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Three-dimensional electroconvective vortices in cross flow
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This study focuses on the three-dimensional (3D) electrohydrodynamic flow instability between two parallel
electrodes driven by unipolar charge injection with and without cross flow. Lattice Boltzmann method with
a two-relaxation time model is used to compute flow patterns. In the absence of cross flow, the base-state
solution is hydrostatic, and the electric field is one-dimensional. With strong charge injection and high electrical
Rayleigh number, the system exhibits electroconvective vortices. Disturbed by perturbation patterns, such as
rolling pattern, square pattern, and hexagon pattern, the flow develops corresponding to the most unstable
mode. The growth rate and pattern transitions are studied using dynamic mode decomposition of the transient
numerical solutions. The interactions between cross flow and electroconvective vortices lead to suppression and
disappearance of structures with velocity components in the direction of cross flow, while the other components
are not affected. Surprisingly, the transition from a 3D to a 2D flow pattern enhances the convective charge
transport, marked by an increase in the electric Nusselt number. Hysteresis in the 3D to 2D transition is
characterized by the nondimensional parameter Y, a ratio of the electrical force term to the viscous term in
the momentum equation.
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I. INTRODUCTION

Both two-dimensional (2D) and three-dimensional (3D)
vortex structures are ubiquitous in fluid systems. In consider-
ing convection, various flow patterns have been observed as a
result of body forces acting on the fluid, e.g., Rayleigh-Benard
convection (RBC) [1–7], Marangoni effects [8–12], magneto-
convection [13–18], and magnetohydrodynamics convection
[19–26]. The electrical force on the fluid is known as elec-
troconvection (EC) such as electrokinetics instability (EKI)
[27–31] and electrohydrodynamic (EHD) convection [32–35].
EC phenomenon has been first reported by G. I. Taylor in
1966 describing cellular convection in a liquid droplet [36].
Since then, EC has been observed in other systems with the
interaction of electrical forces with fluids. In nonequilibrium
EHD systems [7,34–52], poorly conductive leaky dielectric
fluid acquires unipolar charge injection at the interface in
response to the electric field. In charge-neutral electrokinetic
(EK) systems, electroconvection is triggered by the electroos-
motic slip of the electrolyte in the electric double layer at
membrane surfaces [27,28,31,53–59].

The EC stability problem was first analyzed by a reduced
nonlinear hydraulic model [60,61] and by a linear stability
analysis without the charge diffusion term [62,63]. Atten and
Moreau [64] showed that, in the weak-injection limit, C � 1,
the flow stability is determined by the parameter TcC2, where
C is the charge injection level and Tc is the linear stability
threshold for the electrical Rayleigh number T , the ratio of
the electrical force to the viscous force [Eq. (9)]. In the space-
charge-limited (SCL) injection (C → ∞), the flow stability
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depends on Tc alone [65–67]. The effect of charge diffusion
was investigated by Zhang et al. using linear stability analysis
[47] and nonlinear analysis [51]. The authors found that the
charge diffusion has a nonnegligible effect on Tc.

EC patterns have also been observed in liquid crystals
when induced by an alternating current (AC). Dennin et al.
have shown the evolution of spatiotemporal chaos (STC) in
nematic liquid crystals can be described by supercritical Hopf
bifurcation [33]. Dennin et al. reported that the inclusion of
the dissociation-recombination reaction of the ionic dopant in
the EC model predicts STC behavior [32]. Daya et al. reported
the bifurcations in annular EC in a weakly conducting smectic
liquid crystal film between rotating cylinders [40,68,69]. John
et al. demonstrated that the EC flow field could lead to 3D
EC structures based on the perturbation patterns (rolling,
triangular, and square patterns) [70]. Buka et al. showed other
patterns that depend on the anisotropy of EC [71]. More
recently, Huh reported noise-induced traveling waves (moving
rolls) with AC-driven EC in a nematic liquid crystal [72] and
noise-free EC in one-dimensional liquid crystal cells [73].

In the presence of shear flow, the parameterization of EC
stability is somewhat analogous to Rayleigh-Bernard convec-
tion (RBC) [74–82]. Mohamad et al. used a nondimensional
group Gr/Re2, the ratio of the buoyancy to the inertia force,
to parametrize the effect of applied shear, where Gr is the
Grashof number [75]. For Gr/Re2> 10, the impact of the
cross flow is insignificant, while for Gr/Re2< 0.1, the effect
of buoyancy can be neglected. Reduced nonlinear models
such as Ginzburg-Landau equations are used to study the
transitional behavior of RBC cells [74,76–78].

For the EC problem, Daya et al. showed that the primary
bifurcation of 2D annular EC with rotating cylinders (Cou-
ette cross flow) could be switched between supercritical and
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subcritical by changing radius ratio and Re [40]. They showed
that the onset of an annular EC is via a supercritical bifurca-
tion, but a sufficiently large shear can change the bifurcation
from supercritical to subcritical [68]. The authors also showed
that the Couette cross flow suppresses the onset of annular
EC [69]. Kwak et al. have examined the effect of the cross
flow on the EKI and proposed a scaling law relating the
field strength and shear to the height of the EC vortices [56].
Later, Kwak et al. extended the scaling law analysis for the
electric Nusselt number as a function of the electric Rayleigh
and Reynolds numbers for the EC-induced convective ion
transport [83]. Magnico reported the numerical results for
EKI near an ion exchange membrane with the pressure-driven
shear flow and showed that the spatial distribution of forces
controls the dynamics of vortex association and dissociation
[84]. Linear stability analysis of the 2D EHD-EC with cross
flow was reported by Zhang et al. [47], and nonlinear analysis
was reported more recently [51]. Zhang et al. found that and
the transient behavior depends on the Reynolds number. Li
et al. performed linear analysis for convective instabilities in
EHD-Poiseuille flow and found that the ratio of the Coulomb
force to the viscous force affects the transition of transverse
rolls from convective to absolute instability [85]. Traore et al.
showed that, in 2D finite-volume simulations of Poiseuille
flow, the value of Tc is a function of Re and the ion mobility
parameter, M [48]. More recently, Traore et al. investigated
the EHD-EC behavior between two rotating coaxial cylinders
via a finite-volume method and showed that the shear motion
increases the stability of the flow system [86]. Guan and
Novosselov used 2D numerical simulations to parameterize
the decay of EC vortex pairs to the base cross flow in terms of
a nondimensional ratio of electrical to viscous forces, Y [87].

