R(x)πu(x)dx = exp(u� − u)∑N

n=1 exp(u�
n − un)

− 1

N
.

The proof of the almost-sure convergence concludes by apply-
ing the standard stochastic approximation theory (Theorems
2.2 and 2.3 in Ref. [49]) after we establish the following two
facts. (1) The remainder term ηt+1[R(xt+1) − r(u(t ) )] vanishes
properly as t → ∞. (2) There exists a Lyapunov function
V (u) specified below,

V (u) = 1

N

N∑
n=1

exp(u�
n − un) − 1, (12)

with respect to the mean-field function r(u), such that
〈∇V (u), r(u)〉 < 0, ∀ u �= u�, and 〈∇V (u�), r(u�)〉 = 0.

The second part of Proposition 1 is our main theoretical
contribution. There are two essential ingredients in establish-
ing the convergence rate. (i) Strong convexity. The objective

function h(u) is only convex but not strongly convex on RN .
However, because u(t ) stays in a compact set K ⊆ � almost
surely [see Proposition 1, part 1(a)], we are able to establish
the strong convexity of h(u) restricted on this compact set K.

Lemma 1. Under Assumption 1, there exists a constant � >

0 such that for any t � 0, almost surely, it holds

〈∇h(u(t ) ), u(t ) − u�〉 � �||u(t ) − u�||2. (13)

(ii) Vanishing bias. Because xt+1 is only an approximate
sample from the intermediate target distribution πt (x), the
indicator 1[E (xt+1) = En] is not an unbiased estimator to the
negative gradient πt (En). The following Lemma 2 shows that
the bias of the gradient estimator vanishes properly, as fast as
the learning rate, when t → ∞.

Lemma 2. Under Assumption 1, there exists a constant
C > 0 such that

E||πt − Pt (xt , ·)||TV � Cηt+1. (14)

The convergence rate of the WL algorithm has been estab-
lished in different forms in the literature. Zhou and Bhatt [31]
show that the discrete probability distribution {πt (En)}N

n=1 will
be attracted, in terms of the KL divergence, to the vicinity
of the uniform distribution [π∞(En) = 1/N] as t → ∞. In
addition, they show that the standard deviation of exp(u�

n −
u(t )

n ) roughly scales like
√

log ft when the modification factor
ft is close to 1. Although we are looking at the L2 error
of u(t ), which is slightly different from the aforementioned
standard deviation, their convergence rate is consistent with
our result because

√
log ft = √

ηt is in the order of O(1/
√

t ) if
we scale down the learning rate ηt in the order of O(1/t ). It is
also worthwhile to mention that a corresponding central limit
theorem in the original density space is provided in Ref. [40].

III. ACCELERATING WANG-LANDAU ALGORITHM

The optimization formulation motivates us to further im-
prove the WL algorithm using optimization tools [50]. Our
goal in this paper is to accelerate the convergence in the
transient phase. The transient phase [45] generally refers
to the initial stage of running a stochastic gradient descent
algorithm. For instance, if we scale down the learning rate
according to the flat or minimum histogram criterion, we can
refer to the transient phase as the running period from the
beginning up to the time when the flat or minimum histogram
criterion is first satisfied.

When the transient phase appears noticeable, the accel-
eration tools can be very effective in practice, and have
been widely used in large-scale systems such as deep neural
networks [51]. In this paper, we restrict ourselves on the
first-order acceleration methods, and leave other possibilities
for future explorations. In particular, we find that both the
momentum method and the adaptive learning rate method
are effective in accelerating the WL algorithm. Before we
go into details, we note that improvement in the asymptotic
convergence rate of the stochastic gradient descent algorithm
is hard to achieve (or even impossible) [52,53], except for
some well-structured objective functions such as finite sums.

