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Scaling laws for external fluid flow induced by controlled periodic heating of a solid boundary
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We demonstrate that considerable variation of mean Prandtl number (Pr0) from unity brings in an additional
length scale (called the viscous penetration depth, δv) into the dynamics of instantaneous as well as time-averaged
(mean) flow induced by thermoviscous expansion along a periodically heated solid wall. We investigate the
limiting cases of high and low Prandtl numbers (Pr0 � 1 and Pr0 � 1) through detailed order-of-magnitude
analysis. Our study reveals that the viscous penetration depth scales universally with Pr0 so long as such depth
remains small compared to the wavelength of the applied thermal wave. While a high Pr0 is found to obstruct
the mean flow, the converse is not necessarily true. Subsequent analysis clearly shows that a low-Pr0 flow can
induce negative thermoviscous force within the thermal boundary layer and thus retard the mean motion, leading
to a nontrivial reduction of net mass flow along the plate. Numerical prediction of friction factor variation with
Pr0 agrees well with the scaling estimates for both high-Pr0 and low-Pr0 fluids. The findings may very well act
as fundamental design basis for engineering devices that may potentially be developed for thermal molecular
trapping and particle sorting and accumulation based on unsteady heating.
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I. INTRODUCTION

Manipulation of transport processes using “unconven-
tional” flow-actuation methods is central to the research and
development of miniaturized fluidic devices [1–16], as they
often prove superior to conventional methods of flow gen-
eration. The prospects of obtaining sustainable fluid motion
through controlled external heating have been studied ex-
tensively in this regard [17–24], with a pioneering work by
Weinert et al. [20] exploring possibilities of flow generation
by virtue of thermoviscous expansion. Thermoviscous expan-
sion of a liquid along a periodically heated wall constitutes
a novel and intriguing thermo-mechanical pumping method
that is capable of inducing net fluidic transport along the
wall [20,25]. When a temperature wave travels along a wall
in contact with a liquid, it alters the density as well as the
viscosity of the adjacent liquid in a spatiotemporally evolving
manner. Periodic thermal (volumetric) expansion and con-
traction close to the wall generate pressure pulsation, which
triggers a fluctuating fluid motion. As the fluid is driven
through periodically altering hot regions (low viscosity) and
cold regions (high viscosity), the induced local velocity ex-
periences a difference in magnitude that is synchronized with
the variation of local viscosity (see Fig. 1). The difference in
the magnitude of positive and negative velocity parallel to the
wall eventually gives rise to a net flow opposite to the motion
of the thermal wave, in a time-averaged sense.

It is necessary to acknowledge that fluid flow induced
by thermoviscous actuation along a traveling thermal wave
is essentially a multiscale transport phenomenon. Periodic
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fluctuation of temperature and associated thermoviscous actu-
ation are usually confined to a “thin” thermal boundary layer
which is characterized by a unique thermal penetration length
scale (δt ). The exact thickness of this thermal boundary layer
and its detailed structure (i.e., two sublayers based on phase
difference of local temperature) are provided in our previous
work [25]. In narrow confinements such as microchannels,
periodic thermoviscous expansion can induce a large variety
of net velocity profiles (from uniform to parabolic) depending
on the ratio of channel height to thermal penetration length
[26]. The effect of thermoviscous expansion has been ana-
lyzed extensively in the field of microchannel acoustofluidics
over the past few years. Rednikov and Sadhal [27] analytically
showed that the contribution of the nonadiabatic thermo-
viscous effect (which becomes apparent through fluctuating
density and viscosity perturbations) to acoustic streaming is
indeed significant for liquids. Recent studies have shown in-
teresting results in the application of the temperature-induced
thermoviscous effect in controlling acoustic radiation force
and boundary-driven acoustic streaming in a long straight mi-
crofluidic channel containing a Newtonian fluid [28,29]. Nev-
ertheless, implications of such periodically fluctuating flow
may also be far ranging, opening up possibilities of obtaining
significant progress in the development of contactless thermal
trapping and sorting devices [30,31], in microcombustion and
power generation applications [32–34], and in micromixing
and separation processes [35,36]. A noteworthy limitation of
existing literature on thermoviscous actuation [20,25–29] is
that they are focused on fluids having Prandtl number close to
unity. In reality, Prandtl number varies with the fluid as well
as with temperature.

The present work explores the consequences of Prandtl
number variation on flow induced by thermoviscous
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FIG. 1. (a) Instantaneous flow field induced by thermoviscous expansion along a traveling temperature wave applied on a flat plate. Two
consecutive cycles with periodically altering hot (red) and cold (blue) regions are portrayed. Positive and negative x velocities (parallel to the
plate) exhibit difference in magnitude (arrow length) between the hot and cold regions. Resulting mean or time averaged flow direction is also
shown. (b) Temperature wave, traveling along the plate with constant speed c from right to left.

expansion in an unconfined configuration, i.e., flow over a
flat plate. When the mean Prandtl number (Pr0) deviates
significantly from unity, an additional length scale (viscous
penetration depth or characteristic thickness of the viscous
boundary layer) starts influencing the concerned dynamics
of instantaneous as well as time-averaged (mean) flow. Ac-
cordingly, the limiting cases of high and low Prandtl num-
bers (Pr0 � 1 and Pr0 � 1) are investigated through detailed
scaling analysis of equations of motion (both instantaneous
and mean motion). The theoretical analysis is corroborated by
full-scale computational fluid dynamics (CFD) simulations of
governing transport equations: continuity, Navier-Stokes, and
energy conservation.

There are three main contributions in this paper. First,
we appropriately define a viscous boundary layer which is
characterized by a length scale called viscous penetration
depth (δv) and show that the ratio of viscous penetration
depth to thermal penetration length (δv/δt ) scales as

√
Pr.

An exception to this scaling law is also observed for very
high Prandtl number (owing to an elevated viscosity), wherein
the wavelength of the thermal wave (λ) curbs the growth of
viscous boundary layer and the dependence of δv/δt on the
Prandtl number weakens substantially. Second, we deduced
the physical scales for time-averaged velocity and friction
factor for the limiting cases of high and low Prandtl numbers
(Pr0 � 1 and Pr0 � 1), and subsequently corroborated them
using CFD simulations. Numerical results demonstrate that
such scales are valid for Prandtl numbers that are moderately
higher and lower than unity (Pr0 > 1 and Pr0 < 1) as well,
extending their range of applicability. These scaling laws

may turn into important design criteria for devices developed
for thermal trapping, accumulation, and sorting of particles
and biomolecules in a micro-scale confinement. Finally, the
most intriguing outcome of this study is that while a large
Pr0 is found to hinder the mean flow, the converse is not
necessarily true as a small Pr0 can also retard the mean
motion by inducing negative thermoviscous force within the
thermal boundary layer itself. We exemplify how a low-Pr0

flow, unlike the cases of forced or free convection, yields a net
mass flow much less than the expected value. Such a result is
indeed a nontrivial one as it is likely that for large Pr0 viscous
friction would dominate over thermal diffusion leading to low
flow rate, whereas for small Pr0 viscous resistance would be
weaker so that the flow rates would be higher.