The transition from 3D to 2D structures under the influence
of ambient shear has been studied in the formation of atmo-
spheric cloud streets in planetary boundary layers [88–90],
and in laboratory RBC studies [74–78]. In EC systems the
interaction of the forcing term is different from RBC; how-
ever, 3D vortex pattern transition has been observed. Pham
et al. presented a numerical and experimental study of the 3D
effect in EKI. The shear flow stretched the 3D vortex patterns
streamwise forming helical flow patterns [91]. However, the
mechanism and the detailed analysis of the transition in EC
systems have not been presented. The nonlinear effects and
the flow transition in the shear flow with 3D EHD-EC vortices
have not been analyzed, partially due to the lack of 3D data.

Numerical simulation can shed insight into the behavior of
EC vortices. Early work has shown that in finite-difference
modeling, strong numerical diffusivity can lead to ambiguity
in the prediction of stability criteria [39]. Other numerical
approaches have been developed, including the particle-in-cell
method [92], the finite-volume method with flux-corrected
transport [93] or the total variation diminishing scheme
[43,45,49,50,94], and the method of characteristics [95]. Luo
et al. showed that a unified Lattice Boltzmann model (LBM)
predicts the linear and finite-amplitude stability criteria of the
subcritical bifurcation in the EC flow for both 2D and 3D flow
scenarios [7,34,35,52,96]. A segregated solver was proposed
that combines a two-relaxation time (TRT) LBM modeling of
the fluid and charge transport, and a Fast Fourier Transform
(FFT) Poisson solver for the electrical field [97].

Analysis of the complex flow structures has been studied
by multiple researchers, and currently, several tools are avail-
able. Among other methods, dynamic mode decomposition
(DMD) has been used. DMD analysis can be performed on
experimental measurements or numerical solutions to gain
insight into the spatiotemporal dynamics of complex systems
[98]. Schmid and colleagues first applied DMD to stability
analysis of fluid flow [99,100]. The eigenmodes from DMD
are equivalent to global modes if the linearized equations
are used in numerical simulations. DMD has also been used
to identify bifurcation points in complex systems such as
flow in a lid-driven cavity at high Reynolds number [101],
to reconstruct compressed high-dimensional data of a fluid
system [102], and to extract coherent spatiotemporal struc-
tures in fluid flows for prediction and control [103,104]. The
use of DMD for EC flow and flow pattern transition analysis,
however, has not been previously reported.

This work investigates the behavior of 3D EHD-EC flow
patterns in cross flow with unipolar charge injection. Couette
and Poiseuille cross flows are added to EC convection to trig-
ger flow transition. The vortex structure evolution is analyzed
by DMD. The effects of cross flow are parameterized by a
nondimensional number, Y, a ratio of electrical to viscous
forces in the dimensionless Navier-Stokes equations.

II. GOVERNING EQUATIONS
AND DIMENSIONAL ANALYSIS

The governing equations for the system are the Navier-
Stokes equations (NSE) with an electrical forcing term Fe =
−ρc∇ϕ added to the momentum equation, the charge trans-
port equation, and the Poisson equation for the electrical
potential.

∇ · u = 0, (1)

ρ
Du
Dt

= −∇P + μ∇2u − ρc∇ϕ, (2)

∂ρc

∂t
+ ∇ · [(u − μb∇ϕ)ρc − Dc∇ρc] = 0, (3)

∇2ϕ = −ρc

ε
, (4)

where ρ and μ are the density and the dynamic viscosity
of the working fluid, u = (ux, uy, uz ) is the velocity vector
field, P is the static pressure, ρc is the charge density, μb is
the ion mobility, Dc is the ion diffusivity,ε is the electrical
permittivity, and ϕ is the electrical potential. The electrical
force is a source term in the momentum equation [Eq. (2)]
[47,105–107]. The variables to be solved are the velocity field
u, pressure P, charge density ρc, and electrical potential ϕ.
The flow is assumed to be periodic in the x and y directions,
and wall-bounded z direction. Cross flow is applied in the x
direction.

In the absence of cross flow, the system can be nondimen-
sionalized with the characteristics of the electric field [47]: H
is the distance between the electrodes (two plates infinite in
x and y), ρ0 is the injected charge density at the anode, and
�ϕ0 is the voltage difference applied to the electrodes. The
time t is nondimensionalized by H2/(μb�ϕ0), the velocity
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u by the drift velocity of the ions udrift = μb�ϕ0/H , the
pressure P by ρ0(μb�ϕ0)2/H2, and the charge density ρc

by ρ0. Therefore, the nondimensionalization of the governing
equations [Eqs. (1)–(4)] gives

∇∗ · u∗ = 0, (5)

D∗u∗

D∗t∗ = −∇∗P∗ + M2

T
∇∗2u∗ − CM2ρ∗

c
∇∗ϕ∗, (6)

∂∗ρ∗
c

∂∗t∗ + ∇∗ ·
[

(u∗ − ∇∗ϕ∗)ρ∗
c

− 1

Fe
∇∗ρ∗

c

]
= 0, (7)

∇∗2
ϕ∗ = −Cρ∗

c
, (8)

where the asterisk denotes nondimensional variables. These
nondimensional equations yield four dimensionless parame-
ters describing the system’s state [7,34,35,43–52,94]:

M= (ε/ρ )1/2

μb
, T = ε�ϕ0

μμb
, C = ρ0H2

ε�ϕ0
, Fe = μb�ϕ0

De
.

(9)

The physical interpretations of these four nondimensional
parameters are as follows: M is the mobility ratio between hy-
drodynamic mobility and the ionic mobility, T is the electrical
Rayleigh number, a ratio between the electrical force and the
viscous force, C is the strength of injection [47,51], and Fe is
the reciprocal charge diffusivity coefficient [47,51,85].

