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Equilibrium measurement method of slip length based on fluctuating hydrodynamics
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We perform equilibrium molecular dynamics simulations for nanoscale fluids confined between two parallel
walls and investigate how the autocorrelation function of force acting on one wall is related to the slip length.
We demonstrate that for atomically smooth surfaces, the autocorrelation function is accurately described by
linearized fluctuating hydrodynamics (LFH). Excellent agreement between the simulation and the LFH solution
is found over a wide range of scales, specifically, from the timescale of fluid relaxation even to that of molecular
motion. Fitting the simulation data yields a reasonable estimation of the slip length. We show that LFH provides
a starting point for examining the relationship between the slip length and the force fluctuations.
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I. INTRODUCTION

Over the past two decades, because of remarkable develop-
ments in nanotechnology, there has been considerable interest
in “nanofluidics,” which involves a quantitative description
of fluid motion at the nanoscale (<100 nm) [1–3]. One of
the core concepts is the assumption of partial slip boundary
condition; that is, fluid velocity is linearly proportional to the
shear rate at fixed solid surfaces [4–6]:

v

∣∣∣
wall

= b
∂v

∂z

∣∣∣
wall

, (1)

where v is the tangential velocity relative to the surface and z
is the coordinate along the surface normal. b is the slip length,
which characterizes the extent of boundary slip. It has been
confirmed in recent experiments that a typical slip length is
about 0–30 nm for smooth surfaces; the effect of boundary slip
becomes non-negligible as the size of the channel confining
the fluid approaches nano- and microscales. Therefore, aiming
for control and manipulation of nanoscale fluids, much effort
has been devoted to the investigation of factors that affect the
slip length [7–11].

Bocquet and Barrat developed a useful method to examine
how the slip length depends on the microscopic structure of
the solid surface [12]. They focused on another expression
of the partial slip boundary condition; specifically, the total
force Fwall acting on the wall is linearly proportional to the
slip velocity v|wall at the wall [4]:

Fwall = −Sλv|wall, (2)

where S is the surface area and λ the liquid-solid friction
coefficient. As initially discussed by Navier [4], by assuming
that the bulk constitutive equation holds adjacent to the wall:

Fwall = −η
∂v

∂z

∣∣∣
wall

, (3)

where η is the viscosity of the bulk, the friction coefficient is
connected with the slip length as

b = η

λ
. (4)

Based on the nonequilibrium statistical mechanics, Bocquet
and Barrat proposed the following expressions for the friction
coefficient and the slip length:

λ = γ (τ0), (5)

b = η

γ (τ0)
, (6)

with

γ (τ ) = 1

SkBT

∫ τ

0
dt〈F̂ (t )F̂ (0)〉eq, (7)

where kB the Boltzmann constant, T the temperature of the
fluid, 〈·〉eq the canonical ensemble average at temperature T ,
and F̂ (t ) the total microscopic force between the wall and
fluid at time t . τ0 is taken to the first zero of 〈F̂ (t )F̂ (0)〉eq.

The two relations Eqs. (5) and (6) were mainly applied to
atomically smooth surfaces and successfully extracted some
general relationship between the friction coefficient (or the
slip length) and the microscopic parameters of walls. For
example, the relation Eq. (6) explains how the slip length
depends on microscopic parameters such as the interaction
between a fluid particle and a solid particle [13,14] and the
curvature of the wall surface [15]. Also, the quantitative
relationship between the slip length and the static properties of
the fluid adjacent to the wall, such as the density and structure
factor, is derived from the relation Eq. (6) [16,17].

However, the theoretical interpretation of the relations
Eqs. (5) and (6) is not completely understood, and it is
unclear why they are related to the friction coefficient and
slip length [18–20]. Hence, their application has been limited
to atomically smooth surfaces. To elucidate whether they can
provide the starting point to examine the boundary conditions
for more realistic and complicated surfaces, it is important to
clarify their theoretical interpretation.

One approach to this problem is to connect the relation
Eq. (5) with the Green–Kubo formula, which is formally
expressed in the form [12,21–25]

λ = lim
τ→∞ lim

L→∞
γ (τ ). (8)
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The long-time limit τ → ∞ and thermodynamic limit L →
∞ are essential to obtain the correct friction coefficient from
the Green–Kubo formula. The linear response theory explains
the importance of these limits as follows [26–28]. There are
two characteristic timescales in a confined fluid; one is that of
the microscopic motion of molecules (denoted by τmicro) and
the other is that of the global equilibration of fluid (denoted
by τmacro). When the system size is sufficiently large, τmicro �
τmacro holds because the relaxation time of slow variables is
larger for larger system size. Then, because F̂ (τ ) is a fast
variable, it is reasonable to assume that 〈F̂ (τ )F̂ (0)〉eq decays
to 0 at a sufficiently short time relative to τmacro. However,
〈F̂ (τ )F̂ (0)〉eq does not completely decay to zero even at τ �
τmacro because fast variables are generally coupled with slow
variables at the τmacro-scale. Actually, for finite size systems
γ (τ ) approaches a geometry-dependent value in the long time
limit τ � τmacro [12,18]. Therefore, to obtain the slip length
from γ (τ ), it is necessary to remove the contributions of the
slow variables from the time integral of γ (τ ). This is accom-
plished by taking the thermodynamic limit L → ∞ before the
long-time limit τ → ∞, because the dynamics of the slow
variables is separated in the limit L → ∞. When the slow
and fast variables are completely separated, it is expected that
〈F̂ (τ )F̂ (0)〉eq would be equal to 0 in the time region τmicro �
τ � τmacro; as a result, γ (τ ) has a well-defined plateau region
where γ (τ ) is almost constant. The value of γ (τ ) in this
plateau region is the correct friction coefficient.

Thus, to connect the relation Eq. (5) and the Green–Kubo
formula, we have to identify τ0 in the relation Eq. (5) with the
plateau region. So far, however, its connection remains unclear
for the following reasons; (i) Previous studies could not prove
the existence of the well-defined plateau region around τ0

[18–20]; (ii) the relation Eq. (5) holds even for the extremely
small system where the assumption τmicro � τmacro is expected
to break down [12,15,29–31]. Additionally, recently, de la
Torre et al. discussed the behavior of γ (τ ) by using the Mori
projection operator method and claimed that γ (τ ) does not
exhibit the plateau region even in the thermodynamic limit
and the formal expression of Green–Kubo formula, Eq. (8), is
not correct [32,33].

There are two main themes in this paper: (i) to propose
a new theoretical interpretation of the relations Eqs. (5) and
(6); (ii) to develop a new equilibrium measurement method.
We study them for the atomically smooth walls, where the
bulk constitutive equation [Eq. (3)] holds even near the wall.
Then, we basically focus on the relation Eq. (6) and refer to
it as BB’s relation. Our crucial idea is to analyze the force
autocorrelation function in linearized fluctuating hydrody-
namics (LFH). Although LFH was originally developed as a
phenomenological model to describe the dynamics of macro-
scopic fluctuations [34–38], we demonstrate that it reproduces
the results of numerical simulations even at the timescale
of molecular motion. Furthermore, by fitting the simulation
data to the LFH solution, a reasonable estimation of the slip
length is obtained. From these results, we find that LFH is
a reasonable starting point for examining the relationship
between the fluctuations of force acting on walls and the
slip length. Then, by combining LFH and the molecular
dynamics (MD) simulation, we study the validity of BB’s
relation.