II. PROBLEM DESCRIPTION AND GOVERNING
EQUATIONS

The geometry under consideration consists of a long flat
plate aligned with the x axis and in contact with an infinite
expanse of fluid (0 < y < ∞), as shown in Fig. 1(a). Initially,
the fluid is at rest and at a constant temperature T0. In
order to generate fluid motion, an unsteady thermal boundary
condition in form of a sinusoidal temperature wave is applied
along the plate [see Fig. 1(b)]. Amplitude, wavelength, and
speed of propagation of the thermal wave are �T, λ, and c,
respectively. Thus, the thermal boundary condition is aptly
expressed as

Twall = T0 + �T cos

{
2π

λ
(x + ct )

}
. (1)
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Equation (1) straightway gives us a few important scales
such as the characteristic temperature-difference scale �T ,
the length scale λ over which temperature varies in the x
direction, and the periodic time scale λ/c (=tu). As the ther-
mal wave travels along the wall, the temperature of the fluid
near the wall fluctuates periodically in space (x) and time.
The subsequent thermal expansion-compression of the fluid
generates a velocity field that is also periodic in time as well as
in streamwise direction (x). Thus, even though the flow is “in-
compressible,” an equation of state dictating the spatiotempo-
ral variation of density is required along with usual flow gov-
erning equations. Considering two-dimensional nature of the
problem, the flow-governing equations—continuity, Navier-
Stokes, and energy equations—are expressed as

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0, (2)

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∂ p

∂x
+ ∂

∂x

[
2μ

(
∂u

∂x
− 1

3
∇ · �V

)]

+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)]
, (3a)

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∂ p

∂y
+ ∂

∂x

[
μ

(
∂v

∂x
+ ∂u

∂y

)]

+ ∂

∂y

[
2μ

(
∂v

∂y
− 1

3
∇ · �V

)]
,

(3b)

ρCp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

]
= βT T

Dp

Dt
+ ∇ · (k∇T ) + 	,

(4)

where p is pressure, T is temperature, and u and v are the
x component and y component of flow velocity, respectively.
Symbols ρ, µ, k, Cp, βT , and 	 represent density, viscosity,
thermal conductivity, constant pressure specific heat, ther-
mal expansion coefficient, and viscous dissipation function,
respectively. The volumetric thermal expansion coefficient
(βT ) of liquids is typically a small quantity (in the range
∼10−3−10−4 K−1). We consider the amplitude of the thermal
wave to be small so that βT �T � 1. An equation of state for
temperature-dependent density is prescribed by

ρ − ρ0 = −βT ρ0(T − T0), (5)

where both ρ0 and βT are evaluated at the reference state (T0).
Local viscosity may be evaluated by employing a linearized
relation [20] similar to Eq. (5) as

μ − μ0 = −ηT μ0(T − T0), (6)

where μ0 and ηT are the viscosity and thermal viscosity
coefficient of the fluid in its reference state.

It is necessary to acknowledge that fluid flow induced
by thermoviscous actuation along a traveling thermal wave
is essentially a multiscale transport phenomenon. A major
challenge in analyzing such a fluidic transport lies in figuring
out the intricate interplay of various length scales involved.
In the present problem, the temperature varies over a charac-
teristic length λ in the x direction. In the transverse direction,

however, the temperature variation is governed by a thermal
diffusion length scale defined on basis of the periodic time
scale, tu (=λ/c). Therefore, the y length scale for temperature
variation (also called thermal penetration length) is prescribed
by δt = √

α0tu, where α0 is the thermal diffusivity of the
fluid in its reference state (T0). Such a length scale is es-
sentially obtained by scaling the energy equation [Eq. (4)].
Based on the characteristic thickness δt , one can define a
thermal boundary layer adjacent to the wall, wherein the entire
thermal fluctuation and associated thermoviscous actuation
remain confined. Detailed accounts of this thermal boundary
layer (also known as the wall layer) and its sublayers are
discussed elsewhere [25] and are not repeated here for the
sake of brevity. Apart from λ and δt , an additional length
scale associated with viscous diffusion may emerge as a
key governing parameter, particularly if the Prandtl number
deviates from unity. An important consideration of several
previous works [20,25–29] is that the mean Prandtl number
(Pr0) of the fluid is chosen to be of order 1. The physical
implication of Pr0 ∼ O(1) is that the length scales associated
with viscous spreading and thermal spreading by diffusion
process are of the same order. It is essential to recall that Pr0

may differ considerably from unity not only due to a change
of fluid but with an alteration of mean temperature (T0) also.
Appropriate scaling of the momentum equation [Eq. (3)] is
likely to reveal the exact role of such a viscous diffusion
length scale on the thermoviscous pumping phenomena. Here,
we pinpoint the important considerations and assumptions
involved in the present analysis:

(i) The plate is long, i.e., length L � λ.
(ii) Stokes’s hypothesis is valid.
(iii) Thermal diffusivity is treated as a constant (evaluated

at the mean temperature T0).
(iv) Gravity (buoyancy effect) is neglected.
(v) In order to generate significant flow velocity, we need

a steep temperature gradient and a substantial wave speed
c. Therefore, we keep wavelength short, ∼50–200 μm, and
maintain �T at least of order ∼10 K. The upper bound of
�T depends on the freezing point and boiling point of a
particular liquid (e.g., for water �T ∼10 K, for mercury �T
∼100 K, etc.). It is observed that a wave speed (c) of order
∼1 m/s yields the highest mean velocity (Uavg), of orders 50,
10, and 500 μm/s for Pr0 ∼ 1, Pr0 � 1, and Pr0 � 1 fluids,
respectively. Since the thermal diffusivity (α0) is in the range
∼10−6−10−7 m2/s (see Table II), with a typical wave speed
of 1 m/s, wavelength λ turns out to be at least one order of
magnitude greater than δt (=√

α0λ/c).
(vi) Thermal expansion coefficient βT is small (a fact for

most liquids), so that βT �T � 1 and density function ρ(T )
is evaluated from a linearized equation of state [Eq. (5)].