The momentum method exponentially accumulates a mo-
mentum vector, denoted as mt in the following, to amplify
the persistent gradient across iterations. The basic momentum
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update operates as follows:

m(t ) ← βm(t−1) + ηt+1∇h(u(t ) ),

u(t+1) ← u(t ) − m(t ), (15)

where we initialize the momentum vector to be m(0) = 0. We
note that the momentum update essentially adds a fraction
β of the previously accumulated gradients m(t−1) into the
current update vector m(t ). The weighting factor β is a tuning
parameter and is commonly set to be 0.9 or higher.

In the setting of the WL algorithm, the momentum update
in Eq. (15) becomes

m(t )
n ← βm(t−1)

n − ηt+11[E (xt+1) = En],

u(t+1)
n ← u(t )

n − m(t )
n , ∀n ∈ [N]. (16)

The intuition behind the momentum acceleration for the WL
algorithm can be heuristically described as follows. The event
E (xt+1) = En suggests that πt (En) is likely larger than 1/N ,
and thus the Markov kernel Pt has a better chance to transit the
microscopic configuration xt into the energy level En. There-
fore, in order to push πt (En) toward 1/N , that is, downweight
the probability mass in the energy level En, we increase u(t )

n
by ηt+1, which corresponds to the density update in Eq. (3).
In contrast to the WL algorithm, which only increases u(t )

n by
ηt+1 at the current iteration t , we keep increasing u(t )

n for a few
more iterations by an exponentially decay momentum m(t )

n to
achieve a faster convergence.

The adaptive learning rate method helps standardize the
gradient across different coordinates of the parameter u, so
that they scale in a similar magnitude. Otherwise, it can be
challenging to find a suitable global learning rate ηt over
different coordinates. Popular algorithms along this research
direction include ADAGRAD [43], ADADELTA [44], and RM-
SPROP (an unpublished method proposed by Geoffrey Hinton).
The RMSPROP update operates as follows:

G(t ) ← γ G(t−1) + (1 − γ )∇h(u(t ) )
2
,

u(t+1) ← u(t ) − ηt+1[G(t )]−1/2∇h(u(t ) ), (17)

in which both the square and the square root are taken ele-
mentwise. G(t ) represents the moving average of the squared
gradients, so that the current gradient ∇h(u(t ) ), standardized
by [G(t )]1/2, is in a similar magnitude across different coordi-
nates. The weighting factor γ is a tuning parameter, which is
commonly set to be 0.9 in order to prevent the updates from
diminishing too fast. In the setting of the WL algorithm, the
RMSPROP update in Eq. (17) becomes

G(t )
n ← γ G(t−1)

n + (1 − γ )1[E (xt+1) = En],

u(t+1)
n ← u(t )

n − ηt+1[G(t )
n ]−1/21[E (xt+1) = En]. (18)

The combination of the momentum method and the adap-
tive learning rate method leads to the adaptive moment esti-
mation (Adam) method [54]. The Adam update operates as
follows:

m(t ) ← βm(t−1) + (1 − β )∇h(u(t ) ),

G(t ) ← γ G(t−1) + (1 − γ )∇h(u(t ) )
2
,

u(t+1) ← u(t ) − ηt+1[G(t )]−1/2m(t ). (19)

In the setting of the WL algorithm, we note that although β

and γ can be potentially two tuning parameters, if we set β =
γ and initialize m(0) and G(0) to be 0, we have G(t ) = −m(t ),
since −∇h(u(t ) ) is approximated by a one-hot vector, which
contains only a single “1” with the remaining elements being
0. This simplification leads to Algorithm 2, which we refer to
as the AWL algorithm henceforth.

We remark that for large-scale systems, a naive implemen-
tation of Eq. (20) can be very inefficient, as we have to loop
over every coordinate of m(t ) and u(t ) in each iteration. A
simple solution is to introduce a vector s = (s1, . . . , sN ), in
which sn records the last time when mn and un are updated.
With the help of sn, instead of updating mn and un in each
iteration, we shall update them only when the energy level En

is involved in the Monte Carlo simulations.

Algorithm 2. Accelerated Wang-Landau algorithm.