FIG. 1. Schematic illustration of the model. On the left is a
microscopic description of the molecules, and on the right is a
macroscopic description of the fluid.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a microscopic model of a confined fluid.
In Sec. III, we investigate in advance the basic properties
of the fluid and wall by using the nonequilibrium molecular
dynamics (NEMD) simulation. In Sec. IV, we review BB’s
relation with the equilibrium molecular dynamics (EMD) sim-
ulation and sort out the problem. In Sec. V, we introduce LFH
and give some exact results derived from it. In Sec. VI, by
comparing the EMD simulation result with the LFH solution,
we demonstrate that LFH accurately describes the fluctuations
of the force acting on the wall. We also propose a new
equilibrium measurement method for the slip length. Then,
in Sec. VII, through the analysis of LFH, we propose the
new theoretical interpretation of BB’s relation. Section VIII
is devoted to conclusions and discussions.

II. MICROSCOPIC DESCRIPTION OF CONFINED FLUIDS

A. Model

We introduce a microscopic description of the fluid and the
wall, as shown schematically on the left side of Fig. 1. The
fluid consists of N particles that are confined to an Lx × Ly ×
L cuboid box. We impose periodic boundary conditions along
the x and y axes and introduce two walls so as to confine
particles in the z direction. We represent the two walls as
collections of material points placed near planes z = 0 and
z = L, which are referred to as walls A and B, respectively.
Each wall consists of NA and NB material points.

The position and momentum of the ith particle of the fluid
are denoted by (ri, pi ), (i = 1, 2, . . . , N ), and their collection
is denoted by � = (r1, p1, . . . , rN , pN ). Similarly, the position
of the ith material point of wall α (α = A, B) is denoted by
qα

i , (i = 1, 2, . . . , Nα ) and their collection is denoted by �α =
(qα

1 , . . . , qα
Nα

).
The Hamiltonian of the system is given by

H (�; �A, �B) =
N∑

i=1

p2
i

2m
+

∑
i< j

UFF (|ri − r j |)

+
N∑

i=1

NA∑
j=1

UAF
(∣∣ri − qA

j

∣∣)

+
N∑

i=1

NB∑
j=1

UBF
(∣∣ri − qB

j

∣∣). (9)

UFF (r) describes the interaction potential between the par-
ticles of the fluid and UαF (r) describes that between the
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material point of wall α and the fluid particle. In this paper, all
the interaction potentials are given by the modified Lennard-
Jones potential with a cutoff length rc:

UαF (r) = 4εαF

{(σαF

r

)12
− cαF

(σαF

r

)6
+ C(2)

αF r2 + C(0)
αF

}
,

(10)

for r < rc, and UαF (r) = 0 otherwise, where α = F, A, B.
C(0)

αF and C(2)
αF are determined by the conditions UαF (rc) = 0

and U ′
αF (rc) = 0. It should be noted that the potential in

this form was frequently used in the molecular dynamics
studies concerning the boundary condition [9,10]. For sim-
plicity, we hereafter omit the subscript FF in the parameters
(σFF , cFF , εFF ). Then, the time evolution of the system is
described by Newton’s equation:

m
d2ri

dt2
= −

∑
j 
=i

∂UFF (|ri − r j |)
∂ri

−
NA∑
j=1

∂UAF
(∣∣ri − qA

j

∣∣)
∂ri

−
NB∑
j=1

∂UBF
(∣∣ri − qB

j

∣∣)
∂ri

. (11)

The microscopic structure of wall α is given by the po-
sitions of the material points, �α , and the parameters in
the interaction potential, (εαF , σαF , cαF ). In this paper, we
study the atomically smooth walls given by the collection of
material points that are fixed on the square lattice in the z = 0
or z = L planes. The lattice constant, which is denoted by aα ,
is given by

σαF = aα + σ

2
, (12)

so that the lattice constant aα is treated as the diameter of the
particles constituting wall α. Then, the microscopic structure
of the wall is determined by (aα, cαF , εαF ).

B. Parameters

In numerical simulations, all the quantities are measured by
unit (m, σ, ε). In particular, the time is measured by τmicro =√

mσ 2/ε. For liquid argon, the length scale is σ = 0.34 nm
and the time scale is τmicro = 2.16 × 10−12 s [39].

The simulations are basically performed for (Lx, Ly, L) =
(50.0σ, 50.0σ, 20.0σ ), N = 37500, c = 1.0, and rc = 2.5σ .
Although the wall potential is characterized by the three
parameters (aα, cαF , εαF ), in our study, we fix (aα, εαF ) to
(0.6σ, 0.9ε) and examine three types of walls given by cαF =
0.8, 0.4, 0.0. We refer to these walls as Wall I, II, and III,
respectively. The initial states are prepared using the Langevin
thermostat with kBT/ε = 2.0. When solving Newton’s equa-
tion [Eq. (11)], we use the second-order symplectic Euler
method [40] with a time step dt = 0.001τmicro. We note that
for our parameters the fluid is in the supercritical state [41,42].

III. NONEQUILIBRIUM MOLECULAR DYNAMICS
SIMULATION

Before proceeding the equilibrium molecular dynamics
(EMD) simulation, we investigate the basic properties of
the fluid and wall by using the nonequilibrium molecular

dynamics (NEMD) simulation. We simulate two types of flow,
Couette flow and Poiseuille flow, and confirm the validity of
the bulk constitutive equation and the partial slip boundary
condition [13,43].

A. Method

In Sec. II, we introduced the isolated Hamiltonian system.
The nonequilibrium steady state is simulated by adding the
Langevin thermostat and the external force. We study two
types of flow. The first one is Poiseuille flow, which is realized
by adding to all the particles the constant external force along
the x axis and the Langevin thermostat along the y axis. That
is, the particles obey the Langevin equation:

m
d2ra

i

dt2
= −∂H

∂ra
i

+ f a + δay

[
−ζ

dra
i

dt
+ ξ a

i (t )

]
, (13)

where δab is Kronecker delta, f = ( f , 0, 0) is the external
force and ξi represents thermal noise satisfying〈

ξα
i (t )ξβ

j (t ′)
〉 = 2ζkBT δi jδ

αβδ(t − t ′), (14)

where kB is the Boltzmann constant, T the temperature of the
thermostat, and ζ the friction coefficient. Here, we note that
the Langevin thermostat controls the momentum only along
the y axis, which is orthogonal to the flow. In this simulation,
we assume that walls A and B have the same microscopic
structure.

The second one is Couette flow, which is simulated as
follows. First, we replace wall B from the collection of the
material points to the following potential:

VB(r) = 4ε

{(
σ

L − z

)12

−
(

σ

L − z

)6

+C(2)
FF (L − z)2 + C(0)

FF

}
, (15)

for z < rc, and VB(r) = 0 otherwise. Then, the tangential
momentum is not exchanged between the fluid and wall B
because the force acting on the fluid particle i is calculated
as −∂VB(ri )/∂ra

i . Second, we apply the Langevin thermostat
and the external force along the x axis in the region near wall
B (referred to as region RB). Specifically, in region RB, the
particles obey the Langevin equation

m
d2ra

i

dt2
= −∂H

∂ra
i

+ f a − ζ
dra

i

dt
+ ξ a

i (t ), (16)

where f = ( f , 0, 0) and ξi is given by Eq. (14). Outside region
RB, we use the same dynamics as the EMD simulation. We
note that in the Couette flow the Langevin thermostat controls
all components of momentum. In the steady state, the velocity
of fluid in region RB is approximately given by v = f /ζ .