(vii) With βT �T � 1 and λ � 10 δt it turns out that wave
speed c � u, v. This result leads to great simplification of the
continuity, momentum, and energy equations [Eqs. (2), (3),
and (4)], as the convective transport of momentum as well
as energy turns out to be negligible compared to respective
unsteady terms (∂u/∂t and ∂T/∂t). The continuity equation
reduces to ∇ · �V 	 βT (∂T/∂t ). These results are true for all
Pr0.

(viii) For large Pr0, we assume that λ is at least one order
of magnitude greater than the viscous diffusion length δv. This
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assumption is not required for low-Pr0 fluids, as δv itself is
smaller than δt .

In the subsequent section, we focus on the consequences
of Pr0 variation on the instantaneous (oscillating) as well
as the time-averaged (mean) flow induced by thermoviscous
actuation. Since the oscillatory flow field does not yield the
typical hydrodynamic boundary layer (observed in forced
convection as well as natural convection) over a flat plate, a
characteristic viscous spreading length or viscous penetration
depth scale (δv) is defined at the outset. Then, the limiting
cases of very high and very low Pr0, which involve substantial
difference in the spreading of viscous and thermal effects,
are investigated through appropriate scaling of the pertinent
governing equation [Eq. (3a)]. The estimated length scale δv

and the mean velocity scale Us are numerically corroborated
for a wide range of mean Prandtl numbers. Our analysis
further delineates how the intricate interplay of viscous pene-
tration depth (δv) and thermal penetration length (δt ) induces
a nontrivial mean velocity profile near the wall for the limiting
case of low Prandtl number flow (Pr0 � 1).

III. SCALING ANALYSIS

In an unconfined configuration, instantaneous x and y
velocities induced by the thermal expansion of the fluid are
of the same order (i.e., u ∼ v). This is true irrespective of
the mean Prandtl number (Pr0) under concern. Therefore, the
instantaneous velocity scale within the thermal boundary layer
is determined [25] from a simplified version of continuity the
equation [Eq. (2)] as

us ∼ βT �T c

(
δt

λ

)
. (7)

Scaling relation (7) confirms that with βT �T � 1 and λ

considerably bigger than δt , wave speed is much greater than
the instantaneous velocity scale, i.e. c � us. Since βT �T �
1, one can neglect the small density variation in the inertia
term and substitute ρ ≈ ρ0 in the left hand side of the mo-
mentum balance equation [Eq. (3)].

A. Scaling of the x-momentum equation within the thermal
boundary layer

Employing the linearized function for viscosity variation
[Eq. (6)], we rearrange the x-momentum equation [Eq. (3a)]
as

ρ0
Du

Dt
= −∂ p

∂x
+ μ0

[(
∂2u

∂x2
+ ∂2u

∂y2

)
+ ∂

∂x

(
∇ · �V

3

)]

−μ0ηT

[
∂

∂x

{
2(T − T0)

(
∂u

∂x
− ∇ · �V

3

)}

+ ∂

∂y

{
(T − T0)

(
∂u

∂y
+ ∂v

∂x

)}]
. (8)

Evidently, the second term on the right-hand side of
Eq. (8), involving mean viscosity (μ0), represents the usual
viscous friction in a constant viscosity flow, while the last term
(involving μ0ηT and explicitly dependent of T) is a direct con-
sequence of viscosity variation. This temperature-dependent

variable friction term, instrumental in generating net unidirec-
tional fluid motion, is aptly named “thermoviscous forcing.”
There is no externally applied pressure gradient in the flow
domain. The passive pressure field is induced by unsteady
fluctuation of temperature and velocity. Since the wave speed
c � u, v, it turns out that the temporal acceleration is much
larger than the convective acceleration. Therefore, the inertia
term may be simplified as ρ0(Du/Dt ) ≈ ρ0(∂u/∂t ), and the
scale representing inertia is given by the expression

inertia : ρ0
∂u

∂t
∼ ρ0us

tu
= ρ0βT �T c2δt

λ2
. (9)

Considering δt as the y length scale within the thermal
boundary layer region, we simplify the right-hand side of
Eq. (8) further. Since the x length scale λ is considerably
bigger than δt , we obtain the respective scales for viscous-
friction and “thermoviscous forcing” terms as

viscous friction: μ0
∂2u

∂y2
∼ μ0us

δ2
t

= μ0βT �T c

λδt
, (10)

thermoviscous forcing:

μ0ηT
∂

∂y

[
(T − T0)

∂u

∂y

]
∼ μ0ηT �T us

δ2
t

= μ0βT ηT �T 2c

λδt
.

(11)

Thus, the x-momentum equation assumes a greatly simpli-
fied form within the wall layer, as

ρ0
∂u

∂t
≈ −∂ p

∂x
+ μ0

∂2u

∂y2
− μ0ηT

∂

∂y

[
(T − T0)

∂u

∂y

]
. (12)

Recognizing the interplay among three main forces, one
can recast them by dividing with the scale for viscous-friction
and obtain

Pr−1
0 1 ηT �T

inertia friction thermoviscous force
. (13)

From expression (13) it is clear that the competition between
inertia and friction is dictated solely by a fluid property,
the Prandtl number Pr0 (evaluated at the mean temperature,
T0). While the friction term represents viscous resistance
offered to the flow by way of mean viscosity (μ0, a constant),
it is crucial to understand that the so-called thermoviscous
forcing is essentially the “variable friction” originating out
of temperature dependence of the viscosity and, therefore, is
instrumental in generating net (time-averaged) unidirectional
flow. Relative strength of thermoviscous force and friction
depends on the product of thermal viscosity coefficient (ηT ,
a fluid property) and amplitude of thermal wave, �T .

B. Viscous penetration depth scale

In thermoviscous expansion driven fluidic transport, vis-
cous penetration depth scale (δv) characterizes a region
wherein the viscous influence of wall is important in context
of flow (velocity) oscillation. One may recall here that the
oscillating x velocity (u) is zero at the wall boundary (no-slip
condition). Far away from the wall (y → ∞) u equals zero,
too. Accordingly, we can define δv as the depth where the
x-velocity component u reaches its peak value during a cycle
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(since the flow itself is oscillating). Once the periodic “steady
state” is achieved, this depth (δv) becomes invariant with time.