With the addition of a cross flow, the velocity term in the
nondimensional momentum equation is modified to account
for the external flow, uext, which is different from the previous
formulation s where the drift charge velocity was used [87].
Here we use the velocity of the upper wall in Couette flow or
the centerline velocity for Poiseuille flow as uext [87]. The
nondimensional momentum and charge transport equations
become

D∗u∗

D∗t∗ = −∇∗P∗ + 1

Re
∇∗2u∗ − Xρ∗

c
∇∗ϕ∗, (10)

∂∗ρ∗
c

∂∗t∗ + ∇∗ ·
[( |uext|

udrift
u∗ − ∇∗ϕ∗

)
ρ∗

c
− 1

Fe
∇∗ρ∗

c

]
= 0,

(11)

where the Reynolds number is Re = ρ|uext |H
μ

and X = ρ0�ϕ0

ρ|uext |2
is the ratio of the electrical force to the inertial force [106].
Since Re is essentially the ratio of inertia to viscous forces,
and X is the ratio of the electrical force to the inertial force,
the product of these (denoted as Y) is the ratio of the electrical
force to the viscous force:

Y = X × Re = ρ0�ϕ0H

μ|uext| = ρ0�ϕ0

|τ | , (12)

where τ is the shear stress τ = μ uext
H . In Couette flow τ =

constant (uext = uwallex); while in Poiseuille flow, the average
value in the channel flow is used hereafter (uext = ucenterex and
H replaced by half-height H/2), where ex is a unit vector in the
x direction. Detailed interpretation of Y and other NSE terms
in the 2D EC cross flow scenario can be found elsewhere [87].

III. SYSTEM LINEARIZATION AND INITIALIZATION

In flow stability problems, the initial linear growth region
can be described by the linearized governing equations. The
dimensional variables can be written as a summation of the
base state (denoted with an overbar) and perturbation (denoted
with prime), i.e., u = ū + u′, P = P̄ + P′, ϕ = ϕ̄ + ϕ′, and
ρc = ρ̄c + ρc

′ [47]. The base-state variables are only functions
of z. Substituting these expressions into Eqs. (1)–(4), subtract-
ing the governing equations for the base states, and truncating
the second-order perturbation terms yields the linear system:

∇ · u′ = 0, (13)

ρ
∂u′

∂ t
+ (u′ · ∇ )ū + (ū · ∇)u′

= −∇P′ + μ∇2u′ − (ρc
′∇ϕ̄ + ρ̄c∇ϕ′), (14)

∂ρc

∂t
+ ∇ · [(ū − ∇ϕ̄)ρc

′ + (u′ − ∇ϕ′)ρ̄c − Dc∇ρc
′] = 0,

(15)

∇2ϕ′ = −ρc
′

ε
, (16)

which can be written symbolically as

dγ

dt
= Lγ, (17)

where γ is the vector of unknowns, and L is the linear
differential operator.

For periodic boundary conditions in the x and y directions,
the normal modes take the form

γ = W (z) f (x, y)eωt , (18)

where γ represents any flow variable (u′, p′, ρc
′, ϕ′); ω

is the eigenvalue of the spatial-differential matrix L, and
W (z) f (x, y) is the corresponding eigenfunction. The choice of
the normal modes depends on the initial perturbation (initial
conditions).

To test the accuracy of the numerical approach, a solution
to the hydrostatic base state is obtained and compared to the
analytical solution for low and high values of C [92,107], as
shown in Fig. 1. Without initial perturbation, the system is
hydrostatic, and the electrical properties are one-dimensional
in the z direction. The boundary conditions are summarized in
Table I of the supplementary materials [108].

To obtain various equilibrium solutions, for example, as
shown in Fig. 2, different initialization (initial perturbation)
schemes are applied to the hydrostatic base state. The initial
perturbation used in the simulations has a form similar to
the eigenfunction of the normal mode W (z) f (x, y). To satisfy
the continuity condition [Eq. (13)], the initial velocity field is
described as

uz = W (z) f (x, y), ux = 1

a2

∂2uz

∂x∂z
, uy = 1

a2

∂2uz

∂y∂z
, (19)
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FIG. 1. Hydrostatic solution comparison of the TRT LBM and fast Poisson solver [87,97], unified SRT LBM [52], and the analytical
solution [92,107] for C = 0.1 and C = 10, Fe = 4000. (a) Charge density and (b) electric field.

where a depends on the wavelengths in x and y directions and
satisfies (

∂2

∂x2
+ ∂2

∂y2

)
f (x, y) = −a2 f (x, y). (20)

The initial perturbation for a rolling pattern (2D) is taken
to be

ux = 0, (21)

uy = −dW (z)

dz

1

a2

2π

Ly
sin(2πy/Ly), (22)

uz = W (z) cos(2πx/Ly), (23)

where W (z) is chosen to satisfy the no-slip boundary condi-
tions at the walls, and Ly is the wavelength in the y direction

(spanwise). The initial perturbation for a square pattern (3D)
is taken to be

ux = −dW (z)

dz

1

a2

2π

Lx
sin(2πx/Lx ), (24)

uy = −dW (z)

dz

1

a2

2π

Ly
sin(2πy/Ly), (25)

uz = W (z)[cos(2πx/Lx ) + cos(2πy/Ly)]. (26)

For the square patterns Lx = Ly, and from Eq. (20):

a = 2π/Ly. (27)

The initial perturbation for the hexagon pattern (3D) is
taken to be

ux = −dW (z)

dz

4π

3
√

3Lc2
sin

(
2πx√

3L

)
cos

(
2πy

3L

)
, (28)

FIG. 2. Contours of uz at z = H/2 for the equilibrium states (a–e) without cross flow, and (f–j) with cross flow sufficient for pattern
transition. For different electrical Rayleigh numbers, domain sizes, and initial perturbations (initial conditions), square patterns, oval patterns,
hexagon patterns, and mixed patterns are established. Strong cross flow in the x direction is applied to the equilibrium states (a–e), resulting in
the 3D transition to 2D streamwise vortices.
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uy = −dW (z)

dz

4π

9Lc2

[
cos

(
2πx√

3L

)
+ 2 cos

(
2πy

3L

)]

× sin

(
2πy

3L

)
, (29)

uz = 1

3
W (z)

[
2 cos

(
2πx√

3L

)
cos

(
2πy

3L

)
+ cos

(
4πy

3L

)]
,

(30)

where L is the length of the side of the hexagon and the
parameter c = 4π

3L to satisfy Eq. (20).
To satisfy the wall-bounded no-slip boundary condition in

the z direction, we use

W (z) = [cos(2πz/H ) − 1]ε, (31)

where ε = 10−3 is the perturbation magnitude, taken to be the
same as in previous 2D analyses [87,97].