For both types of flow, we concentrate on the mass density
field ρ(r), the x component of the velocity field vx(r) and the
shear stress field σ xz(r) in the steady state. These quantities
are calculated from the microscopic mass density field ρ̂(r; �),
the momentum density field π̂a(r; �) and the momentum
current density field Ĵab(r; �). These microscopic quantities
are defined in terms of microscopic configuration �. The
details are referred to Ref. [44]. Because we are interested in
the z-dependence of the averaged local quantities, we perform
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FIG. 2. (a) Density profile and (b) velocity profile in the nonequilibrium steady state under Couette flow. The wall parameter is set to
cAF = 0.8 (Wall I), and the external force f = 0.15ε/σ is imposed.

spatial average in the slab with a bin width �z at the center z
and temporal average for a time interval �Tobs in the steady
state. For example, the averaged mass density at any z is given
by

ρ(z) = 1

�Tobs

∫ �Tobs

0
dt

1

LxLy

∫
dxdy

1

�z

∫ z+�z/2

z−�z/2
dzρ̂(r; �t ),

(17)

where the system is assumed to be in steady state at t = 0.
The remaining quantities are calculated in the same way [44].
We choose �Tobs = 10000τmicro. Furthermore, we take an
ensemble average over eight different initial states.

B. Density profile and velocity profile

We present the density and velocity profiles in Fig. 2,
which are obtained for the Couette flow with the external force
f = 0.15ε/σ . The wall parameter is set to cAF = 0.8 (Wall
I). These figures show typical features that are observed for
the atomically smooth wall. First, from Fig. 2(a), we find that
the density profile is not uniform but oscillates near the wall.
Such an oscillation is generally observed and the amplitude
is known to depend on the strength of attraction of the walls
[43,45,46]. The density profile becomes uniform away from
the walls. For our models, the oscillation of density is not
observed for z > 6.0σ . Thus, we refer to this region as bulk.
Next, we focus on the velocity profile in Fig. 2(b), which is
obtained for the same setup as the density profile. The black
solid curve and the red dashed line, respectively, represent the
simulation data and the fitting result. The detailed method of
the fitting will be explained in the next subsection. The fitting
result shows that the velocity profile is not singular near the
wall; specifically, it is fitted by the same linear function both
in the bulk region and near the wall.

C. Fitting method of velocity profile

The velocity profile is fitted to the solution of Navier–
Stokes equation with the partial slip boundary condition.
Here, there are three fitting parameters. The first one is the

viscosity η, which involves the bulk constitutive equation:

σ xz = η
dvx

dz
. (18)

The other two parameters are contained in the partial slip
boundary condition. As explained in Introduction, the partial
slip boundary condition is characterized by the slip length.
However, more precisely, one more parameter is required to
describe the partial slip boundary condition. It is the hydro-
dynamic position of the fluid-wall interface, which is defined
as the position where the boundary condition is imposed.
Explicitly, the partial slip boundary condition is written as

vx(zw ) = b(zw )
∂vx(z)

∂z

∣∣∣
z=zw

, (19)

where zw is the hydrodynamic wall position and b(zw ) is the
slip length. It should be noted that the slip length depends
on the hydrodynamic wall position zw [12]. Therefore, we
express this dependence as b(zw ).

Furthermore, we point out that the slip length depends on
the flow geometry. This fact is immediately understood from
the following argument as discussed in Ref. [12]. For the
Couette flow, the velocity field is given by

vx(z) = γ̇ (z + bc(zw )−zw ), (20)

where γ̇ is the shear rate and bc(zw ) represents the slip length
of the Couette flow. From Eqs. (19) and (20), we find that
bc(zw ) depends on zw as

bc(zw ) = bc(0) + zw. (21)

Next, for the Poiseuille flow, the velocity field is calculated as

vx(z) = f

2η
z(L − z) − f

2η
[zw(L − zw ) − bp(zw )(L − 2zw )],

(22)

where f is the external force and bp(zw ) represents the slip
length of the Poiseuille flow. Accordingly, the slip length
satisfies

bp(zw ) = bp(0) + zw + zw[zw + 2bp(0)]

L − 2zw

, (23)
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FIG. 3. (a) Shear stress σ xz as a function of shear rate γ̇ . (b) Slip velocity vx (0) as a function of shear rate γ̇ . The observation is performed
for Couette flow with Wall I (cAF = 0.8). The red line in (a) is σ xz = 1.76γ̇ . The red line in (b) is vx (0) = 8.08γ̇ .

where zw < L/2. Clearly, there is the difference between the
zw-dependence of Eqs. (21) and (23). Therefore, the slip
lengths bc(zw ) and bp(zw ) do not generally coincide.

Now we impose that the proper definition of the slip length
and the hydrodynamic wall position does not depend on the
flow geometry. When we focus on the two types of geometry,
this condition can be satisfied. Specifically, we choose the
hydrodynamic wall position by solving the equation

bc(z∗
w ) = bp(z∗

w ) = b∗. (24)

The solution of this equation is calculated as

z∗
w = −bc(0) +

√
[bc(0)]2 + L[bc(0) − bp(0)], (25)

b∗ =
√

[bc(0)]2 + L[bc(0) − bp(0)], (26)

which provides the operational definition of the slip length and
the hydrodynamic wall position.

In summary, the fitting is performed in the following steps.
First, we observe the velocity field vx(z) and the shear stress
field σ xz(z). Second, we fit the velocity field vx(z) in the bulk
region to Eqs. (20) and (22) with zw = 0. The slip length
b(0) is obtained by substituting the fitting result into Eq. (19).
(z∗

w, b∗) is calculated from Eqs. (25) and (26). The viscosity
η is calculated by using the bulk constitutive Eq. (18). This
method was used in the literatures [13,43,47–50].

D. Fitting result

First, we validate the bulk constitutive Eq. (18). In
Fig. 3(a), the shear stress is plotted as the function of the shear
rate for the Couette flow. The wall is set to Wall I (same as
Fig. 2). This plot is well fitted by Eq. (18) with η = 1.76, and
then we confirm the validity of Eq. (18). Here, we note that
the bulk constitutive equation holds even near the walls and
the viscosity η hardly depends on the z coordinate, because the
velocity profile does not exhibit the singular behavior close to
the wall (see the left side of Fig. 2).

Next, we validate the partial slip boundary condition
Eq. (19). In Fig. 3(b), the slip velocity is plotted as the function
of the shear rate for the same setup as Fig. 3(a). Here, the slip

velocity and the shear rate are measured from the velocity field
extrapolated to z = 0, and then the slope gives the slip length
bc(0). From the fact that this plot can be fitted with the linear
function, we confirm the validity of the partial slip boundary
condition Eq. (19).

These two results also hold for the Poiseuille flow with all
types of wall that we examined. Accordingly, we conclude
that our model obeys the Navier–Stokes equation with the
partial slip boundary condition. We summarize the values of
parameters obtained from the NEMD simulation in Table I.
The error represents the standard deviation for eight different
initial states. We distinguish the quantities obtained from the
NEMD simulation with subscript neq. bneq and zneq are well-
defined quantities, which are calculated from Eq. (24).

Below, we will argue an equilibrium measurement method
of the slip length by using the same walls as used here. Before
proceeding to the equilibrium measurement, we comment on
the values of bneq and zneq that we obtained. The slip length
bneq takes the wide range of values. For Walls I and II, the slip
length bneq is comparable to the system size L. Furthermore,
for Wall III, the slip length bneq is about six times larger
than the system size L. We note that such phenomena have
been observed due to the recent development of nanofluidics
[15,51,52]. Concerning the hydrodynamic wall position zneq,
some group reported that it is located near the first peak of the
density profile [see Fig. 2(a)] [24,43,53]. In our simulation,
for Wall I, the first peak is observed at zpeak ∼ 0.83σ , which
is smaller than zneq. It should be noted that this difference is
much smaller than the slip length.