We know that thermoviscous actuation is present inside the
wall layer (up to y ∼ δt ) only. Next to the wall layer, there is
a distinct region (δt < y < λ) in which p, u, and v fluctuate
with the same periodicity (tu = λ/c) as that of the temperature
wave but the temperature field itself remains uniform (i.e.,
T = T0). This region is called the intermediate layer [25]. In
the region y � λ (outer layer), there is no fluctuation what-
soever. Thus, λ is the length scale for pressure and velocity
variation not only in the x direction but in the y direction
as well. Since the fluctuation in the x velocity, caused by
successive expansion-contraction of the fluid and subsequent
inertia, ceases at around y ∼ λ, the x velocity (u) reaches its
peak value somewhere in between y = 0 and y = λ. However,
the distances from the wall where the velocity components u
and v attain their maxima need not be the same. We recall
that u and v both are induced primarily by thermal expansion-
contraction. Therefore, the magnitude of v, which is zero at
the wall, gradually increases with y up to a distance where
significant temperature fluctuation is present. This distance is
characterized by thermal penetration length δt , irrespective of
the Prandtl number. In contrast, u is influenced by the local
viscosity [see the schematic in Fig. 1(a), which is a very good
qualitative representation of the actual flow field] and, quite
intuitively, we expect that both the amplitude of oscillation of
u and the location of maximum u would depend on the relative
spreading of viscous and thermal effects.

For Prandtl number (Pr0) close to unity, effects of viscous
spreading and thermal spreading by diffusion are similar.
Consequently, the viscous penetration depth δv and thermal
penetration depth δt are of the same order. However, for Pr0 �
1 and Pr0 � 1, viscous penetration depth δv will be noticeably
different from δt . In order to ascertain the scaling relationship
between δv and δt , it is necessary to investigate the limiting
cases of high Prandtl number and low Prandtl number flows
extensively. In order to numerically validate the scaling laws
for δv in Sec. III, we employ an averaged measure as follows.
Once the periodic “steady state” is reached, we monitor the
oscillation of u at any x location (fixed) and calculate δv as
the average of y coordinates where the x velocity reaches
its maxima (positive peak, u+

max) and minima (negative peak,
u−

min) during a cycle (time period tu = λ/c). Thus, δv is the
distance up to which the amplitude of oscillation of the
x velocity (u) increases; once we cross this point (y > δv)
oscillation of u decays gradually. In this regard, we acknowl-
edge that it is the difference between positive and negative x
velocity (i.e., |u+| − |u−|) that gives rise to the mean or time
averaged flow. In subsequent discussion, henceforth, δv is also
termed the characteristic thickness of the viscous boundary
layer.

1. Scaling for high Prandtl number (Pr0 � 1)

It is evident that the thermal forcing (equivalent to
expansion-contraction of the fluid) is confined within the ther-
mal boundary layer region, which is characterized by the scale
δt . When the mean Prandtl number (Pr0) is much greater than
unity, friction thoroughly dominates over inertia within the
thermal boundary layer and it is possible for this layer to vis-

cously entrain a layer of outer fluid. Such a viscously driven
layer is characterized by the scale δv. For high-Pr0 fluids, thus,
the length scale associated with viscous diffusion is greater
than that associated with thermal diffusion and, accordingly,
one may assume δv � δt . Since the fluid outside the thermal
boundary layer is unaffected by temperature fluctuation (i.e.,
T 	 T0), from Eqs. (2) and (8) one can deduce continuity
and x-momentum equations for this viscous boundary layer
of characteristic thickness δv as

∇ · �V = 0, (14a)

ρ0
∂u

∂t
= −∂ p

∂x
+ μ0

(
∂2u

∂x2
+ ∂2u

∂y2

)
. (14b)

In effect, the δv layer is driven viscously by a much thinner
δt layer and is restrained by its own inertia. Therefore, a
balance between inertia and friction force within the viscous
boundary layer [Eq. (14b)] yields

ρ0us

tu
∼ μ0us

δ2
v

.

An inherent assumption in the above scaling is that the
y length scale δv is at least one order of magnitude smaller
than the x length scale λ. Substituting the periodic time scale
tu = λ/c, and making use of the definition of the thermal
penetration length scale, δt (=√

α0λ/c), we obtain

δv

δt
∼ Pr1/2

0 > 1. (15)

From the scaling prescribed by relation (15) it appears that
the viscous boundary layer (thickness ∼δv) can grow with the
Prandtl number in an unbounded manner, which is, however,
not possible. For a given wavelength λ, if we increase Pr0 by
increasing the viscosity μ0 gradually, then the constraint on δv

(to be at least one order of magnitude smaller than λ) will fail
at some value of Pr0. This is substantiated by our numerical
solution in a subsequent section.

2. Scaling for low Prandtl number (Pr0 � 1)

For Pr0 � 1, thermal diffusivity of the fluid is much
greater than its viscosity, and the thermal penetration length
δt will be large compared to δv. It is not difficult to realize
that there is an extremely “thin” viscous boundary layer
adjacent to the wall, wherein friction is supposed to play an
important role. Nevertheless, for a major part of the heated
wall layer (δv < y < δt ) inertia turns out to be a dominant
force over friction. Thus, for low Prandtl number, there exists
a thin thermal boundary layer (considering δt significantly
smaller than λ) and a much thinner viscous boundary layer
close to the wall. In order to resolve the near-wall region
correctly, one has to scale the x-momentum equation [Eq. (8)]
with the smallest length scale (ys = δv). The scales for in-
stantaneous velocity (us) and inertia turn out to be same
as those prescribed by expressions (7) and (9), respectively.
However, within the viscous boundary layer region (y �
δv), friction and thermoviscous forcing terms yield different
scales, as

friction : μ0
∂2u

∂y2
∼ μ0us

δ2
v

= μ0βT �T c

λδt

(
δt

δv

)2

, (16a)
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thermoviscous forcing:

μ0ηT
∂

∂y

[
(T − T0)

∂u

∂y

]

∼ μ0ηT �T us

δ2
v

= μ0βT ηT �T 2c

λδt

(
δt

δv

)2

. (16b)

Comparing inertia, friction and thermoviscous forcing
terms, one may obtain a scaling relation for low-Pr fluids
within y � δv as well:

Pr−1
0

(
δv

δt

)2

1 ηT �T

inertia friction thermoviscous force
. (17)

Thus, for low Prandtl number (Pr0 � 1) fluids, inertia
completely dominates over friction in the major part of the
thermal boundary layer, irrespective of ηT �T ; however, close
to the wall, where an extremely thin viscous boundary layer is
formed, these two forces strike a balance (due to δv

2 � δt
2). A

balance between inertia and friction in the viscous boundary
layer implies

δv

δt
∼ Pr1/2

0 < 1. (18)

The importance of thermoviscous force relative to viscous
friction depends solely on ηT �T . Outside the wall layer,
thermoviscous force is absent, and inertia and friction balance
each other.