IV. DYNAMIC MODE DECOMPOSITION

The DMD analysis is first used to study the linear growth
and later to analyze the nonlinear transition region. To study
the coherent structures leading to flow instability, we perform
DMD on the numerical data for uz. DMD reconstructs the
complex flow system using the linear growth approximation
between snapshots of numerical solutions [98]; DMD exam-
ines the coherent flow structures and can be used as a tool
for flow field predictions and stability analysis. A continuous
linear dynamical system [Eq. (17)] can be described by an
analogous time-discretized system at intervals �t :

γk+1 = Aγk, (32)

where

A = exp(�tL), (33)

and γk is any flow variable (u′, p′, ρc
′, ϕ′) at a time step k. The

operator L is a spatial differential matrix of the continuous-
time dynamical system, as in Eq. (17). The solution to the
discrete-time system can be expressed in terms of eigenvalues
λ j and corresponding eigenvectors ξ j of the discrete-time
mapping matrix A:

γk =
r∑

j=1

ξ jλ
k
jb j = ξ�kb, (34)

where b contains the coefficients of the perturbation (initial
conditions)γ1 in the eigenvector basis, such that γ1 = ξb, r
is the rank of the reduced eigenmodes, ξ is the matrix whose
columns are the eigenvectors ξ j , and �k is a diagonal matrix
whose entries are the eigenvalues λ j raised to the power of k.

The results obtained by the DMD algorithm based on
the data collected from the numerical simulations can be
compared to the values calculated by linear stability analysis
in the linear growth region.

With the low-rank approximation of both the eigenvalues
and the eigenvectors, the projected future solution can be

constructed:

γ (t ) ≈
r∑

j=1

ξ j exp(ω jt )b j =ξ exp (�t )b, (35)

where ω j = ln(λ j )/�t and b = ξ†γ1, ξ is the matrix whose
columns are the DMD eigenvectors ξ j , superscript † is the
Moore-Penrose pseudoinverse, and � is a diagonal matrix
whose entries are the eigenvalues ω j . The details of the
implementation of DMD is included in the supplementary
materials [108].

V. RESULTS AND DISCUSSION

The TRT LBM approach is used to solve the transport
equations for fluid flow and charge density, coupled to a fast
Poisson solver for the electric potential [87,97]. The solver
is extended to 3D for the differential equations [Eqs. (1)–
(4)], the simulations are performed using the initial pertur-
bations (i.e., initial conditions) as per Eqs. (21)–(23) for the
rolling pattern, Eqs. (24)–(26) for the square pattern, and
Eqs. (28)–(30) for the hexagon pattern and mixed patterns.
The equilibrium state was obtained when the flow became
steady. The numerical code implementation is in SI units, and
the physical constants are determined by the nondimensional
parameters. The numerical method is implemented in C++
using CUDA GPU computing. FFT and IFFT operations use
the cuFFT library [109–111]. All variables are computed with
double precision to reduce truncation errors. The numerical
method was shown to be 2nd order accurate in space [97].
Error analysis is provided in supplementary materials [108].
The code can be found at Ref. [112].

A. Electroconvection vortices and transition to rolls:
General patterns

The equilibrium patterns of EC flow fields without cross
flow were obtained using the initial perturbations described
in Sec. III. The resulting patterns depend on the nondimen-
sional parameter T and the domain size; the latter deter-
mines the wavelengths of the vortices. Note that, the rolling,
square, and hexagon patterns have been previously observed
for the EC system [34,35,70] and the EKI systems [53,91].
Figures 2(a)–2(e) show the equilibrium states of uz at z =
H/2. The values C = 10, M = 10, and Fe = 3500 were held
constant for each condition. The simulations were carried to
T = 170 for uz plotted in Figs. 2(a) and 2(c)–2(e), and to
T = 833 for uz in Fig. 2(b). The domain sizes and initial
perturbation for the simulations plotted in Figs. 2(a) and 2(b)
are the same [Eqs. (24)–(26)], and therefore uz in Fig. 2(b)
is the harmonic of uz in Fig. 2(a) and develops at a higher
value of T. For cases given in Figs. 2(c)–2(e), different domain
sizes with a hexagon initial perturbation [Eqs. (28)–(30)] were
used. When sufficiently strong Couette-type cross flow in the
x direction was applied to the 3D structures, the transition to
2D streamwise rolling patterns occurs for all initial perturba-
tions scenarios [Figs. 2(f)–2(j)].

To study the mechanism for the transition of 3D vortices
to streamwise vortices, we consider the simplest scenario,
i.e., the case where the equilibrium state is a single pe-
riod square pattern, see Fig. 2(a). Further generalization of
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FIG. 3. Contours of u∗
z at z = H/2 for initial perturbation of (a) a

square pattern and (b) a rolling pattern with T = 170, C = 10, M =
10, and Fe = 3500.

transition for other patterns can be a subject of future work.
The physical domain used in the simulation is given by Lx =
Ly = 1.22m and H = 1m; this limits the wave number to
kx = ky = 2π/Lx ≈ 5.15(1/m) [34,47]. The electrical Nus-
selt number, Ne = I/I0, serves as a flow stability criteria,
where I is the cathode current for a given solution and I0

is the cathode current for the base-state solution without EC
vortices [34,43]; thus, Ne > 1 when EC vortices exist. Note
that the use of current as the metric for EC convection has
been used in the studies of related overlimiting current in
electrokinetic systems [48]. The transition to EC chaotic flow
[57] at higher values of the forcing term is not considered in
this paper. For the EC problem with the cross flow, the stability
largely depends on Y [87]; thus, in this analysis Y is varied,
while other nondimensional parameters are held constant at
T = 170, C = 10, M = 10, and Fe = 3500.