1. Initialization. u(0)
n = 0, m(0)

n = 0 for n ∈ [N].
2. For t � 1, iterate between the following steps.

(a) Sample xt+1 from Pt (xt , ·).
(b) Update m(t ) and u(t+1) as follows.

m(t )
n ← βm(t−1)

n + (1 − β )1[E (xt+1) = En],

u(t+1)
n ← u(t )

n + ηt+1

[
m(t )

n

]1/2
.

(20)

(c) Normalize u(t+1) to sum to 0.
(d) Scale down the learning rate ηt properly.

3. Stop when the learning rate ηt is smaller than a prescribed
threshold.

IV. ILLUSTRATIONS

We compare the AWL algorithm with the original WL
algorithm on two benchmark examples: (a) a nearest-neighbor
Ising model and (b) a nearest-neighbor ten-state Potts model.
Both models are defined on a two-dimensional L × L square
lattice equipped with the periodic boundary condition.

For the Ising model, the energy E (x) is given by the
Hamiltonian

E (x) = −
∑
〈i, j〉

Ji jxix j − ψ
∑

j

b jx j, (21)

where xi ∈ {±1}. The subscripts i, j denote the lattice sites,
and the notation 〈i, j〉 implies that the site i and the site j are
nearest neighbors. For the ten-state Potts model, the energy
E (x) is given by

E (x) = −
∑
〈i, j〉

Ji j1(xi = x j ) − ψ
∑

j

b jx j, (22)

where xi ∈ {1, . . . , 10}. For both models, we assume that
Ji j ≡ 1 and b j ≡ 0 (no external magnetic field). If bj ≡ 0, the
two-dimensional Ising model exhibits a second-order phase
transition. Otherwise, in the presence of an external magnetic
field, the two-dimensional Ising model exhibits a first-order
phase transition. When bj ≡ 0, the two-dimensional Potts
model exhibits a first-order phase transition when the number
of states is larger than 4.
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Let {Ht (En)}N
n=1 be the histogram of all energy levels at

iteration t . We initialize H0(En) = 0 for n ∈ [N]. At each
iteration t , the AWL algorithm and the WL algorithm update
u(t ) according to Algorithms 2 and 1, respectively. In addition,
we update the energy histogram as Ht (En) = Ht−1(En) +
1[E (xt+1) = En].

The adaptation of the learning rate ηt follows Ref. [30],
which is detailed in the following.

(1) After every 1000 MC sweeps, we check {Ht (En)}. If
minn Ht (En) > 0, we set ηt+1 = ηt/2, and reset Ht (En) = 0
for each energy level En. Otherwise, if minn Ht (En) = 0, we
keep ηt+1 = ηt .

(2) If ηt+1 � N/t , then ηt = N/t for all the subsequent
iterations. Ht (En) is discarded and the above step is not
executed any more.

We note that each MC sweep contains L2 iterations, in
which each iteration refers to a single round of parameter
update. That is, steps 2(a)–2(c) in Algorithms 1 and 2. The
energy histogram {Ht (En)} essentially represents the number
of visits to each energy level up to iteration t , since the last
update of the learning rate.

We implement one step of the METROPOLIS algorithm to
estimate the gradient, i.e., step 2(a) in algorithms 1 and 2. The
proposal schemes for the Ising model and the Potts model are
described as follows. Given the current configuration xt , we
randomly pick up a site and change its value. For the Ising
model, we flip its sign. For the ten-state Potts model, we set it
to be a number uniformly sampled from {1, . . . , 10}.