C. Investigation of mean (time-averaged) flow

The time-averaged or mean velocities, Uavg and Vavg, are
found by time averaging the instantaneous velocities, u and
v, respectively, over a cycle (time period tu = λ/c). Since the
temperature field is uniform (T = T0) and velocities are zero
at t = 0, spreading of thermal energy and momentum in the
transverse direction (by diffusion) requires some time to com-
plete. At sufficiently large observation time, temperature and
velocity oscillations in the thermal boundary layer become
“periodically steady.” Thus, once the initial transients have
died, the flow field achieves a “periodic steady state” within
the wall layer, which implies that the net or time-averaged
velocity within the thermal boundary layer does not vary with
t or x anymore. The governing equation for the mean flow
may now be deduced [25] by time averaging the x-momentum
equation [Eq. (8)] over a complete cycle as

∂2Uavg

∂y2
= ηT

∂

∂y

[
(T − T0)

(
∂u

∂y
+ ∂v

∂x

)]
, (19)

where the overbar denotes time average over a time period
tu = λ/c.

1. Mean velocity scale for high Prandtl number (Pr0 � 1)

For a high Prandtl number flow, characteristic thickness of
the viscous boundary layer scales as δv ∼ √

Pr0 δt . We know
that such a scaling is valid only when δv is smaller than λ

by at least one order of magnitude. Since δt < δv, velocity

derivative ∂u/∂y in the thermal boundary layer scales as

∂u

∂y
∼ us

δv
= us√

Pr0 δt
. (20)

The appropriate y length scale for the mean velocity
(Uavg) induced by thermoviscous actuation within the ther-
mal boundary layer is δt . Substituting relevant scales in the
governing equation for time-averaged flow [Eq. (19)], we
therefore obtain

Us

δt
2 ∼ ηT �T

δt

(
us√

Pr0 δt
+ us

λ

)
.

Unless Pr0 is too large, δv ∼ √
Pr0 δt remains considerably

smaller than λ. Thus, the mean or net velocity scale for high-
Pr0 flows is prescribed by

Us ∼ ηT �T us√
Pr0

= βT ηT (�T )2α0

(
c

ν0λ

)0.5

. (21)

The dependence of mean velocity upon the Prandtl number
[or, the kinematic viscosity ν0 as shown in Eq. (21)] is the hall-
mark of high Prandtl number flow driven by thermoviscous
expansion. Equation (21) implies that higher the viscosity is
(compared to thermal conductivity), the less will be the net
volumetric throughput. In a subsequent section, it is numeri-
cally demonstrated that the mean velocity scale predicted by
(21) is applicable to not just the limiting cases of Pr0 � 1 but
also to any fluid having Pr0 � 1. This is somewhat anticipated
as the scaling relation (21), for Pr0 = 1, yields the mean
velocity scale of Pr0 ∼ O(1) flow (expression (19); cf. [25]).

2. Mean velocity scale for low Prandtl number (Pr0 � 1)

For a low Prandtl number flow, the viscous boundary layer
(∼δv) is considerably thinner than the thermal boundary layer
(∼δt ). Thus, within the thermal boundary layer, two distinct
regions coexist: (a) a viscous boundary layer (y � δv) wherein
local velocity gradient ∂u/∂y scales as ∼us/δv, and (b) a re-
gion outside the viscous boundary layer but inside the thermal
boundary layer (δv < y � δt ) wherein ∂u/∂y does not scale
as us/δv [also evident from Fig. 2(d)]. In both these regions,
however, thermoviscous forcing remains significant. Since the
scale representing ∂u/∂y is known, the mean velocity scale
within the viscous boundary layer region (adjacent to the wall)
can be estimated from Eq. (19). The appropriate length scale
for the mean velocity field within the viscous boundary layer
is δv (∼√

Pr0 δt ) too. Therefore, Eq. (19) yields

Us

δv
2 ∼ ηT �T

δv

(
us√

Pr0 δt
+ us

λ

)
.

Since δt is at least one order smaller than λ and Pr0 � 1,
the above expression assumes the form

Us ∼ ηT �T us = βT ηT (�T )2
(α0 c

λ

)0.5
. (22)

Even though the mean velocity scale [Eq. (22)] appears
exactly same as that of the Pr0 ∼ O(1) flow (expression (19);
cf. [25]), the difference lies in the region where they are
applicable. While the expression (19) from [25] is valid for the
entire thermal boundary layer region, Eq. (22) is valid within
the considerably thinner viscous boundary layer (y � δv) only.
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TABLE I. Various physical scales deduced in this work.

Pr0 � 1 Pr0 � 1

Ratio of viscous penetration depth to thermal penetration length δv
δt

∼ Pr1/2
0

δv
δt

∼ Pr1/2
0

Scales for time-averaged (mean) velocity Us ∼ βT ηT (�T )2α0

(
c

ν0λ

)0.5
Us ∼ βT ηT (�T )2

(
α0 c
λ

)0.5

Time-averaged wall shear (dimensionless) τ̄w ∼ Pr3/2
0

βT ηT (�T )2 τ̄w ∼ Pr1/2
0

βT ηT (�T )2

D. Scaling estimates for friction factor

Appropriate scales for the friction factor (dimensionless
wall shear) may be deduced using the length scales and mean
velocity scales for high-Pr0 and low-Pr0 cases. We know that
the time-averaged wall shear stress scales as

(τw )avg ≡ μ0
dUavg

dy

∣∣∣∣
w

∼ μ0Us

ys

When Pr0 is much greater than unity, the length scale
is ys ∼ δt and the mean velocity scale Us is prescribed by
expression (21). Therefore, the friction factor varies as

τ̄w = (τw )avg

ρ0U 2
s

∼ ν0

Us δt
∼ ν0

√
Pr0

ηT �T us δt
∼ Pr3/2

0

βT ηT (�T )2 .