TABLE I. Viscosity ηneq, slip length bneq, and hydrodynamic wall
position zneq, which are obtained in the NEMD simulation. The error
represents standard deviation for 8 different initial states.

Wall ηneq/
√

mεσ−2 bneq/σ zneq/σ

I (cAF = 0.8) 1.76 ± 0.01 8.08 ± 0.14 0.56 ± 0.09
II (cAF = 0.4) 1.79 ± 0.02 30.8 ± 0.3 0.43 ± 0.11
III (cAF = 0.0) 1.81 ± 0.03 121.8 ± 1.7 1.1 ± 0.2
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IV. REVIEW OF BB’S RELATION

In this section, we review the calculation method of BB’s
relation and sort out the problems with this method.

A. Method

BB’s relation is calculated from the EMD simulation.
Then, we numerically solve Newton’s equation [Eq. (11)].
The microscopic expression of the force acting on wall α is
given by

F̂α (�) =
NA∑
j=1

∂UαF
(∣∣ri − qα

j

∣∣)
∂ri

. (27)

The force autocorrelation function is calculated by performing
a long-time average over the time interval �Tobs:

〈
F a

α (t )F a
α (0)

〉
eq = 1

�Tobs

∫ �Tobs

0
dsF̂ a

α (�t+s)F̂ a
α (�s), (28)

where a = x, y, z, and the system is assumed to be in equi-
librium at t = 0. We choose �Tobs = 10 000τmicro, which is
the same as the NEMD simulation. We also take an ensemble
average over 24 different initial states. We introduce the
Green–Kubo integral of the force autocorrelation function:

γ aa
MD,αα (t ) = 1

kBT LxLy

∫ t

0
ds

〈
F a

α (s)F a
α (0)

〉
eq. (29)

Here, the subscript MD represents that γ aa
MD,αα (t ) is calculated

from the EMD simulation. For simplicity, we focus on the x
component of the force F̂ x

α and omit the superscript x in F̂ x
α

and γ xx
MD,αα (t ). We assume that walls A and B have the same

microscopic structure so that (aA, cAF , εAF ) = (aB, cBF , εBF ).
In this case, it holds that

〈FA(t )FA(0)〉eq = 〈FB(t )FB(0)〉eq (30)

for any t . We thus study only the behavior near wall A and
drop the subscript A from F̂A(�) and γMD,AA(t ).

As explained in Introduction, Bocquet and Barrat proposed
that the friction coefficient λ is calculated as

λ = γMD(τ0), (31)

where τ0 is defined as the first zero of 〈F (t )F (0)〉eq [54]. As
mentioned in Sec. III C, the value of the slip length depends
on the position where the slip velocity is defined. Because
the friction coefficient is defined by Eq. (2), we notice that
the same problem occurs for the friction coefficient. Then, to
calculate the friction coefficient from the relation Eq. (31), we
must determine the position of the fluid-wall interface.

In this paper, we assume that the friction coefficient cal-
culated from the relation Eq. (31) yields the flow-geometry-
independent value. Specifically, the position of the fluid-wall
interface is given by the hydrodynamic wall position zneq.
This assumption is justified if the relation Eq. (31) is con-
nected with the Green–Kubo formula, because we can derive
that the Green–Kubo formula provides the flow-geometry-
independent friction coefficient [26]. However, because the
connection between the relation Eq. (31) and the Green–Kubo
formula is unclear so far, as mentioned in Introduction, this
choice is just an assumption (see also Sec. IV C).

TABLE II. Friction coefficient λ and slip length bpeak obtained
from the relations Eqs. (31) and (32). bpeak is calculated using
the viscosity ηneq. The error for λ is the standard deviation for
24 different initial states. The error of bpeak is estimated from the
propagation of error of BB’s relation Eq. (32).

Wall λ bpeak

I (cAF = 0.8) 0.202 ± 0.00 8.71 ± 0.05
II (cAF = 0.4) 0.060 ± 0.00 29.8 ± 0.3
III (cAF = 0.0) 0.0168 ± 0.00 107.7 ± 1.8

B. BB’s relation

In Fig. 4, we present 〈F (t )F (0)〉eq and γMD(t ) for Wall
I. For this wall, the first zero of 〈F (t )F (0)〉eq is about τ0 ∼
0.3τmicro [see Fig. 4(a)], which is comparable to the character-
istic timescale of molecular motion. For example, when two
particles are bound by the attractive interaction UFF (r), the
period of the vibration is calculated as 0.83τmicro. The relation
Eq. (31) implies that the friction coefficient is calculated from
information over the molecular timescale.

Although the relation Eq. (31) is immediately calculated
from the EMD simulation, we require the additional assump-
tion to connect the friction coefficient λ with the slip length
b. It is that the bulk constitutive equation [Eq. (18)] holds
adjacent to the wall. In Sec. III D, we showed the validity
of this assumption by using the NEMD simulation. Then, by
using Eq. (18), the slip length is expressed as

bpeak = η

γMD(τ0)
= η

λ
. (32)

As mentioned in Introduction, we refer to this relation as BB’s
relation. Because the first zero of 〈F (t )F (0)〉eq corresponds to
the first peak of γMD(t ) [see Fig. 4(b)], we denote by bpeak the
slip length related to BB’s relation.

In Table II, we give the value of λ and bpeak for the three
types of walls. To obtain bpeak from Eq. (32), we use the
viscosity ηneq measured in the NEMD simulation (see Table I).
The error of λ is the standard deviation for different 24 initial
states. The error of bpeak is estimated from the propagation of
error of BB’s relation Eq. (32). The error of λ is extremely
small because the relation Eq. (31) is calculated from the
information at the molecular timescale. As a result, the error
for bpeak mainly comes from that of the viscosity ηneq. By
comparing Tables I and II, we find that bpeak and bneq are
generally consistent over a wide region of the slip length, with
deviations within 15%. This result is consistent with previous
studies [12,15,20,29–31]. If we allow for these deviations,
then we can obtain an estimation of the slip length via BB’s
relation.

C. Problem and strategy

The essential problem with the relation Eq. (31) is the lack
of the clear theoretical understanding. A number of studies at-
tempted to connect the relation Eq. (31) with the Green–Kubo
formula. However, as mentioned in Introduction, because two
types of limit are coupled in the Green–Kubo formula, it
is difficult to validate the connection between the relation
Eq. (31) and the Green–Kubo formula. Associated with this
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FIG. 4. (a) 〈F (t )F (0)〉eq and (b) γMD(t ) for Wall I, which are calculated in the molecular dynamics simulation. The inset in (a) is an
expansion of time region [0, τmicro]. The blue dash-dot line in (b) is the value of the first peak of γMD(t ).

theoretical problem, two questions arise when we calculate
the slip length b from BB’s relation Eq. (32): (i) Why does τ0

provide the slip length? (ii) Where is the hydrodynamic wall
position located?

The goal of this paper is to answer question (i). Our
crucial idea to tackle this problem is to examine how γMD(t )
decays from t = τ0 [see Fig. 4(b)] by introducing LFH as
a phenomenological model of the confined fluid. We first
demonstrate that LFH describes the fluctuations even at the
molecular scale with high accuracy, although LFH was origi-
nally developed to describe the macroscopic fluctuations [34].
Then, by combining the EMD simulation result with the LFH
solution, we propose a new theoretical interpretation of BB’s
relation Eq. (32), which answers the question (i). We also
propose a new equilibrium measurement method for the slip
length (or equivalently the friction coefficient). Although our
method is expected to solve the question (ii), it is not attained
in this paper mainly because of the measurement accuracy. We
will discuss this point in Sec. VI C and Appendix B.