B. Perturbation of the hydrostatic base state with square and
rolling patterns

An initial perturbation was applied to the hydrostatic base
state after the one-dimensional electrical property profiles
were established, as shown in Fig. 1. Figure 3 shows that
for T > Tc, the 2D perturbation [Eqs. (21)–(23)] leads to the
development of a rolling pattern with flow only in the y and z
directions, while the 3D square perturbation [Eqs. (24)–(26)]

leads to a square pattern with velocities in all three directions.
Figure 4 shows the evolution of the maximum uz for the first
t∗ = 0 ∼ 5 after the perturbation is applied (nondimensional
time scale is obtained via normalization by H2/(μb�ϕ0), as
described in Sec. II). Both the rolling pattern and square pat-
tern have the same nondimensional linear growth rate [∼0.896
as ω in Eq. (18)], which agrees with the previously reported
linear stability analysis [47] and the unified SRT LBM numer-
ical model [34] (the case with T = 170, C = 10, M = 10, and
Fe = 4000 is included in Supplemental Material for validation
[108]). After about t∗ = 5 from the initial perturbation, the
growth rate curves for square and rolling vortices patterns
diverge. Although the maximum u∗

z is greater for the square
pattern, the charge transport (based on Ne = I/I0) for rolling
patterns is greater, as shown later in Figs. 17 and 18.

To study the dynamics of the system, DMD is performed
based on the numerical data of the square pattern perturbation
case from t∗ = 0–2.5 at intervals of �t∗ = 0.125. Figure 5
shows the eigenvalues λ of the discrete-time mapping matrix
A as in Eq. (33) and the logarithmic mapping of the eigen-
values ω of the matrix L as in Eq. (17). The eigenvalues
λ are shown in relationship to the unit circle (dashed line);
most of the values are inside the circle and therefore represent
stable dynamic modes. Three unstable modes (solid dots) with
positive growth rates are found. The unstable modes with
λi = 0 suggest that these modes do not oscillate.

The three unstable modes with positive growth rates dom-
inate the flow pattern. Figure 6 shows the eigenvectors of
these three modes at t∗ = 2.5, plotted on the plane z = H/2.
The plots show square patterns with different wavelengths
and phase shifts. Although the mode ωr = 0.908 has a slower
growth rate, it contains >99% of the energy of the perturba-
tion (its initial amplitude of b = 1.826 is much greater than
that of the others). The overall growth rate (∼0.896) from
Fig. 4 is very close to the growth rate of this dynamic mode
shown in Fig. 6(c). The comparison of the dynamic modes
Figs. 6(a)–6(c) and simulation solution Fig. 6(d) verifies that
the dynamic mode ωr = 0.908 dominates the flow system.
The growth rates of rolling and square patterns are similar to
each other, which was also observed in the previous report
[34].

FIG. 4. Time evolution of maximum u∗
z for the rolling pattern and square pattern in (a) a linear scale and (b) a logarithmic scale. Both

patterns have similar growth rates (∼0.896) in the linear growth region (t∗ = 0 ∼ 5). The DMD algorithm-based solutions in the interval
t∗ = 0–2.5 project the state as shown at t∗ = 3.75 using Eq. (35).
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FIG. 5. (a) Eigenvalues of the discrete-time mapping matrix A and (b) logarithmic mapping of eigenvalues of L. The eigenvalues outside
the unit circle, whose logarithmic value has a real component ωr greater than 0, represent the unstable dynamic modes. The logarithmic
mapping of the eigenvalue L indicates the growth rate of each dynamic mode.

C. Perturbation of the hydrostatic base state with the inclusion
of a cross flow

In the second scenario, we consider the EC problem with
an initial perturbation applied to the hydrostatic base state
after a cross-flow field in the x direction is developed. Cases
for two cross flows are studied. Only the square initial pertur-

FIG. 6. Unstable dynamic modes visualized by uz at z = H/2.
(a–c) Three unstable DMD modes; (c) perturbation has the greatest
of projection (b = 1.826) on this eigenmode; therefore, it contains
most of the energy of the system; (d) the simulated uz at z = H/2.
The growth rate of mode (c) ωr = 0.908 is close to the general
growth rate of the entire system (∼0.896) observed in Fig. 4.

bation [Eqs. (24)–(26)] is considered. Couette flow is obtained
by applying the speed uwall to the upper wall while holding the
bottom wall fixed. Poiseuille flow driven by a body force rep-
resenting a pressure drop, Fp, so that the center plane velocity
is ucenter = 1

2μ
( H

2 )2Fp. The values of uwall and ucenter are both
nondimensionalized by udrift such that u∗

wall = uwall/udrift and
u∗

center = ucenter/udrift .
Figure 7 shows the evolution of maximum u∗

z and Ne for
both cases. For t∗ < 5 after the initial perturbation [Eqs. (24)–
(26)], the growth is linear, and the growth rate of ∼0.896
is the same for all solutions. The growth rate is the same
with and without cross flow, because the cross flow does not
affect the streamwise vortices and, as is shown in Fig. 4,
the streamwise vortices grow at the same rate as the 3D
square patterns. Previously reported linear stability analysis
[85] predicts that the cross flow does not affect the growth
rate of longitudinal rolls, but that it decreases the growth rate
of traverse rolls. The effect of cross flow on the growth rate
of the traverse rolls is also observed from the simulations, as
shown in the supplementary material [108]. When the square
pattern initial perturbation is applied, both longitudinal and
traverse rolls coexist. Since the convolution between these
orthogonal rolls decreases the growth rate of each pattern
(square and rolling patterns have the same growth rate, as
shown in Fig. 4), the weakening effect of the cross flow on
the traverse rolls may be compensated by the longitudinal
rolls.