(23)

The opposite limit, i.e., a low-Pr0 flow, yields a length
scale ys ∼ δv and mean velocity scale Us ∼ ηT �T us [as per
Eq. (22)]. The corresponding time-averaged friction factor
scales as

τ̄w = (τw )avg

ρ0U 2
s

∼ ν0

Us δv
∼ ν0

ηT �T us
√

Pr0δt
∼ Pr1/2

0

βT ηT (�T )2 .

(24)

Thus, for both high-Pr0 and low-Pr0 flows, the friction fac-
tor is independent of wavelength and speed of the temperature
wave and is inversely proportional to the dimensionless “ther-
moviscous actuation parameter,” βT ηT (�T )2. The summary
of the scaling analysis is presented in Table I.

IV. ASSESSMENT WITH NUMERICAL
SIMULATION RESULTS

In order to corroborate the scaling estimates for viscous
penetration depth and time-averaged velocity, we perform a
full-scale numerical solution of the pertinent governing equa-
tions [Eqs. (2), (3), and (4)] for a wide range of mean Prandtl

numbers (Pr0). The geometry comprises a rectangular domain
(L × H) with both L, H � λ. Here, L represents the x dimen-
sion (along the flat wall) and H stands for the y dimension
(normal to the wall). The wall (y = 0) is subjected to a no-slip
condition for flow equations and a traveling temperature wave
thermal boundary condition as dictated by Eq. (1). Far away
from the wall (y = H), velocities, temperature, and pressure
are bounded (u = v = 0, T = T0, and p = patm). Since the
length scales (λ, δt , etc.) are very small, we need a high-
resolution grid for the simulations. In order to resolve the
boundary layer region accurately, the computational domain
is meshed with a nonuniform rectangular grid which is suffi-
ciently refined near the wall. Typically, a flow domain having
size L = 2 mm and H = 5 mm has 2.67 × 105 computational
cells (found to be sufficient after a grid independence study).
Since the time scale (λ/c) is extremely small too, a quad core
Xeon CPU (clock speed 3.5 GHz) takes about 150 hours to
solve for just 0.1 second flow time.

The governing equations are discretized on the nonuniform
mesh using a fully implicit, control volume based finite dif-
ference technique. The third-order accurate QUICK (Quadratic
Upstream Interpolation for Convective Kinematics) scheme
is employed for the convective terms in momentum and
energy equations. Pressure-velocity coupling is achieved via
the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) algorithm. In order to solve the discretized system
of linear algebraic equations, we utilize a point implicit
(Gauss-Seidel) solver. Detailed descriptions of these numer-
ical techniques are available in Patankar [37] and Versteeg
and Malalasekera [38]. Since the formulation is fully time
implicit, the solution is unconditionally stable irrespective of
the time step size. Nevertheless, considering the physics of
the problem, we select the time step size(s) based on the
periodic time scale tu(=λ/c). An extensive mesh and time
step dependency analysis has been carried out, and a time
step size of order ∼0.01(λ/c) is found to be adequate. In
order to be time accurate, the iteration process is contin-
ued till convergence within each time step. The convergence

TABLE II. Thermophysical properties of mercury, water, and ethylene glycol [39,40].

Parameter (unit) Mercury (at T0 = 77 ◦C) Water (at T0 = 30 ◦C) Ethylene glycol (at T0 = 47 ◦C)

ρ0(kg/m3) 13407 995.5 1096.2
μ0 (Pa s) 1.31 × 10−3 8 × 10−4 7.57 × 10−3

βT (K−1) 1.81 × 10−4 2.97 × 10−4 6.5 × 10−4

ηT (K−1) 0.0026 0.0215 0.0316
α0 = k0/ρ0Cp(m2/s) 4.97 × 10−6 1.47 × 10−7 9.4 × 10−8

Pr0 0.0196 5.43 73.5
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FIG. 2. Oscillation of normalized x velocity during the course of one cycle (time period tu = λ/c). Every figure depicts ten velocity profiles
capturing ten different instants of the cycle at equal time interval of 0.1tu. (a) Pr0 = 54 case; (b) enlarged view of the velocity profiles in (a)
near the wall; (c) Pr0 = 0.054 case; (d) magnified view of the velocity profiles in (c) near the wall.

criteria for the maximum relative error are set as 10−6, for all
the discretized equations. Temperature-dependent density and
viscosity are updated through linearized relations (5) and (6).
Thermophysical properties of mercury, water and ethylene
glycol are used as input data for three particular cases, with
Pr0 = 0.0196, 5.43, and 73.5, respectively (see Table II). For
the rest of the cases, mean Prandtl number is varied by altering
the viscosity (μ0) and/or the thermal conductivity value (k0)
of water. Such an alteration is acceptable for the purpose of
verification of the scaling laws under concern. The restriction
of λ/δt � 10 is maintained throughout. The mean velocity
field is obtained by time averaging u and v at every point (cell)
of the computational domain.

A. Illustrations of flow field and viscous boundary layer

In an effort to validate the scaling law developed for the
viscous penetration depth, several cases with distinct high
and low Pr0 values are considered. For each case, variations
of instantaneous x velocity (u), normalized with respect to
us [expression (7)], are monitored over one complete cycle

(time period tu = λ/c). Figures 2(a) and 2(b) demonstrate
the oscillation of u at a given x location for one such high-
Pr0 case (Pr0 = 54). Time instants when u reaches its peaks
(positive peak u+

max and negative peak u−
min) are also captured

in these figures [see left- and rightmost profiles in Fig. 2(b)].
Corresponding plots of dimensionless x velocity for a low-Pr0

case (Pr0 = 0.054) are presented in Figs. 2(c) and 2(d). The
averaged y coordinates of peak x velocities (u+

max and u−
min),

as determined from the numerical solution, are δv ≈ 5.9δt and
δv ≈ 0.24δt , respectively, for Pr0 = 54 and Pr0 = 0.054 cases.
These profiles clearly show that the exact location where x
velocity reaches its peak depends on the Prandtl number. The
viscous boundary layer thickness (δv) thus depends not only
on the extent of thermal diffusion (and subsequent expansion-
contraction of the fluid) but also on the Prandtl number. The
difference between dimensionless |u+| and |u−| is substantial
in the low-Pr0 case as compared to the high-Pr0 case, as
demonstrated in Fig. 2. In each case, all the x-velocity profiles
belonging to a same cycle (usually of very small time period,
tu ∼ 10−4 s) eventually merge to a single value of u at around
y ∼ λ, as evident from Figs. 2(a) and 2(c). In other words,
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FIG. 3. Oscillation of dimensionless y velocity during the course
of one cycle (time period tu = λ/c). Every figure depicts ten ve-
locity profiles capturing ten different instants of the cycle at equal
time interval of 0.1tu. (a) Pr0 = 54 and (b) Pr0 = 0.054. Note the
symmetry of the profiles about the midpoint (v = 0), which actually
demonstrates that the mean transverse velocity Vavg = 0 in the entire
domain, irrespective of the Prandtl number.

oscillation of u decays gradually outside the viscous boundary
layer (y > δv) and stops completely at y 	 λ.