V. PHENOMENOLOGICAL DESCRIPTION OF
CONFINED FLUID

If the length scale of the spatial variation of the velocity
field is much larger than molecular scales, then the molecular
motion is smoothed out and the fluid motion is described as
a continuum. From this consideration, LFH is introduced to
describe the thermal fluctuation and the fluid flow. In this
section, we explain some exact results derived from LFH [26].
In the next section, we will compare the EMD simulation
results with the LFH predictions.

A. Linearized fluctuating hydrodynamics (LFH)

We consider the same geometry of the system as that in
Sec. II A. The fluid is assumed to be incompressible. Accord-
ingly, the time evolution is described by the incompressible
Navier–Stokes equation with stochastic fluxes,

ρ
∂ ṽa

∂t
+ ∂ J̃ab

∂rb
= 0, (33)

where twice repeated indices are assumed to be summed over.
The momentum flux tensor J̃ab(r, t ) is given by

J̃ab = p̃δab − η

(
∂ ṽa

∂rb
+ ∂ ṽb

∂ra

)
+ s̃ab, (34)

where s̃ab(r, t ) is the Gaussian random stress tensor satisfying

〈s̃ab(r, t )s̃cd (r′, t ′)〉eq = 2kBT η

[
δacδbd + δadδbc − 2

3
δabδcd

]

× δ3(r − r′)δ(t − t ′). (35)

Here, the nonlinear effect induced by the advection term is
ignored.

ρ represents the fluid density, which corresponds to
Eq. (17) in the MD simulation. In LFH, ρ is assumed to be
spatially constant because of the incompressibility condition.
This is not consistent with the observation in the MD simula-
tion because the density profile close to the wall is not uniform
but oscillates [see Fig. 2(a)]. This oscillation exists only close
to the wall; if the system size is sufficiently large, then the
density profile is uniform in almost all of the region. Then, we
interpret that ρ in LFH is given by the density in such region. p̃
is the pressure, which is used to enforce the incompressibility
condition,

∂ ṽa(r, t )

∂ra
= 0. (36)

We impose periodic boundary conditions along the x and
y axes. The boundary conditions at walls A and B are deter-
mined by the microscopic structure of each wall. Then, we
impose the partial slip boundary condition with slip length b
at z = z0 and z = L − z0, specifically,

ṽx(r)|z=z0 = b
∂ ṽx(r)

∂z

∣∣∣∣
z=z0

, (37)

ṽx(r)|z=L−z0 = −b
∂ ṽx(r)

∂z

∣∣∣∣
z=L−z0

, (38)

where z0 is the hydrodynamic wall position. Here, the slip
length and the hydrodynamic wall position of walls A and B
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are equal because they have the same microscopic structure.
With introducing the hydrodynamic wall position z0, we also
introduce the hydrodynamic system size L defined by

L = L − 2z0. (39)

In this section, we assume that z0 is equal to zneq, and do not
study the question (ii) (introduced in Sec. IV C). In Sec. VI C
and Appendix B, we will give some discussions.

B. Explicit form of force autocorrelation function

From LFH, the autocorrelation function of the force act-
ing on the wall 〈F (t )F (0)〉eq can be calculated. This was
performed in Ref. [26]. Here, we summarize the calculation
results. The brief derivation is given in Appendix A; see
Secs. 7– 10 in Ref. [26] for details.

Because the fluid in equilibrium has time translational
invariance, 〈F (t )F (0)〉eq is expressed in the form

〈F (t )F (0)〉eq =
∫

dω

2π
〈|F (ω)|2〉eqe−iωt . (40)

From the linearity of the model, we can obtain the explicit
expression of 〈|F (ω)|2〉eq:

〈|F (ω)|2〉eq

2ηkBT LxLy

=
∣∣∣ q

�

∣∣∣2
[(

1

qR
+ 6qRb2

)
sinh(2qRL)

+ 4
(
b + q2

Rb3) cosh(2qRL) +
(

1

qR
− 6qRb2

)
sin(2qRL)

+ 4
(
b − q2

Rb3
)

cos(2qRL)

]
+ δ(0)

∣∣∣ q

�

∣∣∣2
[

4qRb3 sinh(2qRL)

− 4qRb3 sin(2qRL) + 2b2(1 + 2qRb2) cosh(2qRL)

+ 2b2(1 − 2qRb2) cos(2qRL) + 4b2

]
, (41)

with

� = (1 + qb)2eqL − (1 − qb)2e−qL, (42)

where q is given by

q = qR − iqR, (43)

with

qR =
√

ωρ

2η
. (44)

Although the formal expression Eq. (41) can be obtained
by straightforward calculation, there is a difficulty. Specif-
ically, the fourth, fifth and sixth lines of Eq. (41) diverge
because these terms are proportional to δ(0). This divergence
stems from the singularity of the stochastic flux at the same
point [see Eq. (35)]. Here, we recall that the origin of the
noise is the thermal motion of the molecules. Then, the
properties of the stochastic flux, Eq. (35), appear as the result
of coarse-graining such molecular motion. Using this fact, the
divergence of the delta function is regularized as follows. An
infinitely small element in the coarse-graining description is
assumed to be so large that it still contains a great number of

molecules. The cutoff length ξc is introduced as the minimum
size of such a volume element; specifically, the infinitely small
element in the coarse-graining description has volume ξ 3

c .
Then, the properties of the stochastic flux Eq. (35) implies that
the correlation length is not equal to zero but is estimated as
the cutoff length. Accordingly, the delta function in Eq. (35),
δ3(r − r′), is regularized as

δ3(r − r′) �
{
ξ−3

c , for |r − r′| < ξc,

0, for |r − r′| � ξc.
(45)

Similarly, by introducing the cutoff time τc, we regularize the
δ function δ(t − t ′) as

δ(t − t ′) �
{
τ−1

c , for |t − t ′| < τc,

0, for |t − t ′| � τc.
(46)

By the regularization of the stochastic flux, the singularity
in Eq. (41) is also regularized. Specifically, the δ function in
Eq. (41) is replaced by

δ(0) → 1

ξc
. (47)

Thus, the singularity in Eq. (41) is understood to be the
the cutoff-length dependence of the force autocorrelation
function. In Ref. [26], we showed that such a cutoff-length
dependence is approximately removed under the condition

b � ξc � L. (48)

This condition is reasonable when the system size is fully
macroscopic. However, in our simulation, this condition does
not hold for two reasons. First, ξc cannot be measured. Sec-
ond, b � L does not hold. In particular, for Wall III, bneq is
over six times larger than the system size L. Therefore, there is
a problem with the validity of this condition. Nevertheless, in
this paper, neglecting this problem, we assume that the cutoff-
length dependence is not observed; the terms proportional to
δ(0) of Eq. (41) are neglected.

C. Early-time behavior of γLFH(t )

We study the Green–Kubo integral γLFH(t ) of the force
autocorrelation function calculated in LFH, which is given by

γLFH(t ) = 1

kBT LxLy

∫ t

0
ds〈F (s)F (0)〉eq. (49)

Note that γLFH(t ) corresponds to Eq. (29) in the MD simula-
tion. γLFH(t ) is also expressed in the form

γLFH(t ) = 1

kBT LxLy

∫ ∞

0

dω

π
〈|F (ω)|2〉eq

sin(ωt )

ω
. (50)

As explained in the previous subsection, 〈|F (ω)|2〉eq (or
〈F (s)F (0)〉eq) is taken from Eq. (41), where the terms pro-
portional to δ(0) are neglected.