At time t∗ ∼ 5, the growth rate curves diverge to reach
different equilibrium states for different cross-flow scenarios
and perturbation schemes. With weak cross flow (u∗

wall = 1.6
for Couette flow, u∗

center = 1.68 for Poiseuille flow), the final
solutions exhibit oblique 3D vortex structures; both transverse
and regular longitudinal rolls coexist. The maximum values of
u∗

z for these oblique 3D vortices are greater than for cases with
rolling patterns. For strong cross flow (u∗

wall = 4 for Couette
and u∗

center = 3.84 for Poiseuille flow), the systems develop
directly into a longitudinal rolling pattern regardless of the
initial perturbation; i.e., transverse rolls do not exist even
when they are included in the initial perturbation contained
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FIG. 7. Time evolution of maximum u∗
z and Ne for (a, c) Couette cross flow and (b, d) Poiseuille cross flow. Maximum u∗

z have similar
growth rates (∼0.896) in the linear growth region (t∗ = 0 ∼ 5). The square pattern initial perturbation scheme [Eqs. (24)–(26)] is used. For
strong cross flow, the systems develop into longitudinal rolling patterns. For the weak cross flow, the systems develop into oblique 3D structures
with both transverse and longitudinal structures.

in the square pattern. The maximum uz of the streamwise
vortices in the cross-flow case is the same as for the 2D
rolling vortices without cross flow, as shown in Fig. 4; in other
words, streamwise vortices are superimposed onto the base-
state cross-flow solution. For the final steady state (oblique 3D
or 2D rolling vortices), the solutions with and without cross
flow bifurcate at u∗

wall = 2.2 for Couette and u∗
center = 2.8

for Poiseuille flow at about t∗ = 5. Before reaching an equi-
librium state, the cases with the moderate cross flow exhibit an
intermediate state where the maximum u∗

z can be greater than
the final longitudinal rolling pattern case (u∗

z = 2.75) or even
the square pattern case with both transverse and longitudinal
rolls (u∗

z = 2.91). After reaching the peak, in each case u∗
z

decreases to an equilibrium solution corresponding to the

FIG. 8. Contours of u∗
z for z=H/2, t = 7.5: (a) Couette flow u∗

wall = 2.24; (b) Poiseuille flow u∗
center = 2.84. The color map corresponds to

the values of uz, which is also given by the vertical axis.
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FIG. 9. Eigenvalues λi for u∗
z in linear growth region (t∗ = 0–7)

for Couette cross flow [(a) u∗
wall = 2.20 and (c) u∗

wall = 2.24]. Three
additional unstable dynamic modes in u∗

wall = 2.20 case change the
equilibrium solution from a rolling pattern to oblique 3D structures.
The corresponding eigenvectors sliced at z = H/2 are shown in (b)
mode m1 and (d) mode m2 and m̄2.

cross-flow strength. For the intermediate cross-flow cases,
the systems first develop oblique 3D structures similar to
the weak cross-flow cases, and then transition to longitudinal
rolling vortices (for Couette flow at u∗

wall = 2.24 and 2.40; for
Poiseuille flow at u∗

center = 2.84, 2.96, and 3.40), as shown in
Fig. 8. For strong cross flow (for Couette flow at u∗

wall = 4;
for Poiseuille flow at u∗

center = 3.8) the flows develop directly
into longitudinal 2D rolling patterns.

Unlike the evolution of the maximum u∗
z , Ne always

increases during the transition from 3D to 2D vortices
[Figs. 7(c)–7(d)]. However, when the cross flow is not strong
enough to suppress the 3D structures, the steady-state value of
Ne for the stronger cross flow can be lower than in the weaker
cross flow. In the cross flow with suppressed the transverse
structures, the system yields a longitudinal rolling pattern with
a constant Ne = 1.41, independent of the strength or type of
cross flow. As with the uz analysis, the charge transport by the
longitudinal vortices is simply superimposed onto the cross
flow regardless of the flow profile.

Figure 8 shows u∗
z at z = H/2 and t∗ = 7.5 for (a) Couette

cross flow with u∗
wall = 2.24 and (b) Poiseuille cross flow

with u∗
center = 2.84. At this time, the maximum u∗

z reaches its
peak value in the nonlinear growth region. Both plots exhibit a
dominating longitudinal rolling pattern aligned with the cross
flow in the x direction. The transverse vortex is suppressed due
to the interaction of the vortex’s x velocity components with
the cross flow; these interactions are most profound near the
walls where x velocity components of the initial 3D vortices
are the greatest. For example, in Couette flow, the clockwise
vortex of a vortex pair deforms at some oblique angle as the

FIG. 10. Eigenvalues λi for u∗
z in linear growth region

(t∗ = 0–6.25s) for Poiseuille cross flow [(a) u∗
center = 2.80 and (c)

u∗
center = 2.84]. An additional pair of conjugate unstable dynamic

modes in the u∗
center = 2.80 case change the equilibrium solution

from a rolling pattern to an oblique 3D structure pattern. The
corresponding eigenvectors sliced at z = H/2 are shown in (b) mode
m3 and (d) mode m̄3.

x direction (streamwise) flow accelerates the upper region of
the 3D structure and retards the bottom vortex region. This
progress is reversed in the case of the counterclockwise rotat-
ing vortex of the pair. Eventually, these transverse structures
become suppressed, and the systems develop into longitudinal
rolling patterns [87]. Since the longitudinal rolling pattern
is two dimensional in the y and z directions, it does not
interact with the bulk cross flow. For the Poiseuille flow, the
mechanism is slightly different; however, the interactions of
the vortex structure and the bulk flow exist only in the x
direction; thus, y-z structures are not affected by the cross
flow; therefore, the streamwise vortices cannot be suppressed
by any type of the cross flow.

DMD analysis of the EC vortices in the cross flow was
performed using the numerical data of u∗

z in the linear
growth region (t∗ = 0–7 for Couette flow and t∗ = 0–6.25 for
Poiseuille flow) at time intervals of �t∗ = 0.125s. A greater
number of unstable dynamic modes exist in the oblique 3D
pattern compared to the rolling pattern. Figure 9 shows the
λ for Couette cross flow at (a) u∗

wall = 2.20 and (c) u∗
wall =

2.24. Similarly, Fig. 10 shows λ for Poiseuille cross flow: (a)
u∗

center = 2.80 and (c) u∗
center = 2.84. As in the u∗

z evolution
in hydrostatic base states without cross flow (Figs. 4–6), a
perturbation in cross flow arouses several unstable dynamic
modes. Most of the dynamic modes are similar in the corre-
sponding flows, resulting in a similar flow field up to the bifur-
cation point. However, in both cases, the lower velocity flow
contains additional unstable modes, i.e., m1 and the conjugate
pair m2 − m̄2 in Couette cross flow, and mode m3 − m̄3
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FIG. 11. Time evolution of maximum u∗
z after a finite velocity is

applied to the upper wall. For small u∗
wall, the maximum u∗

z decreases
and reaches a new equilibrium state where oblique 3D structures are
observed. For large u∗

wall, the maximum u∗
z decreases down to the

rolling pattern where longitudinal rolls dominate, after a nonlinear
transition. Bifurcation occurs at u∗

wall = 3.88.

in Poiseuille cross flow. These additional unstable dynamic
modes correspond to 3D features changing the stability of the
system; they appear in the nonlinear growth region up to the
bifurcation point where the curves of weak and strong cross
flow start to diverge [see Figs. 7(a) and 7(b)].