The oscillations of dimensionless y velocity and tempera-
ture during a cycle are depicted in Figs. 3 and 4, respectively.
Figures 3(a) and 4(a) represent the same high-Pr0 case (Pr0 =
54) as in Fig. 2(a). Figures 3(b) and 4(b) correspond to the
low-Pr0 case (Pr0 = 0.054) as in Fig. 2(c). It is evident that
the y component of velocity (v) attains its peak at around
ys ∼ δt , irrespective of the Prandtl number. Oscillation of v

decays gradually outside the thermal boundary layer (wall
layer) and becomes zero at around y ∼ λ. In both high-Pr0

and low-Pr0 cases, temperature fluctuation is confined within
the wall layer. It is clear that the fluctuation of v is solely
governed by inertia outside the wall layer, regardless of the
Prandtl number.
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FIG. 4. Oscillation of dimensionless temperature θ = (T − T0 )/
�T during the course of one cycle (time period tu = λ/c). Every
figure depicts ten temperature profiles capturing ten different instants
of the cycle at equal time intervals of 0.1tu. (a) Pr0 = 54 and (b)
Pr0 = 0.054. Note that the extents of thermal boundary layer are the
same (	 2.66 δt ) for both the Prandtl numbers (Pr0 = 54 and 0.054),
which are obtained by altering the thermal conductivity of water.

B. Assessment of the scaling laws for δv

Figure 5 portrays numerically obtained viscous boundary
layer thickness (δv) relative to thermal penetration length
(δt ) for a wide range of Pr0. The straight lines in Fig. 5
are drawn to represent same slope (= 1

2 ). The CFD solution
captures the trends prescribed by relations (15) and (18) well,
except for the situations where the Prandtl numbers are very
high (say, Pr0 > 100). In a low Reynolds number flow, it
is not completely surprising that the ratio of viscous and
thermal spreading lengths scales as

√
Pr, irrespective of the

Prandtl number under concern [41]. While the present result is
consistent with such fundamental principle, it must be noted
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FIG. 5. Variation of viscous boundary layer thickness relative to
thermal boundary layer thickness for a wide range of mean Prandtl
numbers. White circles represent CFD simulation data for water with
changed values of mean viscosity and/or thermal conductivity. Since
Pr0 is increased beyond 100 by increasing the viscosity (keeping λ

the same), the dependence of viscous boundary layer thickness (δv)
on Pr0 decreases substantially.

that the scale δv/δt ∼ Pr1/2
0 may fail in a high-Pr0 regime

as depicted in Fig. 5. When Pr0 is raised beyond a stipulated
value by increasing the mean viscosity (μ0), the extent of the
viscous boundary layer (δv) is restricted by the wavelength λ

and the δv/δt ratio becomes less and less dependent on Pr0.
Note that in an unconfined environment the characteristic y
length scale for the variation of x velocity is the wavelength
λ [see Figs. 2(a) and 2(c)]. If we increase Pr0 by decreasing
thermal conductivity only, then the scale δv/δt ∼ Pr1/2

0 is
maintained. Another important point is that the scaling laws
(15) and (18) are applicable for a Pr0 value somewhat greater
or lesser than unity as well, even though they were established
considering the limiting cases of Pr0 � 1 and Pr0 � 1.

C. Assessment of mean flow

In this section, we explore some important and interesting
features of the time-averaged (mean) flow field. For high-Pr0

fluids, the streamwise mean velocity (Uavg) reaches its peak or
maximum (Umax) within the thermal boundary layer, at around
y ≈ δt . We recall that it is the thermal boundary layer (∼δt )
wherein the periodic fluctuation of temperature and associated
thermoviscous actuation remain confined. In order to assess
the mean velocity scale [Eq. (21)], we plot the normalized
Umax against Pr0 in Fig. 6. As expected, Umax normalized by
the appropriate scale [expression (21)] yield values close to 1
for different Pr0 (=5.43, 27, 54, 73.5, 108, etc.).

One of the most interesting findings of the present study is
the seemingly nontrivial mean velocity distribution originat-
ing out of thermoviscous expansion of low Prandtl number
fluids. For low-Pr0 flows, we observe a sharp rise and a
subsequent sharp fall (albeit smaller extent) of the mean
velocity near the wall, as depicted in Fig. 7(a). A “steady”
velocity distribution with a local spike or overshoot close to
the wall [Fig. 7(a)] is not so common in nature. The physics
behind such behavior relies on the intricate interplay among
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FIG. 6. Maximum mean velocity (normalized) vs Prandtl num-
ber in the high-Pr0 regime. Mean velocity scale Us is taken from
Eq. (21). White circles represent CFD solutions for water with
modified values of mean viscosity and/or thermal conductivity.

distinctive length scales (δv and δt ), local velocity gradient,
and temperature phase difference.

To figure out the peculiarity in the mean velocity profile,
one needs to examine the temperature field near the wall, the
instantaneous x-velocity gradient during an entire cycle [e.g.,
Fig. 2(d)], and the mean flow governing equation [Eq. (19)]
carefully. Noting that δv � λ, the mean flow governing equa-
tion [Eq. (19)] may be simplified as

∂2Uavg

∂y2
	 ηT

∂

∂y

[
(T − T0)

(
∂u

∂y

)]
. (25)