To illustrate the efficiency of the AWL algorithm, we inves-
tigate the following four perspectives. (i) The scaling of the
first equilibration time, in terms of the number of MC sweeps,
with respect to the dimension L. The first equilibration time,
which corresponds to the transient phase as we discussed in
Sec. III, is defined to be min{t : minn Ht (En)} > 0. That is,
the first time when the energy histogram becomes nonzero
everywhere. According to the adaptation rule of the learning
rate ηt , the equilibration time is also the first time we decrease
the learning rate. (ii) The scaling of the first equilibration time,
in terms of the CPU time, with respect to the dimension L.
Because the AWL algorithm requires additional computations
in updating the momentum vector, the comparison between
the two algorithms on the actual CPU time is necessary to
see whether the implementation of the acceleration method is
indeed worthwhile. (iii) The dynamics of the estimation error
ε(t ) defined as below following Ref. [30] for L = 80,

ε(t ) = 1

N − 1

N∑
n=1

∣∣∣∣1 − log[gt (En)]

log[g(En)]

∣∣∣∣. (23)

For the Ising model, the exact density of states g(En) is
available, and can be calculated using a publicly available
MATHEMATICA program [55]. For the Potts model, no exact
solution of g(En) is available, and thus we prerun a 1/t WL
simulation for 5 × 107 MC sweeps, in which the final learning
rate is 2 × 10−8. We then treat the density estimates as an
approximation to the exact density of states. (iv) The accuracy
in the task of estimating the specific heat for the Ising model
with L = 80.

We compare the AWL algorithm and the WL algo-
rithm with different initializations of the learning rate,

η0 = 0.05, 0.10, and 1.00. We test out the two algorithms
for different sizes of the two-dimensional square lattice, L =
50, 60, 70, 80, 90, 100. The computations in this paper were
run on the FASRC Cannon cluster supported by the FAS
Division of Science Research Computing Group at Harvard
University.

Figure 1 summarizes the computational overheads of the
two algorithms on the Ising model. The reported results are
based on 50 independent runs of both algorithms, in which
the dot represents the empirical mean and the error bar
represents the empirical standard deviation. We see that the
AWL algorithm takes significantly fewer MC sweeps as well
as less CPU time to reach the first equilibration among all
settings with different lattice sizes and different initializations
of the learning rate. Figure 2 summarizes the computational
overheads of the two algorithms on the Potts model. Similar
to the case of the Ising model, the AWL algorithm is more
efficient than the WL algorithm in terms of the first equili-
bration time measured by the number of MC sweeps and the
CPU time.

Figure 3 shows the empirical dynamics of ε(t ), averaged
over 50 independent runs of both algorithms. The first 100 ×
103 MC sweeps for the Ising model and the first 1500 × 103

MC sweeps for the Potts model are representative for the tran-
sient phase. We see that in the transient phase, the convergence
speed of the AWL algorithm, in terms of the number of MC
sweeps, is significantly faster than the convergence speed of
the WL algorithm with different initializations of the learning
rate.

For the Ising model with L = 80, Table I compares the
accuracy of the two algorithms in the calculation of the
specific heat defined as

C(T ) = 〈E2〉T − 〈E〉2
T

T 2
, (24)

in which T denotes the temperature. We test out temperatures
ranging from 0.4 to 8 incremented by 0.1. The internal energy
〈E〉T is defined as

〈E〉T =
∑

n Eng(En) exp(−En/T )∑
n g(En) exp(−En/T )

. (25)

The fluctuation expression 〈E2〉T is defined similarly. We
note that the theoretical value of the specific heat at a given
temperature T can be evaluated exactly when the exact density
of states is available, which is the case for the two-dimensional
Ising model. We independently run each algorithm 50 times
to obtain 50 independent estimates of the specific heat at
each temperature. The relative error at each temperature is
calculated based on the mean of the 50 independent estimates.
Table I summarizes the quantiles of the relative errors for
T ∈ [0.4, 8], by running each algorithm for 100 × 103, 150 ×
103, and 200 × 103 MC sweeps, respectively. Compared to
the WL algorithm, the AWL algorithm yields significantly
more accurate estimates of the specific heat especially in the
transient phase.