D. Pattern transition after the application of cross flow

This section studies the transitions of 3D to 2D patterns
by applying the cross flow to already developed square vortex
structures, as shown in Fig. 3(a). With weak cross flow, the
systems transitions to oblique 3D vortex structures (oblique
transverse and regular longitudinal structures coexist). In-
creasing cross flow yields a longitudinal rolling pattern, i.e.,
transverse structures are fully suppressed. Figure 11 shows
the time evolution of maximum u∗

z in Couette cross flow. For
lower cross-flow velocities (e.g., u∗

wall = 2.40) and, therefore,
weak shear stress, the maximum u∗

z decreases to an equi-
librium value, which is somewhat greater than that for the
rolling pattern flow (u∗

wall = 2.75). Interestingly, with further
increase in u∗

wall (e.g., u∗
wall = 3.20), the equilibrium value

of u∗
z may decrease below the value of the rolling pattern.

And with even further increasing u∗
wall (e.g., u∗

wall = 3.84),
the equilibrium solution develops an oblique 3D structure
with maximum uz that is greater than that of the rolling
pattern. However, at u∗

wall = 3.88, a bifurcation occurs, and
the steady-state solution has only 2D streamwise vortices.
The transition from 3D to the 2D rolling pattern is marked
by a significant increase in u∗

z to a value greater than the
original square pattern, before finally decaying to the value
of the rolling pattern. This significant increase is a result of
kinetic energy transfer from modes with 3D structures to the
dominating 2D structures. For larger u∗

wall, the peak u∗
z value

is reduced, and the time required for pattern transition also
decreases. When the applied u∗

wall is sufficiently large (e.g.,
u∗

wall > 6.8), the maximum value of u∗
z never is never above

that of the rolling pattern.

FIG. 12. Time evolution of maximum u∗
z after a uniform body

force is applied to the flow field. For small u∗
center , the maximum

u∗
z decreases and reaches a new equilibrium state where oblique 3D

structures are observed. For large u∗
center , the maximum u∗

z decreases
to the rolling pattern values where longitudinal rolls dominate, after
a nonlinear transition. The bifurcation occurs at u∗

center = 3.96.

Similar behavior is observed for the Poiseuille flow.
Figure 12 shows the time evolution of maximum uz due to an
applied uniform body force Fp used to obtain the Poiseuille
flow. For small u∗

center and, therefore, weak applied shear
stress (e.g., u∗

center = 3.40), the maximum u∗
z decays to an

equilibrium state with a value greater than that of the rolling
pattern (2.75). With increasing Fp (e.g., u∗

center = 3.92), the

FIG. 13. Eigenvalues λi for u∗
z in the transition region for (a)

Couette-type cross flow, u∗
wall = 3.84, and (c) Poiseuille-type cross

flow, u∗
center = 3.88. Unstable dynamic modes change the equilib-

rium solution from a square pattern to oblique 3D structures. The
corresponding eigenvectors sliced at z = H/2 are shown in (b), mode
m4 − m̄9, and in (d), mode m10 − m̄12.
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FIG. 14. E igenvalues λi for u∗
z in the transition region for (a)

Couette-type cross flow with u∗
wall = 3.88, and (c) Poiseuille type

cross flow with u∗
center = 4.16. The unstable dynamic modes yield

the rolling structures.

equilibrium solution develops an oblique 3D structure as the
maximum uz slightly increases after decaying to a minimum
value. With u∗

center up to 3.92, both oblique transverse and
longitudinal structures coexist in the equilibrium solution.
However, at u∗

center = 3.96, a bifurcation occurs, and the
steady-state solution yields 2D streamwise vortices only. The
transition from 3D to the 2D rolling pattern is marked by a
significant increase in u∗

z to a value greater than the original
square pattern before ultimately decaying into the rolling
pattern. For large Fp, the peak value of u∗

z is reduced, and
the time required for pattern transition also decreases. When

the applied Fp is sufficiently large (e.g., u∗
center = 5.52), the

maximum value of u∗
z does not exceed the levels above that of

the rolling pattern.
To analyze the coherent structures leading to suppression

of the instabilities, DMD analysis of the EC in the cross flow
was performed using the numerical results in the transition
region for �t∗ = 0.25. Figure 13 shows λi for the weak cross
flow cases: (a) u∗

wall = 3.84 for Couette cross flow, and (c)
u∗

center = 3.88 for Poiseuille cross flow. The corresponding
unstable eigenvectors correspond to the nondecaying coherent
flow structures. In addition to the dominant dynamic modes
(m4 and m10) corresponding to the rolling pattern, unstable
dynamic modes (m5–m9 and m11 − m12) exist; these are as-
sociated with the oblique 3D features. The unstable modes
are similar to the ones obtained from the linear growth of
perturbation in the cross-flow scenario, see Figs. 9 and 10,
which can lead to changes in the stability of the entire system.
Figure 14 shows the analysis of the strong cross-flow cases
(u∗

wall = 3.88 for Couette and u∗
center = 4.16 for Poiseuille

cross flows). Only a single unstable eigenvalue is observed,
which corresponds to rolling pattern eigenvectors m4 or m10

in Fig. 13. The DMD analysis is consistent with the numerical
simulation; the EC flow transforms from 3D square to 2D
rolling with the strong cross flow. A list of the unstable eigen-
values is included in Table II of the Supplemental Material
[108].

Figure 15 shows u∗
z at z = H/2 for Couette and Poiseuille

cross flow when the maximum value reaches the valley (t∗ =
2.5, u∗

wall = 3.88, and t∗ = 2, u∗
center = 4.16) and peak (t∗ =

FIG. 15. Contours of valley and peak velocity u∗
z for (a, b) Couette cross flow (u∗

wall = 3.88) and (c, d) Poiseuille cross flow (u∗
center =

4.16).
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FIG. 16. Isosurfaces of charge density for (a) square pattern without cross flow, (b) u∗
wall = 3.84, (c) u∗

center = 3.92, and (d) strong cross
flow or rolling pattern. Streamlines (e) without cross flow (circulation streamline) and (f) with strong cross flow (helical streamline). Cross
flow is in the x direction.