In order to examine the temperature field, it is necessary
to recall the structure of the thermal boundary layer [25]
that is divided into two sublayers depending on the phase
difference in local temperature: (a) a wall-inner sublayer (0 �
y � δ∗/3 	 0.9 δt ) in which temperature deviation (T − T0)
has the same sign as the local (Tw − T0), and (b) a wall-
outer sublayer (δ∗/3 < y � δ∗) wherein temperature devia-
tion (T − T0) has sign opposite to the local (Tw − T0). Here,
Tw is the local wall temperature and δ∗ is the exact thickness
of the thermal boundary layer (obtained from an analytical
solution of the temperature field [25]). When δv is smaller than
the thickness of the wall-inner sublayer (δ∗/3 	 0.9 δt ), e.g.,
the Pr0 = 0.054 case in which δv ≈ 0.24 δt [Fig. 7(a)], one
can split the wall-inner sublayer into two parts: the viscous
boundary layer (0 � y � δv) region and the δv < y � δ∗/3
region. In the viscous boundary layer, the interaction of local
temperature deviation (T − T0) and velocity gradient ∂u/∂y
is congenial for generating a positive and substantially large
thermoviscous force, which leads to a steep rise in Uavg till
y ∼ δv. In the region δv < y � δ∗/3, the temperature field
is still favorable, but the local ∂u/∂y has changed in var-
ious aspects. Here, the velocity gradient does not scale as
∂u/∂y ∼ us/δv and its sign has changed too, as is evident
from Fig. 2(d). Not only is the sign of ∂u/∂y opposite, but its
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is taken from Eq. (22). (b) Net thermoviscous force distribution over
the flat plate at t = 100 ms for the same case (Pr0 = 0.054). Here,
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magnitude |∂u/∂y| is considerably less than that in the viscous
boundary layer region. All these factors contribute towards
a decrement in Uavg with y in the δv < y � δ∗/3 layer at a
smaller rate. Eventually, Uavg settles down to a lower value at
around y 	 δ∗/3 (the edge of the wall-inner sublayer). Thus,
the instantaneous velocity gradient in δv < y � δ∗/3 zone
adversely affects the thermoviscous actuation and hinders
generation of net flow by reducing the mean velocity. In the
wall-outer sublayer (δ∗/3 < y < δ∗), however, both (T − T0)
and ∂u/∂y possess opposite sign and their combination results
in a positive thermoviscous force [although it is substantially
weaker since the magnitude of (T − T0) is small compared to
that in the wall-inner sublayer]. Outside the thermal boundary
layer (y > δ∗), thermoviscous force is zero and the mean
velocity is time dependent.

To sum up, the mean velocity distribution within the wall
layer is dictated by a balance between viscous drag and
local thermoviscous force. Close to the wall (y ∼ δt ) mean
flow remains steady. The net thermoviscous force distribution,
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FIG. 8. Dimensionless wall shear (time-averaged) variation with
Prandtl number for a constant βT ηT (�T )2. White circles represent
CFD simulation data for water with changed values of mean vis-
cosity and/or thermal conductivity. Lines simply represent slopes ( 1

2
and 1 1

2 ).

presented in Fig. 7(b), only confirms the phenomena described
above. It is the negative thermoviscous force that draws the
mean flow back even within the thermal boundary layer [till
y ∼ δ∗/3 	 0.9δt , as demonstrated in Fig. 7(a)]. These re-
sults conclusively prove that the thermoviscous force function
within the wall layer or thermal boundary layer need not
be a monotonically decreasing one. In reality, it depends on
the ratio of viscous penetration depth to thermal penetration
length, which essentially controls the magnitude and sign of
local temperature deviation as well as the local velocity gra-
dient. In this particular case (Pr0 = 0.054), the force function
becomes (slightly) positive again in the wall-outer sublayer,
before eventually going down to zero around y 	 δ∗. Thus, the
negative thermoviscous force can substantially reduce the net
mass flow rate along the plate even though the Prandtl number
is small (Pr0 � 1).

D. Friction factor variation with Prandtl number

Figure 8 presents numerically obtained friction factor (di-
mensionless wall shear), plotted against the mean Prandtl
number keeping ‘thermoviscous actuation parameter’ con-
stant (βT ηT �T 2 = 2.555 × 10−3). Straight lines are drawn
in the same figure to represent different slopes – the dashed
line has a slope = ½ (low-Pr0 regime), while the solid contin-
uous line has a slope = 1½ (high-Pr0 regime). The agreement
between scaling estimates and simulation results (data points)
are excellent. In addition, numerical result demonstrates that
the scales for the friction factor are also valid for a Pr0 that is
moderately higher or lower than unity.
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V. CONCLUSIONS

In this paper, we have developed scaling relationships for
the limiting cases of large Prandtl number (Pr0 � 1) and
small Prandtl number (Pr0 � 1) flows induced by thermo-
viscous expansion of a liquid along a traveling temperature
wave. Employing full-scale CFD simulations, we not only
corroborate the scaling laws but demonstrate that these laws
are also applicable to Prandtl numbers moderately higher
and lower than unity, widening their ranges of validity. We
show that deviation of mean Prandtl number (Pr0) from unity
introduces a viscous length scale (δv) which, relative to the
thermal penetration length (δt ), scales as ∼ Pr1/2

0 , irrespective
of the regime of Prandtl number (Pr0) under concern. There
is, however, a constraint on this seemingly universal scale:
it is valid as long as viscous penetration depth (δv) remains
small compared to the wavelength of the applied thermal
wave (λ).

Investigation of mean (time-averaged) flow reveals an in-
triguing aspect of thermoviscous actuation. Here, we have
demonstrated that the thermoviscous force can remarkably be
negative within the thermal boundary layer itself, particularly
for low Pr0 (�1) flows, leading to a nontrivial reduction of net
(time-averaged) throughput along the wall. Such a nontrivial
mean flow pattern (mean velocity distribution) is attributed to
the intricate interplay of viscous length scale (δv) and different
sublayers of the thermal boundary layer.

The scaling and numerical investigations are further ex-
tended towards unveiling the friction factor (dimensionless

wall shear) characteristics for high-Pr0 and low-Pr0 fluids.
Numerical prediction of friction factor variation with Prandtl
number agrees well with the scaling estimates for both high-
Pr0 and low-Pr0 fluids. It is found that the thermoviscous
actuation parameter, βT ηT �T 2, always (for all Pr0) augments
the mean velocity, curbing the friction factor.

Our scaling estimates effectively bring out the essential
physics of interest, without necessitating expensive numerical
simulations, pertaining to thermoviscous expansion on a flat
plate on which a traveling temperature wave recurs in a spa-
tiotemporally evolving manner. Many extended implications
of the present scaling analysis can be applied to address trans-
port phenomena in several other applications ranging from
microfluidics to the processing of materials [42–54]. Results
obtained from the present study will also be useful in the area
of thermal molecular focusing and ultrasound acoustophore-
sis. The process of trapping, accumulation, and sorting of
colloidal particles and biomolecules with frequency-tunable
control may be improved through proper knowledge of fun-
damental physical scales associated with thermoviscous flow
actuation.
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