In this section, we focus on the behavior of γLFH(t ) in the
time region t � τmacro, where τmacro is defined as the relax-
ation time of the velocity field. The behavior of γLFH(t ) in this
time region is obtained from 〈|F (ω)|2〉eq in the frequency re-
gion ω � 2π/τmacro. Because the relaxation time of the veloc-
ity field is estimated as τmacro ∼ L2ρ/η, the frequency region
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FIG. 5. γLFH(t ) and γMD(t ) for Wall I in time region (a) [0, 200τmicro] and (b) [0, 10τmicro]. The red solid curves represent the simulation
data (same as Fig. 4), and the error bars are the standard errors of means for each time for 24 different initial states. The blue broken curves
represent LFH solutions with the best-fit parameters.

is rewritten as ω � 2πη/L2ρ or equivalently qR � √
π/L.

In this frequency region, 〈|F (ω)|2〉eq is approximated by

〈|F (ω)|2〉eq

2ηkBT LxLy
� qR(1 + 2qRb)

1 + 2qRb + 2q2
Rb2

. (51)

Then, by substituting Eq. (51) into Eq. (50), γLFH(t ) in the
time region t � τmacro is expressed as

γLFH(t ) � 2η

∫ ∞

0

dω

π

qR(1 + 2qRb)

1 + 2qRb + 2q2
Rb2

sin(ωt )

ω
. (52)

From Eq. (52), we find two properties concerning the early-
time behavior of γLFH(t ). First, because Eq. (52) does not con-
tain the hydrodynamic system size L, the early-time behavior
of γLFH(t ) is independent of the hydrodynamic system size L.
Second, γLFH(t ) converges a finite value in the limit t → +0,
which is calculated as

lim
t→+0

γLFH(t ) = 2η

b
lim

t→+0

∫ ∞

0

dω

π

sin(ωt )

ω

= η

b
. (53)

See Ref. [26] for more detailed arguments.

VI. VALIDITY OF LFH

In this section, we demonstrate that LFH describes the
fluctuations even at the molecular scale with high accuracy,
although LFH was originally developed to describe the macro-
scopic fluctuations [34].

A. Validity of LFH

To examine whether LFH describes the MD simulation
data, we compare γLFH(t ) with γMD(t ). Figure 5 compares the
simulation data with the LFH solution, which is obtained for
Wall I. The left side (a) and right side (b) of Fig. 5 present
γLFH(t ) and γMD(t ) in the time regions [0, 200τmicro] and
[0, 10τmicro], respectively. The slip length b is determined by
fitting the simulation data in the time region [0, 100τmicro] to

Eq. (50). The fitting is performed by a nonlinear least squares
method (more precisely, scipy.optimize.curve_fit in Python).
When fitting γMD(t ), we use the viscosity ηneq obtained in the
NEMD simulation. The agreement is excellent when the slip
length is beq = 7.73σ . Here, the slip length obtained as the
best-fit parameter is denoted by beq.

We consider two characteristic timescales; one is that of
the microscopic molecular motion, and the other is that of
fluid relaxation. The typical microscopic timescale is given
by τmicro, while the relaxation time of the velocity field is esti-
mated as τmacro ∼ 176τmicro. From Fig. 5, the simulation data
can be well fitted by the LFH solution from the τmicro-scale to
the τmacro-scale. In particular, the excellent agreement in the
time region [0, 10τmicro] [see Fig. 5(b)] may be a surprising
result because the fluctuating hydrodynamics was originally
developed to describe relaxation processes of macroscopic
fluids.

This excellent agreement between the simulation data and
the LFH solution is found for all the atomically smooth
surfaces examined. Figure 6 presents the behavior of γMD(t )
and γLFH(t ) in the time region [0, 200τmicro] for Walls II and
III. Therefore, we conclude that LFH is the accurate model to
describe the behavior of γMD(t ).

From another aspect, this excellent agreement indicates
the validity of (ρ, η) that we have used when comparing the
LFH solution and simulation data. In particular, as explained
in Sec. V A, we have neglected the inhomogeneous density
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FIG. 6. Same as Fig. 5, but with different walls. Left: Wall II.
Right: Wall III.
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TABLE III. Comparison of slip lengths calculated from three
different methods. Column 1 gives the wall parameters. bneq is the
slip length calculated from the NEMD simulation (Sec. III). bpeak

is the slip length estimated from BB’s relation Eq. (32) (Sec. IV).
beq is the slip length measured by the new equilibrium measurement
method proposed in Sec. VI B. For errors, see each section.

Wall bneq/σ bpeak/σ beq/σ

I (cAF = 0.8) 8.08 ± 0.14 8.71 ± 0.05 7.73 ± 0.08
II (cAF = 0.4) 30.8 ± 0.3 29.8 ± 0.3 28.7 ± 0.5
III (cAF = 0.0) 121.8 ± 1.7 107.7 ± 1.8 106.6 ± 3.1

field near the walls and have used the density in the bulk
region. Also, the viscosity η is assumed to be independent
of z even near the walls. This assumption implies that the
bulk constitutive equation holds near the walls. The validity
of these assumptions is also confirmed.

B. New equilibrium measurement method

By comparing the LFH solution and the simulation data,
we confirm the validity of LFH introduced in Sec. V A.
Accordingly, the slip length beq, which is obtained as the
best-fit parameter, turns out to characterize the partial slip
boundary condition imposed in LFH. By contrast, in the
nonequilibrium measurement method, we first investigate the
validity of the bulk constitutive equation with the partial
slip boundary condition. By confirming this validity, we find
that the slip length bneq obtained in the NEMD simulation
characterizes the partial slip boundary condition imposed in
the deterministic hydrodynamics.

Clearly, it is reasonable to conjecture that the partial slip
boundary condition imposed in LFH is identical to the one
imposed in the deterministic hydrodynamics. Then, to confirm
this conjecture, we compare beq with bneq. In Table III, we
summarize bneq, bpeak and beq for the three types of the walls.
The error given for beq is the standard deviation, which is
estimated from the measurement error of the simulation data
for 24 different initial states and that of the viscosity ηneq.
The deviations between beq and bneq remain within 15%.
Then, by allowing for these deviations, we conclude that beq

approximately coincides with bneq.
Conversely, when we allow that beq coincides with bbeq, we

can estimate bneq from the EMD simulation, which procedure
is summarized as follows:

(1) measurement of η in advance,
(2) measurement of γMD(t ) from the EMD simulation,
(3) fitting of γMD(t ) to the LFH solution γLFH(t ).

If the excellent agreement is found, then the slip length is
obtained as the best-fit parameter.

Here, we note that our method requires the value of the
viscosity η in advance. In this paper, we used the viscosity
ηneq obtained in the NEMD simulation. However, because the
viscosity η is also obtained from the EMD simulation [57],
our method can be closed in the EMD simulation.

Also, we recall that LFH reproduces the simulation data
down to the τmicro-scale. From this fact, we can estimate
the slip length using only the simulation data in the early-
time region. Actually, although in Sec. VI A the fitting is
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FIG. 7. System size dependence of γMD(t ). The wall parameter
is cAF = 0.8 (Wall I), which is the same as Fig. 4. The blue solid
curve is γLFH(t ) with the best-fit parameter. The red circles and
orange triangles are simulation data for L = 20.0σ and L = 30.0σ ,
respectively. The red dash-dot line gives the value of the first peak of
γMD(t ) and the blue dot line gives the extrapolated value of γLFH(t )
to t → +0. �LFH is defined by Eq. (54).

performed for γMD(t ) in [0, 100τmicro], the almost same results
are obtained by using the simulation data in [0, 20τmicro].
Accordingly, our method is performed at a relatively low
computational cost.