15.75, u∗
wall = 3.88 and t∗ = 6.25, u∗

center = 4.16), as shown
in Figs. 11 and 12. For both types of cross flow, the u∗

z patterns
are similar. When the maximum u∗

z is at its valley, oblique 3D
structures are more pronounced, while a rolling pattern dom-
inates the flow at the high maximum u∗

z . The transition can
be interpreted as energy transfer from one dominant mode to
another. Further analysis of the nonlinear transition behavior
can be performed by solving for a reduced nonlinear system
such as given by the coupled Ginzburg-Landau equations for
transverse and longitudinal rolls, similar to the analysis of the
effects of cross flow on RBC [74,76,77].

Figure 16 shows the isosurfaces of charge density during
the transition from a square to a rolling pattern. Square
patterns of charge density are observed at the conditions
without cross flow, as shown in Fig. 16(a). When a weak cross
flow is applied, the iso-surfaces are obliquely stretched in the
x direction, as shown in Figs. 16(b) and 16(c). For strong
cross flow, the transverse patterns are suppressed, and only
a rolling pattern is observed, see Fig. 16(d). The isosurfaces
of charge density are identical for all strong cross-flow cases,
and for the rolling pattern perturbation without cross flow.
Phenomenologically, the EC system behaves similarly to the
RBC system [75]. It is also similar to the 3D EKI in cross flow
[91], as the superposition of the motion of the vortices and the
major crossflow results in the helical streamline patterns.

FIG. 17. Hysteresis loop of Ne vs. Y for Couette cross flow. The
bifurcation thresholds are Yc = 772.73, Yf = 438.14.

Figures 17 and 18 show the dependence of the electrical
Nusselt number on the nondimensional parameter Y calcu-
lated in the cross-flow direction. Similar to the previous 2D
analysis [87], the vortices perpendicular to the cross flow are
suppressed. Hysteresis behavior with well-defined bifurcation
is observed for both Couette and Poiseuille cross flows.
The bifurcation thresholds are Yc = 772.73, Yf = 438.14 for
Couette cross flow and Yc = 300.75, Yf = 213.90 for
Poiseuille cross flow. At Ne = 1(base state) EC vortices are
not present. If Y > Yc, then the square pattern perturbation
[Eq. (24)–(26)] results in oblique 3D structures. For Y <

Yc, any perturbation results in streamwise rolling vortices as
the equilibrium solution. Oblique 3D flow features develop
when shear stress is applied to the square pattern. As Y is
reduced (shear stress increased), the oblique features persist
until Y = Yf . Additional reduction in Y suppresses the features
in the transverse direction; only the longitudinal structures are
possible. The Ne value is lower in 3D EC vortices; the oblique
3D structures result in decreasing Ne. When Y is close to Yf ,
Ne slightly increases before transitioning to the rolling pattern
value. This increase of Ne agrees with trends in maximum uz,
as shown in Figs. 11 and 12. The inserts in Figs. 17 and 18
show uz contour plots at z = H/2; the uz profiles are oblique
in the cross-flow direction for both Couette and Poiseuille

FIG. 18. Hysteresis loop of Ne vs. Y for Poiseuille-type cross
flow. The bifurcation thresholds are Yc = 300.75, Yf = 213.90.
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cross flows. The hysteresis loop can be closed by introducing a
y-directional cross flow to suppress the rolling pattern vortices
[87].

VI. SUMMARY AND CONCLUSIONS

To summarize, the results presented in this work consider
the 3D interaction between cross flow and electroconvective
transport induced by unipolar charge injection. The increased
stability by shear observed in this 3D numerical study is
consistent with the previous 2D experimental observations
[40,68,69] and 2D numerical results [86]. The DMD analysis
sheds insight into the interaction of cross flow with the 3D
structures and can be compared to the 2D vorticity analysis
from previous work [87]. The applied shear organizes the
flow into 2D rolls parallel to the mean flow and enhances
the convection marked by an increase in Ne, similar to heat
convection problem with moderate Rayleigh number [113].
The presented methodologies (3D TRT LBM model, the
DMD analysis, and dimensional analysis) can be extended to
other convective systems such as RBC, magnetoconvection,
and electrokinetic systems

The interactions between the cross flow and electroconvec-
tive vortices lead to suppression and disappearance of struc-
tures perpendicular to the bulk flow. The numerical modeling
of EHD-EC uses a second-order TRT-LBM scheme to solve
the flow and charge transport equations coupled to a Fast
Poisson Solver for the electrical potential. Shear from Couette
and Poiseuille cross flow first stretches the EC cells at obliques
angles due to the interaction between the vortices and the bulk
flow. The transition to 2D streamwise vortices occurs after a
sufficiently high cross-flow velocity is reached. The transition
from 3D to 2D equilibrium states is observed independent of
the initial perturbation schemes and the domain configurations

considered in this work, i.e., square perturbations and it’s
harmonic, oval, hexagonal, and mixed perturbations. Two
transitional scenarios are studied, (i) the cross flow is applied
before and (ii) after the EC vortices are established. If the
cross flow is applied before the perturbation leading to the
formation of EC vortices, then bifurcation occurs at u∗

max =
2.20 for Couette flow and u∗

center = 2.80 for Poiseuille flow. If
the cross flow is applied after the EC vortices are established,
then the convective cells are more stable; the bifurcation
occurs at u∗

max = 3.88 for Couette flow and u∗
center = 3.96

for Poiseuille flow.
DMD analysis of the linear growth and the nonlinear

transition regions provides insight into the development of
the coherent flow structures, predicting the linear behavior,
and identifying bifurcation thresholds. The dynamic modes
obtained from the linear growth region agree with the global
growth rates obtained from the evolution of u∗

z . To param-
eterize the transition, the nondimensional analysis of the
governing equations uses a parameter Y in the momentum
equation. Similar to the 2D cases [87], hysteresis in the 3D
cases is observed. The bifurcation thresholds are Yc = 772.73,
Yf = 438.14 for Couette flow and Yc = 300.75, Yf = 213.90
for Poiseuille flow.
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