More details of this numerical study can be found in the
Supplemental Material [48]. First, within the first 2 × 105

MC sweeps and 2 × 106 MC sweeps for the Ising model
and the Potts model, respectively, we report the number of
equilibrations that the AWL algorithm and the WL algorithm
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FIG. 1. The computational overheads, in terms of the number of MC sweeps and the CPU time, that the AWL algorithm and the WL
algorithm take to reach the first equilibration on the Ising model. Two initializations of the learning rate are tested out, including η0 = 0.05
and η0 = 1.00. The reported results are based on 50 independent runs of both algorithms. The dot represents the empirical mean and the error
bar represents the empirical standard deviation.

have reached (equivalently, the number of changes of the
learning rate ηt ), for different lattice sizes L and different
initializations of the learning rate η0. We also report the
corresponding first eight equilibration time in terms of the

number of MC sweeps. Second, for the Ising model with
L = 80, we provide a graphical comparison of the estimated
specific heat obtained by the AWL algorithm and the WL
algorithm, over the temperature region T ∈ [0.4, 8].

TABLE I. The relative errors of the AWL algorithm and the WL algorithm in the calculation of the specific heat for the Ising model with
L = 80. The relative errors are calculated based on the mean of 50 independent estimates produced by each algorithm. The quantiles of the
relative errors are over the temperature interval T ∈ [0.4, 8]. η0 denotes the initialization of the learning rate.

100 × 103 MC sweeps 150 × 103 MC sweeps 200 × 103 MC sweeps

Quantiles 25% 50% 75% 25% 50% 75% 25% 50% 75%

AWL (η0 = 0.05) 2.9% 6.3% 17.7% 0.9% 2.0% 4.6% 0.5% 1.2% 2.9%
WL (η0 = 0.05) 10.5% 18.9% 41.4% 4.6% 9.1% 17.7% 1.1% 2.0% 4.4%
WL (η0 = 0.10) 12.2% 24.0% 44.0% 2.4% 4.6% 10.9% 0.7% 2.4% 5.1%
WL (η0 = 1.00) 47.1% 57.6% 74.4% 8.0% 16.0% 27.5% 2.8% 4.6% 8.4%
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FIG. 2. The computational overheads, in terms of the number of MC sweeps and the CPU time, that the AWL algorithm and the WL
algorithm take to reach the first equilibration on the Potts model. Two initializations of the learning rate are tested out, including η0 = 0.05
and η0 = 1.00. The reported results are based on 50 independent runs of both algorithms. The dot represents the empirical mean and the error
bar represents the empirical standard deviation.

V. CONCLUSION

To summarize, in this paper we present an interpretation of
the WL algorithm from the optimization perspective. We show
that the WL algorithm is essentially a stochastic (projected)
gradient descent algorithm minimizing a smooth and convex
function, in which MCMC steps are used to estimate the
unknown gradient. The optimization formulation intuitively
explains that because of using more accurate gradient es-
timates, some notable modifications of the algorithm, such
as utilizing multiple random walkers, can improve the WL
algorithm. In addition, using the (strong) convexity of the
objective function, we provide a new approach to establish the
convergence rate of the WL algorithm, which is more explicit

compared to the existing results [31,40]. We expect that our
contributions are useful for further theoretical investigations
of the WL algorithm.

The optimization interpretation also opens a way to im-
prove the efficiency of the WL algorithm. There are rich
tools in the optimization literature to accelerate the stochastic
gradient descent algorithm, including but not restricted to the
methods we mentioned in Sec. III. Different methods can
be favorable for different applications. In the presence of
noisy gradients, it usually requires some careful tuning to
successfully apply the acceleration tools. We demonstrate one
possible acceleration approach, using the momentum method
and the adaptive learning rate strategy, on a two-dimensional
Ising model and a two-dimensional ten-state Potts model.

033301-7



CHENGUANG DAI AND JUN S. LIU PHYSICAL REVIEW E 101, 033301 (2020)

FIG. 3. The dynamics of the estimation error ε(t ) (on the logarithmic scale), averaging over 50 independent runs, of the AWL algorithm
and the WL algorithm. Panel (a) shows the result for the Ising model, and panel (b) shows the result for the Potts model. η0 denotes the
initialization of the learning rate.
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