We comment on the differences between our equilibrium
measurement method and BB’s relation. First, whereas BB’s
relation uses the instant information (specifically t = τ0) to
obtain the slip length, our method uses the information of
γMD(t ) over the finite time region. Then, from the viewpoint of
extending the time region used to calculate the slip length, our
method is interpreted as an extension to BB’s relation. Second,
to obtain the friction coefficient λ, the relation Eq. (31) does
not require the value of viscosity η. However, our method
always requires the viscosity η because the LFH solution
Eq. (41) contains the viscosity η in all time region. This is
a crucial difference.

C. Early-time behavior of γMD(t )

In Sec. V C, we derived from the full LFH solution that the
early-time behavior of γLFH(t ) is independent of the system
size L or equivalently the hydrodynamic wall position z0. In
this subsection, we show that this result is consistent with the
EMD simulation result.

For this purpose, we perform an additional EMD simula-
tion with Wall I and L = 30.0σ . The result is presented as
the orange triangles in Fig. 7. For comparison, the simulation
result with L = 20.0σ is displayed as the red circles, which
corresponds to the red solid curve in Fig. 5(b). In addition,
the blue solid curve in Fig. 7 represents the LFH solution
with beq = 7.73σ , which corresponds to the blue broken
curve in Fig. 5(b). From these graphs, we conclude that the
decay of γMD(t ) from the first peak is independent of L (or
equivalently z0). This behavior is consistent with that recently
reported by de la Torre et al. [32,33], where they claimed
that γMD(t ) does not exhibit the plateau region even in the

033109-10



EQUILIBRIUM MEASUREMENT METHOD OF SLIP LENGTH … PHYSICAL REVIEW E 101, 033109 (2020)

FIG. 8. Diagram illustrating the comparison between the approach to BB’s relation in the previous studies [12,21–25] and that in this paper.

thermodynamic limit. This claim implies that the early-time
behavior of γMD(t ) is independent of L.

By combining this result with the fact that the slip length
can be estimated from the early-time behavior of γMD(t ) (see
Sec. VI B), we obtain two practical notes concerning the new
equilibrium measurement method of the slip length. First,
the measurement accuracy of the slip length is independent
of the system size L because the simulation result is inde-
pendent of the system size L. Second, the slip length beq is
determined from the EMD simulation result independently of
the hydrodynamic position z0. In Sec. V A, we assumed that
the hydrodynamic wall position z0 is equal to zneq. From the
second note, we find that this assumption is not necessary to
measuring the slip length beq.

VII. BB’s RELATION REVISITED

Combining LFH and the EMD simulation yields the new
theoretical interpretation of BB’s relation. In this section, we
explain it.

Let us consider the behavior of γMD(t ) and γLFH(t ) in the
τmicro-scale. As shown in Sec. VI A, the simulation data is
well fitted by the LFH solution even in the τmicro-scale [see
Fig. 5(b)]. Then, we have

γMD(τ0) = γLFH(τ0). (54)

However, the behavior of γMD(t ) in the time region [0, τ0] is
different from that of γLFH(t ). The MD simulation shows that
γMD(t ) grows from t = 0 to t = τ0 and decays after that [see
Fig. 5(b)]. Whereas, as shown in Sec. V C, γLFH(t ) does not
grow in the time region [0, τ0]; instead, it has the finite value,
Eq. (53), at t = 0. Then, we define the deviation between
γLFH(0) and γLFH(τ0) as

�γLFH ≡ γLFH(0) − γLFH(τ0)

� 2
η

beq

∫ ∞

0

dω

π

1 + qRbeq

1 + 2qRbeq + 2q2
Rb2

eq

sin(ωτ0)

ω
,

(55)

where the second line was obtained by substituting Eqs. (52)
and (53) into the first line. By using Eqs. (53), (54), and (55),
we obtain

η

beq
= γMD(τ0) + �γLFH. (56)

Using Eq. (56), we propose the new theoretical interpre-
tation of BB’s relation Eq. (32). By comparing Eq. (56) with
BB’s relation Eq. (32), we find that �γLFH gives the remainder
term of BB’s relation. More precisely, we can identify the
accuracy of BB’s relation from this value. BB’s relation
provides the reasonable estimation of the slip length beq when

�γLFH

γLFH(τ0)
� 1 (57)

holds.
As a example, in Fig. 7, we depict �γLFH for Wall I, where

we have

�γLFH

γLFH(τ0)
� 0.129. (58)

Allowing for this deviation, we can obtain the estimation of
the slip length beq from BB’s relation.

There are two notes on our approach for BB’s relation.
First, our argument relates bpeak to not bneq but beq. To relate
bpeak to bneq, our approach requires the additional assumption
that beq is equal to bneq. Second, the deviation between beq

and bpeak always exists because �γLFH is not equal to zero by
definition.

In Fig. 8, we summarize the difference between our ap-
proach for BB’s relation and that in the previous studies. The
crucial difference is the starting point. Whereas the previous
studies started with assuming the validity of the linear re-
sponse theory and the separation of scales (see Introduction),
we start with assuming that LFH accurately describes the
fluctuation of the confined fluid even in the τmicro-scale. While
our assumption is easily verified by numerical simulations as
shown in Sec. VI, it may be difficult to verify the assumption
imposed in the previous studies because of the two types of
limit.

VIII. DISCUSSIONS

In this paper, we demonstrated that for atomically smooth
walls, LFH accurately reproduces the force autocorrelation
function from the timescale of molecular motion to that of
fluid relaxation. As a result, LFH is a useful starting point
to analyze the behavior of the force autocorrelation function.
Furthermore, the slip length obtained as the best-fit param-
eter is in excellent agreement with that obtained from the

033109-11



HIROYOSHI NAKANO AND SHIN-ICHI SASA PHYSICAL REVIEW E 101, 033109 (2020)

nonequilibrium measurement. This fact yields the new equi-
librium measurement method.

We also showed that LFH provides the new theoretical
interpretation of BB’s relation Eq. (32). The starting point for
our argument was Eq. (54), which implies that the LFH de-
scription is valid at the microscopic scale. Then, our argument
can be applied to more realistic and complicated walls, beyond
atomically smooth walls, as long as γMD(t ) can be well-fitted
by the LFH solution.

We stress that our equilibrium measurement method is
based on the approximate solution calculated from LFH. That
is, throughout this paper, our analysis was performed by
neglecting the terms proportional to δ(0) of Eq. (41). This
approximation is theoretically justified when we assume the
condition b � ξc � L [26]. In this paper, we demonstrated
that this approximation can be used even for the systems with
b � L. The theoretical verification of this result is a future
task. Furthermore, from the applied viewpoint, the interesting
situations are when the condition b � L holds [15,51,52].
It is interesting to examine such systems numerically and
theoretically.

Recently, some different equilibrium measurement meth-
ods for the slip length were proposed [18,19,58–62]. They
basically extract the friction coefficient λ or the slip length
b from the autocorrelation function of the force acting
on the wall, 〈F (t )F (0)〉, that of the fluid velocity near
the wall, 〈vx(z, t )vx(z, 0)〉, or the cross-correlation function,
〈F (t )vx(z, 0)〉. In the previous paper [26], we showed that the
validity of the methods in Refs. [18,19,58] can be understood
from LFH. However, it is desirable to compare their methods
and our one from the viewpoint of the computational cost and
the measurement accuracy.

There are two especially interesting studies. First, de la
Torre et al. proposed a new method to estimate τ0 in BB’s re-
lation Eq. (5) [32,33]. Their method is given by the following
steps; (i) we divide the fluid confined between the two parallel
walls into Nbin bins; (ii) we calculate the correlation matrix
Cμν (t ) = 〈ĝμĝν〉 where ĝμ is the total momentum density in
bin μ; (iii) for larger bin width, all modes of Cμν (t ) exhibit
the exponentially decay. τ0 is estimated as the maximum
decay time for this bin width. Although τ0 obtained from their
method is slightly different from the first peak of γ (t ), we
can repeat the argument in Sec. VII, which leads to the result
that the slip length beq is slightly different from that obtained
by de la Torre et al. Therefore, it is an interesting problem
how the theory of de la Torre et al. is connected with the
fluctuating hydrodynamics. Second, Oga et al. [60] introduced
another model to reproduce the early-time behavior of γMD(t ).
It is given by the Langevin equation, which describes the
behavior of a coarse-grained system involving a few atoms
thickness of fluid adjacent to the wall. Here, we comment on
the differences between their phenomenological model and
LFH. The crucial difference is that their model does not use
information of the bulk region and contains three parameters
related to the properties of fluids adjacent to the wall, specifi-
cally, the mass of focused fluid layer, characteristic time of the
viscoelastic motion of that, and friction coefficient. However,
LFH contains three parameters (η, ρ, b) related to the fluid
in the bulk region. To more deeply understand the fluctuating
dynamics of the fluid adjacent to the wall, it is desirable to

elucidate the relationship between these parameters and then
to establish the relationship between their model and LFH.

Finally, we comment on our result from the aspect of
the validity of the continuum description in extremely small
systems. Previous studies mainly examined the validity of
the deterministic hydrodynamics, i.e., the limit of the bulk
constitutive equation, the partial slip boundary condition, and
the system-size dependence of the viscosity and the slip length
[3]. However, our study focuses on the fluctuating hydrody-
namics. Whereas our result demonstrated that LFH holds in
the system with about 20-atoms thickness, it is known that
for a certain system the deterministic hydrodynamics holds
even when the system width is equal to 3-atoms layer [3].
Therefore, it is one of the important challenges to elucidate the
limit of LFH, particularly, whether LFH holds in the system
with a-few-atoms thickness.

This also involves the theoretical problem of nonequilib-
rium statistical mechanics, specifically, the derivation of the
fluctuating hydrodynamics from the underlying microscopic
dynamics. So far, the fluctuating hydrodynamic has been
derived using various methods [28,35,36]. These derivations
show that fluctuating hydrodynamics is rigorously valid in
the thermodynamic limit. However, our simulation results are
clearly beyond the scope of previous derivations. There are
few statistical mechanical tools to handle such a problem, and
a new concept would be necessary.
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APPENDIX A: BRIEF DERIVATION OF EQ. (41)

In this Appendix, we give a brief derivation of Eq. (41).
See Secs. 7–10 in Ref. [26] for the detailed argument.

In the continuum description, the force acting on wall A,
F (t ) is defined as

F (t ) =
∫

z=z0+ξc

dxdy J̃xz(r, t )

= −η∂zṼx(z0 + ξc, t ) + S̃xz(z0 + ξc, t ), (A1)

where

Ṽx(z, t ) =
∫

z
dxdy ṽx(r, t ), (A2)

S̃xz(z, t ) =
∫

z
dxdy s̃xz(r, t ). (A3)

Then, the force autocorrelation function in the frequency
domain is expressed as

〈|F (ω)|2〉eq = η2〈∂zṼx(z0 + ξc, ω)∂zṼx(z0 + ξc,−ω)〉eq

+〈S̃xz(z0 + ξc, ω)S̃xz(z0 + ξc,−ω)〉eq

− η〈∂zṼx(z0 + ξc, ω)S̃xz(z0 + ξc,−ω)〉eq

− η〈∂zṼx(z0 + ξc,−ω)S̃xz(z0 + ξc, ω)〉eq.

(A4)
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Because our model is linear, Ṽx(z, ω) is expressed using
S̃xz(z, ω) as

Ṽx(z, ω) =
∫ L+z0

z0

dz′G(z, z′, ω)∂z′ S̃xz(z′, ω), (A5)

where G(z, z′, ω) is the Green function. The Green func-
tion G(z, z′, ω) is calculated by substituting Eq. (A5) into
Eqs. (33), (37), and (38). After straightforward calculation,
we obtain

G(z, z′; ω)=g1(z′)e−q(z−z0 )+g2(z′)eq(z−L−z0 )+ 1

2ηq
e−q|z−z′ |,

(A6)

with

g1(z′)=− 1

2ηq�

[
(1−q2b2)eq(L+z0−z′ )−(1−qb)2e−q(L+z0−z′ )],

(A7)

g2(z′) = − 1

2ηq�

[
(1 − q2b2)eq(z′−z0 ) − (1 − qb)2e−q(z′−z0 )

]
,

(A8)

where � and q are given by Eqs. (42) and (43), respectively.
By substituting Eqs. (A5) and (A6) into Eq. (A4), we obtain
Eq. (41).

APPENDIX B: EQUILIBRIUM MEASUREMENT OF
HYDRODYNAMIC WALL POSITION

As shown in Sec VI C, when we use γMD(t ) in the early-
time region to estimate the slip length beq, our equilibrium
measurement method does not need the value of the hydrody-
namic wall position z0. However, in the main text, we did not
give the method to calculate the hydrodynamic wall position
z0 from the EMD simulation. In this Appendix, from the

theoretical viewpoint, we explain that the hydrodynamic wall
position z0 can be measured by using γMD(t ) in the late-time
region.

In principle, z0 can be measured by using (b, z0) as the
fitting parameters [(η, ρ) are input parameters]. Because
the full LFH solution contains z0 in the form L = L − 2z0,
the measurement of z0 is equivalent to that of L. By noting
that γLFH(t ) is related to the force autocorrelation function of
wall A, we find that the L-dependence of γLFH(t ) is mainly
observed in the time region t � τmacro.

In particular, as shown in Ref. [26], we have

lim
t→∞ γLFH(t ) = η

L + 2beq
, (B1)

where more precisely t → ∞ means the limit t � τmacro.
Then, by measuring the convergence value of γMD(t ) in the
EMD simulation, we obtain L + 2beq. Because beq is obtained
from the early-time behavior of γMD(t ), by combining these
equilibrium measurements, we obtain L or z0.

However, this equilibrium measurement method requires
high computational cost. Actually, for Wall I, γMD(t ) con-
verges at t = 500τmicro and the value is γMD(500τmicro) =
0.0524 ± 0.0170, where the error represents the standard
deviation from 24 independent simulations. Then, from
Eq. (B1), the hydrodynamic system size is calculated as
L = 18.1 ± 10.9. The error is rather larger than that of the
slip length (see Table III). If we neglect this error, then the
hydrodynamic wall position is calculated as z0 = 1.05; this
value is close to the value of zneq obtained in the NEMD
simulation. However, more detailed discussion taken the error
into account remains as the future work. We here comment on
why the measurement error of L is much larger than that of
beq. First, to obtain γMD(t ) in the time region t � τmacro from
the EMD simulation, we must perform the simulation with
the sufficiently large �Tobs. Second, because the convergence
value of γMD(t ) is rather small, the slight error leads to larger
error in the hydrodynamic wall position L.
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